Dilation operator radius and applications

GILLES CASSIER

Recall that an operator T acting on a Hilbert space H admits a *unitary* ρ -*dilation* ($\rho > 0$), in the sense of B. Sz. Nagy and C. Foias, if there exists a Hilbert space H containing H as a closed subspace and a unitary operator U on H such that

$$T^n = \rho P_H U^n \mid H \qquad (n \ge 1),$$

where P_H is the orthogonal projection from H onto H. We denote by $C_{\rho}(H)$ the set of all operators on H which admit a unitary ρ -dilation and we write $C_{\infty}(H) = \bigcup_{\rho>0} C_{\rho}(H)$. A famous result of B. Sz. Nagy tells us that $C_1(H)$ consists of all contractions on H and C. A. Berger proved in a paper entitled "A strange dilation theorem" that $C_2(H)$ consists of all operators T acting on H with numerical radius less or equal to one. The study of operators belonging to $C_{\infty}(H)$ was elarged upon by many authors in several directions.

For any $T \in C_{\infty}(H)$, we can define the following strictly positive number

$$\rho(T) = \inf \left\{ \rho > 0 : \rho \in R^*_+ \text{ and } T \in C_\rho(H) \right\}.$$

The number $\rho(T)$ is the smallest $\rho > 0$ such that $T \in C_{\rho}(H)$ and will be called the *dilation operator radius* of *T*. We establish several properties of this radius. This study enables us to give results in several directions and to retrieve in a short way recent results which are concerned with the Aluthge transformation.