Quantization of the universal Teichmüller space

Armen G. Sergeev

Abstract

In the first part of the course we describe Kähler geometry of the universal Teichmüller space \mathcal{T} . This space consists of quasisymmetric homeomorphisms of the unit circle S^1 (i.e. orientation-preserving homeomorphisms of S^1 , extending to quasiconformal homeomorphisms of the unit disc Δ), normalized modulo Möbius transformations (i.e. fractionallinear automorphisms of Δ). The space \mathcal{T} is a complex Banach manifold, its complex structure being induced by its embedding into the Banach space of holomorphic quadratic differentials in the unit disc Δ . The classical Teichmüller spaces, associated with compact Riemann surfaces of a finite genus, are embedded into \mathcal{T} as complex submanifolds. The space ${\mathcal S}$ of diffeomorphisms of the unit circle $S^1,$ normalized modulo Möbius transformations, may be considered as a smooth part of \mathcal{T} . Quasisymmetric homeomorphisms of S^1 act (by change of variable) on the Sobolev space V of half-differentiable functions on S^1 by bounded symplectic operators. Respectively, diffeomorphisms of S^1 act on V by Hilbert–Schmidt symplectic operators.

The second part of the course is devoted to the quantization of the universal Teichmüller space. We explain first how to quantize the smooth part S of T. We use for that an embedding of S into the Hilbert–Schmidt Siegel disc, generated by the action of diffeomorphisms of S^1 as Hilbert–Schmidt symplectic operators on V. We construct a holomorphic Fock bundle over the Siegel disc together with a projective action of the Hilbert–Schmidt symplectic group. The infinitesimal version of this action yields a Dirac quantization of S. Unfortunately, this method does not work for the whole universal Teichmüller space T, since it contains non-smooth homeomorphisms of S^1 . For quantization of T we use another approach, based on the following idea. We still have an action of quasisymmetric homeomorphisms on V but this action has no infinitesimal limit, as in the case of S. However, following Connes, we can define a quantized infinitesimal version of T.

THE PROGRAM OF THE COURSE

I. UNIVERSAL TEICHMÜLLER SPACE

- 1. Definition of universal Teichmüller space \mathcal{T} .
- 2. Complex and Kähler structures of $\mathcal{T}.$
- 3. Embedding of classical Teichmüller spaces into $\mathcal{T}.$
- 4. Grassmann realization of \mathcal{T} .

II. QUANTIZATION

- 5. Dirac quantization.
- 6. Fock space and Heisenberg representation.
- 7. Symplectic group action on Fock spaces.
- 8. Quantum calculus and Connes quantization.
- 9. Quantization of universal Teichmüller space.