Completeness of families of exponential functions in L^2 -spaces

Alexei Poltoratski

Abstract

Consider a family of exponential functions $e^{i\lambda x}$ where the frequency λ belongs to a fixed subset Λ of the complex plane. The question of completeness (density of finite linear combinations) of such families in spaces $L^p(\mu)$, where μ is a positive finite measure on the real line, is one of the classical questions of Harmonic Analysis.

If p = 2, μ is Lebesgue measure on an interval and Λ is a sequence, the problem becomes the famous Beurling-Malliavin problem that was solved in the early sixties. Its solution is considered to be one of the deepest results in the 20th century Harmonic Analysis.

The case when p = 2, μ is a finite positive measure on \mathbb{R} and Λ is an interval, is another well-known problem that was discussed by Wiener and later posted by Kolmogorov and Krein in the fifties. Until recently, this problem stood completely open even for simple choices of μ .

For p = 1 and μ , Λ the same as above, one obtains the so-called Gap Problem that stems from the well-known Beurling Gap Theorem proved in the late fifties. A solution to this problem is also a recent result.

In my talks I will discuss a modern approach for this set of problems, their relations with adjacent fields, such as spectral problems for differential operators and Bernstein's weighted approximation, latest results and open questions.