QUANTIZATION OF THE UNIVERSAL TEICHMÜLLER SPACE

ARMEN SERGEEV

Universal Teichmüller space \mathcal{T} is the quotient of the group $QS(S^1)$ of quasisymmetric homeomorphisms of the unit circle S^1 (i.e. homeomorphisms of S^1 extending to quasiconformal homeomorphisms of the unit disc) modulo Möbius transformations. It contains the quotient \mathcal{S} of the group $\text{Diff}_+(S^1)$ of diffeomorphisms of S^1 modulo Möbius transformations. Both groups act naturally on the Sobolev space $H := H_0^{1/2}(S^1, \mathbb{R})$ of half-differentiable functions on S^1 .

Quantization problem for \mathcal{T} and \mathcal{S} arises in string theory where these spaces are considered as phase manifolds. To solve the problem for a given phase space means to fix a Lie algebra of functions (observables) on it and construct its irreducible representation in a Hilbert (quantization) space.

For the space S of diffeomorphisms of S^1 the algebra of observables coincides with the Lie algebra $\operatorname{Vect}(S^1)$ of $\operatorname{Diff}_+(S^1)$. Its quantization space is identified with the Fock space F(H), associated with the Sobolev space H. Infinitesimal version of the $\operatorname{Diff}_+(S^1)$ -action on H generates an irreducible representation of $\operatorname{Vect}(S^1)$ in F(H), yielding a quantization of S.

For the universal Teichmüller space \mathcal{T} the situation is more subtle since $QS(S^1)$ action on \mathcal{T} is not smooth. Respectively, there is no classical Lie algebra, associated to $QS(S^1)$. However, we can define a quantum Lie algebra of observables $Der^q(QS)$, generated by quantum differentials, acting on F(H). These differentials arise from integral operators $d^q h$ on H with kernels, given essentially by finite-difference derivatives of $h \in QS(S^1)$.

We do not assume any preliminary knowledge from the quantization theory or theory of quasiconformal maps.

STEKLOV MATHEMATICAL INSTITUTE, MOSCOW