The dynamics around the collinear point L_3 of the RTBP.

Esther Barrabés
Dpto. Informática y Matemática Aplicada, Universitat de Girona
barrabes@ima.udg.es

Josep M. Mondelo
Dpto. Matemáticas, Universitat Autònoma de Barcelona
jmm@mat.uab.cat

Mercè Ollé
Dpto. Matemática Aplicada I, Universitat Politècnica de Catalunya
merce.olle@upc.edu

Resumen

We consider the Restricted Three Body Problem (RTBP), both the planar and spatial case, and we restrict our attention to the equilibrium point L_3. Our aim is centered in the description, as global as possible, of the dynamics around this equilibrium point. It is well known that L_3 is of type center \times center \times saddle, and the initial study of the local dynamics around L_3 gives two families of non-linear Lyapunov periodic orbits (associated with the two centers) and a 2-parametric (cantorian) family of 2-dimensional tori (see for example [3] and [2]).

In this work, we compute the objects in the center manifold of L_3, including the invariant manifolds associated to them. They are computed by purely numerical procedures, in order to avoid the convergence restrictions of the semi-analytical ones (typically used around L_1 or L_2). We also deal with homoclinic and heteroclinic connections between periodic orbits or invariant tori. In particular, we develop some numerical tools in order to compute homoclinic and heteroclinic orbits.

In [1], the behaviour of the invariant manifolds of L_3 as μ (the mass parameter of RTBP) increases was studied, as well as the homoclinic connections to L_3. In the present work we initially consider small values of μ, as for them the homoclinic connections of L_3 are horseshoe-shaped. After that, other values of μ will be considered.

Sección en el CEDYA 2007: EDO: Session 1, Dynamical systems and celestial mechanics

Referencias

