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Resumen

In this paper we consider IVPs for systems of ODEs that can be written in the form

d

dt
y(t) = f(y(t)) ,

y(t0) = y0 .
(1)

We assume that f : Rm → Rm is a sufficiently smooth function so that for each t0 ∈ R and y0 ∈ Rm

the problem (1) has a unique solution y : [t0,∞)→ Rm. In the literature much attention has been
paid in problems like (1) having monotonicity or positivity properties [1], [4], [7], [8]. For example,
if the solution represents concentrations of chemical species, then y0 ≥ 0 implies y(t) ≥ 0 for all
t > 0.

If we solve (1) numerically, it would be desirable that the numerical method preserves these
monotonicity properties. Runge-Kutta methods having these properties have been studied in the
last years [2], [3], [4], [6], [8], [9]. Monotonicity and also positivity results have been obtained for
the numerical solution under certain step size restriction.

In some cases, the stiffness of the problem makes necessary to solve it with an implicit method.
If we solve the IVP with an implicit Runge-Kutta (IRK) method, then the highest computational
effort is due the resolution of a nonlinear system in each step. Although there are a number of
schemes to solve this nonlinear system, variants of Newton’s method are used in all modern ODE
codes. The monotonicity results obtained for IRK methods mean that the nonlinear systems are
solved exactly, but, in practice, these systems are solved approximately by means of some iterative
scheme. Consequently, it is important that the technique used to solve the nonlinear systems
maintains the monotonicity properties. In particular, if we deal with positivity and we are using a
method to get starting values for the iterations, then it is important that these values are positive

In this work we consider a kind of starting algorithms studied in [5], and analyze the attainable
order so that the starting values are positives. We will see how for many positive methods, the
optimum predictor cannot be positive.
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