Reduction methods for quasilinear differential-algebraic equations

RICARDO RIAZA

Dpto. de Matemática Aplicada TTI, ETSI Telecomunicación, Universidad Politécnica de Madrid
rrr@mat.upm.es, http://www.mat.upm.es/~rrr

Resumen

Quasilinear autonomous differential-algebraic equations (DAEs) are implicit ODEs of the form

\[A(x)\dot{x} = f(x), \]

where \(A \in C^\infty(\Omega_0, \mathbb{R}^{n \times n}) \) is a rank-deficient matrix-valued mapping, \(f \in C^\infty(\Omega_0, \mathbb{R}^n) \), and \(\Omega_0 \) is an open set in \(\mathbb{R}^n \). Geometric methods for DAEs aim at an iterative reduction of the problem to an explicit ODE on a lower-dimensional submanifold of \(\Omega_0 \). This approach can be traced back to the seminal work of Dirac on generalized Hamiltonian dynamics [1, 2], and was later developed by Rheinboldt [7], Reich [5, 6], and Rabier and Rheinboldt [3, 4].

Reduction methods are usually based on certain algebraic (typically constant-rank) conditions holding at every reduction step. When these conditions are met the DAE is called regular. We will discuss in this talk several recent results concerning the use of reduction techniques in the local classification problem for DAEs under contact equivalence, not only for regular systems but also for singular ones, where the above-mentioned conditions fail. Related dynamical aspects will also be addressed.

Sección en el CEDYA 2007: EDO

Referencias