Rational spectral transformations and orthogonal polynomials

Francisco Marcellán

Dpto. Matemáticas, Univ. Carlos III de Madrid
pacomarc@ing.uc3m.es

Resumen

k-Toeplitz matrices are tridiagonal matrices of the form $A=\left[a_{i, j}\right]_{i, j=1}^{n}$ (with $n \geq k$) such that $a_{i+k, j+k}=a_{i, j},(i, j=1,2, \cdots, n-k)$, so that they are k-periodic along the diagonals parallel to the main diagonal. When $k=1$ it reduces to a tridiagonal Toeplitz matrix. The interest of the study of k-Toeplitz matrices appears to be very important not only from a theoretical point of view (in linear algebra or numerical analysis, e.g.), but also in applications. Here in this talk, motivated by certain physical systems (namely a system of quantum oscillators with a nonlinear interactions) we will discuss spectral properties of some tridiagonal quasi-periodic as well as certain perturbations of them.

