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Resumen

The purpose of this talk is to show that the solutions of the usual Neumann boundary val-
ue problem for the heat equation can be approximated by solutions of a sequence of nonlocal
“Neumann” boundary value problems.

Let J : RN → R be a nonnegative, radial, continuous function with
∫
RN J(z) dz = 1. Assume

also that J is strictly positive in B(0, d) and vanishes in RN \B(0, d). Nonlocal evolution equations
of the form ut(x, t) = (J ∗ u− u)(x, t) =

∫
RN J(x− y)u(y, t) dy− u(x, t), and variations of it, have

been recently widely used to model diffusion processes, see [1], [2], [5].
In this talk, following [3] and [4], we propose a nonlocal “Neumann” boundary value problem,

namely

ut(x, t) =
∫

Ω

J(x− y)
(
u(y, t)− u(x, t)

)
dy +

∫

RN\Ω
G(x, x− y)g(y, t) dy,

where G(x, ξ) is smooth and compactly supported in ξ uniformly in x.
Now, for given J and G we consider the rescaled kernels

Jε(ξ) = C1
1

εN
J

(
ξ

ε

)
, Gε(x, ξ) = C1

1
εN

G

(
x,

ξ

ε

)

and then the solution uε(x, t) to




uε
t (x, t) =

1
ε2

∫

Ω

Jε(x− y)(uε(y, t)− uε(x, t)) dy +
1
ε

∫

RN\Ω
Gε(x, x− y)g(y, t) dy,

uε(x, 0) = u0(x).

We show that
uε → u,

in different topologies according to different choices of the kernel G. Here u is the solution of the
heat equation, ut = ∆u with boundary condition ∂u/∂η = g and initial condition u0.

This is a joint work with C. Cortazar, M. Elgueta and N. Wolanski.
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