The Banach space $L_p[0, 1]$ Edward Odell

University of Texas at Austin.

We will discuss the Banach space structure of $L_p[0, 1]$ mostly in the reflexive setting, 1 . This classical Banach space has been a primecase study for abstraction to a more general study of Banach space structure. It has an unconditional basis, namely the Haar basis. The Rademacherfunctions span a subspace isomorphic to Hilbert space, and complemented $in <math>L_p$. There are uncountably many nonisomorphic complemented subspaces and all of these, except Hilbert space, exhibit a local structure like that of L_p . If p > 2 and $q \neq p$ ($q \neq 2$) then L_q does not embed into L_p . For p < 2, L_q embeds into L_p iff $p \leq q \leq 2$. For 1 every normalized unconditional $sequence in <math>L_p$ lies between the ℓ_p and ℓ_2 norms. Every subspace (infinite dimensional) of L_p (p > 2) either contains ℓ_p or is isomorphic to ℓ_2 . If such a subspace does not contain ℓ_2 it embeds into ℓ_p . The norm on L_p is stable and as such does not distort ℓ_p .

These talks will go slowly and treat some of the above in depth while only touching on others.