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1 Fractional integration
The fractional integral operator arises in a natural way when solving prob-
lems involving differential operators. From elementary one variable calculus
we know that integration and differentiation are inverse operations. This is
basically the content of the Fundamental Theorem of Calculus. The picture
is not that simple in higher dimensions where the most interesting situations
occur. In order to solve partial differential equations, even in a theoretical
framework, we must deal with operators involving inverses of “derivatives”.
Fractional integrals are in many cases the key operators to handle such in-
verses. The basic identity that leads to a generalization of the fundamental
theorem of calculus in one variable, i.e.,

∫ t

a
f ′(s) ds = f(t) − f(a), is the

following
f(x) = cn

∫
Rn

〈∇f(y), x− y〉
|x− y|n

dy,

where f denotes a function defined on Rn, with compact support and con-
tinuous partial derivatives. In fact, let B(x,R) be a ball centered at x and
with radius large enough to contain the support of f . For each unit direction
y′ we may apply the one dimensional result to get

f(x) =

∫ R

0

Dy′f(x− ty′) dt =

∫ ∞

0

〈∇f(x− ty′), y′〉 dt.

Integrating both sides over all the directions y′ we obtain

f(x) = cn

∫
Sn−1

∫ ∞

0

〈∇f(x− ty′), ty′〉
tn

tn−1 dt dy′

= cn

∫
Rn

〈∇f(x− y), y〉
|y|n

dy = cn

∫
Rn

〈∇f(y), x− y〉
|x− y|n

dy.

From here it follows immediately that

|f(x)| ≤ cn

∫
Rn

|∇f(y)|
|x− y|n−1

dy.

Now we introduce the definition of the Fractional Integral Operator of
order α, 0 < α < n, by the expression

Iαg(x) =

∫
Rn

g(y)

|x− y|n−α
dy.

It follows that, taking α = 1 (as long as n is greater than one),

|f(x)| ≤ cnI1(|∇f |).
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As a consequence we may say that an improvement on the integrability of
the function Iα(g) with respect to that of g, i.e., some boundedness results of
Iα on Lebesgue spaces, would lead to obtain a better degree of integrability
for a function f from assumptions on the size of its gradient. As an example,
if we start with a function in L2 whose gradient belongs also to L2 and we
are able to prove that the Fractional Integral operator for α = 1 maps L2

into Lq for some q > 2, we might conclude that f has in fact a better local
integrability than that originally assumed. This type of result is known as
one of the “immersion Sobolev’s theorems” and it turns to be a fundamental
tool in proving regularity properties for weak solutions to some uniformly
elliptic partial differential equations, like the Laplace equation. In a similar
way, results on the behavior of Iα over smooth function spaces are funda-
mental for obtaining regularity properties for classical solutions of such kind
of equations. During the last fifty years, Fractional Integral operators have
been intensively studied, not only in the present context but in more general
situations to englobe larger classes of equations.

Another way of looking at the relationship between Fractional Integral
operators and derivatives is by studying their Fourier transforms. Since they
are convolution operators, it is enough to know the Fourier transform of the
kernel k(x) = |z|α−n. A homogeneity argument allows us to see that k̂(ξ)
is, up to a constant, |ξ|−α. On the other hand, if we compute the Fourier
transform of (−∆)α/2 using distributional calculus, we easily find that it is a
constant times |ξ|α. Therefore the composition of Iα with (−∆)α/2, whenever
possible, gives the identity.

We shall start our study by stating some classical results concerning the
behavior of these operators on the Lebesgue space Lp(Rn), that is, the set of
measurable functions defined on Rn such that |f |p is integrable.

Theorem 1 (Hardy-Littlewood-Sobolev). Let 0 < α < n and 1 < p < n/α.
Then Iα is a bounded operator from Lp(Rn) into Lq(Rn) with 1/q = 1/p−α/n,
that is, there exists a constant C such that

‖Iαf‖q ≤ C‖f‖p.

Remark. It is a pleasant exercise to check that, because of the homogeneity
of the kernel, if the operator Iα maps Lp into Lq, the relationship 1/q =
1/p − α/n must hold. In fact, choosing g with ‖g‖Lp = 1, the above norm
inequality applied to f(x) = g(λx) gives that

λ−α−n/q ≤ Cλ−n/p,

should be true for any λ > 0. That is possible only if α + n/q = n/p, which
is the same as 1/q = 1/p− α/n. ♦
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In order to prove the theorem we first introduce a new space, a little
bit larger than Lq, named weak-Lq or Lq,∗ for short. Given a measurable
function f , let us denote by µf its distribution function, that is, for λ > 0

µf (λ) = |{x : |f(x)| > λ}|.

We will say f ∈ Lq,∗(Rn) if there is a constant c such that

µf (λ) ≤ c

λq
for all λ > 0.

The infimum of such constants raised to 1/p-th power turns to be a norm
in this space as long as 1 ≤ q < ∞, and moreover it is complete. The well
known Tchebycheff’s inequality

µf (λ) ≤ 1

λq

∫
Rn

|f |q,

implies that Lq ⊂ Lq,∗, continuously. On the other hand, it is straightforward
to check that g(x) = 1/|x|n/q belongs to Lq,∗ but, however, g does not belong
to Lq.

Now, if a given operator T is bounded from Lp into Lq,∗ we shall say that
it is of weak type (p, q), while we shall say that T is of strong type (p, q)
whenever it is bounded from Lp into Lq. From the above remark we deduce
that any strong type operator is of weak type. However the converse might be
not true, as we shall illustrate later. We shall make use of a famous theorem
due to Marcinkiewicz that will allow us to derive strong boundedness results
from weak type inequalities. We give the precise statement (for a proof see
[St]).

Theorem 2 (Marcinkiewicz’s interpolation theorem). Let p0, p1, q0, q1 be real
numbers such that 1 ≤ pi ≤ qi ≤ ∞, p0 < p1 y q0 6= q1. Let T be a
sublinear operator which is simultaneously of weak type (p0, q0) and (p1, q1).
Then for each θ, 0 < θ < 1, with 1/p = (1 − θ) 1/p0 + θ 1/p1 and 1/q =
(1− θ) 1/q0 + θ 1/q1, we have that T is of strong type (p, q), that is,

‖Tf‖q ≤ A‖f‖p.

(When qi = ∞ weak type means ‖Tf‖qi
≤ Ai‖f‖pi

.)

We shall also use the the very well known Young’s inequality for convo-
lutions, namely

‖f ∗ g‖r ≤ ‖f‖s‖g‖t,

where 1 ≤ s, t ≤ ∞ y 1 + 1/r = 1/s+ 1/t.
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Proof of theorem 1. We will prove that for 1 ≤ p < n/α, 1/q = 1/p − α/n,
the operator Iα satisfies∣∣{x : |Iαf |(x) > λ}

∣∣ ≤ c

λq

(∫
|f |p

)q/p
.

In other words, Iα is of weak type (p, q), 1 ≤ p < n/α. From here, by means of
Marcinkiewicz’s interpolation theorem, we will obtain the strong type (p, q),
in the range 1 < p < n/α.

For each η > 0 we split the kernel K(x) = |x|α−n in

K = K0 +K∞,

where K0 = Kχ
B(0,η)

and K∞ = Kχ
Bc(0,η)

.
If f belongs to Lp, K0 ∗ f as well as K∞ ∗ f are finite a.e.. This is so

since K0 is an L1 function while K∞ is in Lp′ , and then an application of
Young’s inequality gives that K0 ∗ f belongs to Lp, and that K∞ ∗ f is in
L∞ and, consequently, finite almost everywhere. Moreover, straightforward
calculations show that

‖K0‖1 ≤ c0η
α, ‖K∞‖p′ = c1η

−n/q.

Now, let us observe that

|{x : |K ∗ f |(x) > 2λ}|
≤

∣∣{x : |K0 ∗ f |(x) > λ}
∣∣ +

∣∣{x : |K∞ ∗ f |(x) > λ}
∣∣

= I + II.

To estimate I we use Tchebycheff’s and Young’s inequalities to get

I ≤ 1

λp
‖K0 ∗ f‖p

p ≤
1

λp
‖K0‖p

1 ‖f‖p
p ≤ cp0

(ηα‖f‖p

λ

)p

.

On the other hand, since for almost every x,

|K∞ ∗ f |(x) ≤ ‖K∞‖p′ ‖f‖p ≤ c1η
−n/q‖f‖p,

choosing η such that c1η−n/q‖f‖p = λ we obtain that II = 0.
Consequently, for this value of η we have

∣∣{x : |K ∗ f |(x) > 2λ}
∣∣ ≤ cp0

c
pqα/n
1

(‖f‖qα/n

λqα/n

‖f‖p

λ

)p

= c
(‖f‖p

λ

)q

,

since from the relationship between p and q it follows that 1+qα/n = q/p.
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Therefore we have shown that Iα is of weak type (p, q) for p in the interval
[1, n/α). Since any p in the open interval (1, n/α) may be seen as an inter-
mediate point between two values p0 and p1 belonging to the same interval,
we may conclude via interpolation that Iα is of strong type for p ∈ (1, n/α)
and q such that 1/q = 1/p− α/n.
Remark. In the above proof we have seen that Iα is also of weak type (p, q)
when p = 1 and q = n/(n− α).

Moreover it can be shown that it is not of strong type in the extreme
point. In fact, if we take a sequence of functions fk, ‖fk‖1 = 1 tending to
the Dirac delta we will have

Iαfk(x) = K ∗ fk → cn/|x|n−α,

for almost every x ∈ Rn. Therefore, if the strong type inequality were true
we would have

‖K ∗ fk‖n/(n−α) ≤ A,

and by Fatou’s Theorem, we would arrive to∫
Rn

|x|−n dx <∞,

which is obviously false. ♦

We state our observation as another boundedness result for Iα.

Theorem 3. Let 0 < α < n. The operator Iα is of weak type (1, n/(n− α))
but not of strong type.

It is also not difficult to check that in the other end point p = n/α, Iα
is not of strong type (n/α,∞) as may be expected. In this case it is enough
to take f(x) = |x|−α(log 1/|x|)−rα/nχ

B(0,1/2)
(x), with 1 < r ≤ n/α, which

belongs to Ln/α and observe that

Iαf(x) =

∫
|y|≤1/2

|y|−α

|x− y|n−α
(log 1/|y|)−rα/n dy,

is a continuous function for x 6= 0, and also

lim
x→0

Iαf(x) =

∫
|y|≤1/2

(log 1/|y|)−rα/n |y|−n dy = ∞,

since 1 − rα/n ≥ 0, giving that Iαf is not essentially bounded. Then, a
natural question arises. What can be said about Iα(f) for a function f ∈
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Ln/α? Certainly we should enlarge the space L∞ so as to allow functions
behaving locally as the logarithm at the origin. The appropriate space is
known as BMO (bounded mean oscillation) or the John-Nirenberg space
(see [JN]) and it is defined as:

BMO =
{
f ∈ L1

loc : ‖f‖∗ = sup
B

1

|B|

∫
B

|f(x)−mBf | dx <∞
}
,

where the supremum is taken over the family of balls in Rn, and mBf denotes
the average of f over the ball B, that is, mBf = 1

|B|

∫
B
f .

If we want ‖ ‖∗ to be a norm, we must identify those functions whose
difference is a constant.

With this notation we will be able to prove the following result:

Theorem 4. Let f ∈ Ln/α and having compact support. Then, Iαf is finite
almost everywhere and

‖Iαf‖∗ ≤ C‖f‖n/α.

Proof. Since such f belongs for instance to Lp, 1 < p < n/α, then Iαf ∈ Lq,
1/q = 1/p− α/n, and hence locally integrable.

Let B = B(x0, r) be a ball. We decompose f = f1 + f2 with f1 = fχ
B̃

where B̃ = B(x0, 2r).
Now,

1

|B|

∫
B

|Iαf −mBIαf | ≤
2

|B|

∫
B

|Iαf1|+
1

|B|

∫
B

|Iαf2 −mBIαf2| = I + II.

But if we choose p and q such that 1 < p < n/α, 1/q = 1/p − α/n, we
obtain

1

|B|

∫
B

|Iαf1| ≤
( 1

|B|

∫
B

|Iαf1|q
)1/q ≤ C

1

|B|1/q

(∫
|f1|p

)1/p
,

in view of Theorem 1. Applying Hölder’s inequality with r = n/αp > 1 and
r′ = n/(n− αp) we get

I ≤ c
|B̃|(n−αp)/np

|B|1/q
‖f‖n/α = c ‖f‖n/α.

On the other hand

II ≤ 1

|B|2

∫
B

∫
B

∫
B̃c

|f2(y)|
∣∣|x− y|α−n − |z − y|α−n

∣∣ dy dz dx.
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Since x, z ∈ B and y ∈ B̃c, |x− y| ≥ r, |z− y| ≥ r. An application of the
mean value theorem leads to∣∣|x− y|α−n − |z − y|α−n

∣∣ ≤ c |x− z| θα−n−1,

being θ an intermediate value between |x − y| and |z − y|. Since in our
situation both values are equivalent to |x0−y|, the last expression is bounded
by cr|x0 − y|α−n−1, and then

II ≤ cr

∫
|x0−y|>2r

|f(y)| |x0 − y|α−n−1 dy

≤ cr‖f‖n/α

(∫
|x0−y|>r

|x0 − y|(α−n−1) n/(n−α) dy
)(n−α)/n

.

Changing to polar coordinates the last integral equals to a constant times∫ ∞

r

ρ−n−n/(n−α)ρn−1 dρ = c r−n/(n−α),

and therefore we also obtain

II ≤ c ‖f‖n/α.

Remark. We have stated the theorem only for Iαf with f in Ln/α and having
compact support. Let us notice that for such functions, if we define

Ĩαf(x) =

∫
Rn

( 1

|x− y|n−α
−
χ

Bc(0,1)

|y|n−α

)
f(y) dy

= Iαf(x)−
∫
|y|≥1

f(y)

|y|n−α
dy = Iαf(x)− C,

we would obtain that Ĩαf and Iαf are the same as functions in BMO . On the
other hand, it is easy to see that for f ∈ Ln/α, Ĩαf is finite almost everywhere
and moreover locally integrable. In fact, let BR = B(0, R) with R > 1 and
x ∈ BR. We write

Ĩαf(x) =

∫
|y|≤2R

f(y)

|x− y|n−α
dy +

∫
1≤|y|≤2R

f(y)

|y|n−α
dy

+

∫
|y|≥2R

[ 1

|x− y|n−α
− 1

|y|n−α

]
f(y) dy.

The first term in the sum gives a function in L1
loc since it is the fractional

integral of a Ln/α function with compact support. The second integral is a
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finite quantity and independent of x since 1/|y|n−α ≤ 1 and, being f in Ln/α,
is locally integrable. Finally, for x in BR, the quantity between brackets is
a difference of two values of the function tα−n away from the origin, and
hence the mean value theorem may be applied to bound the integrand by
C|x|/|y|n−α+1, since again |x−y| ' |y|. Clearly, this last function belongs to
Ln/(n−α), and then Hölder’s inequality gives that the third integral is bounded
by C|x| which is integrable on BR.

From these observations we can say that Ĩαf provides an extension of
Iαf for general functions belonging to Ln/α and not necessarily with compact
support. ♦

Similar considerations hold for n/α ≤ p < n/(α − 1)+. It turns out
that Ĩαf is also well defined for f ∈ Lp, giving a class of locally integrable
functions that differ by a constant. In fact the same argument applies and
all we need is that 1/|y|n−α ∈ Lp′

loc and 1/|y|n−α+1χ
Bc

R

∈ Lp′ , and clearly both
are true in the stated range.

A new question therefore arises: what can be said about the image of Lp

under Ĩα when n/α < p < n/(α− 1)+?
From the above remark we know that Ĩαf is locally integrable and the

proof of theorem 3 can be followed step by step; the only difference is that
when estimating the averages in terms of ‖f‖p instead of ‖f‖n/α, we will
obtain C ‖f‖p |B|α/n−1/p on the right hand side.

In this way we would get an estimate of the type

1

|B|α/n−1/p

1

|B|

∫
B

|Ĩαf −mB Ĩαf | ≤ C‖f‖p,

for p such that n/α < p < n/(α− 1)+. Let us observe that in such situation
the exponent α/n− 1/p is always positive and less than 1/n. Moreover, the
above inequality for p = n/α gives the statement of Theorem 3.

Then, for a given 0 ≤ β < 1 we introduce the space

BMOβ =
{
f ∈ L1

loc : sup
B

1

|B|β/n

1

|B|

∫
B

|f −mBf | <∞
}
.

When β = 0 we recover BMO and for β > 0, as we shall see in the next
section, it coincides with a very well known space of smooth functions.

2 Functions with controlled mean oscillation
As a generalization of the spaces we just introduced, when trying to describe
the image of Lp (p > n/α) under the fractional integration, S. Spanne [Sp]
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defined the BMOϕ spaces as the class of functions whose mean oscillation
is controlled by ϕ, a fixed non-decreasing and positive function defined on
(0,∞). More precisely,

BMOϕ =
{
f ∈ L1

loc : sup
B

1

ϕ(|B|1/n)

1

|B|

∫
B

|f −mBf | <∞
}
,

and moreover, if we denote by ‖ ‖∗,ϕ that supremum, taking over all the balls
in Rn , the space BMOϕ, turns to be a Banach space, after identifying those
functions that differ by a constant.

Clearly for ϕ(t) = tβ, 0 ≤ β < 1, we have the spaces introduced in the
previous section. In particular, for β = 0 we recover the John-Nirenberg
space. These spaces were firstly studied by Campanato [C] and Meyers [M]
in connection with the study of regularity of solutions of elliptic partial dif-
ferential equations.

In this section we plan to study some properties of these spaces. In
particular, it is obvious that BMO (β = 0) contains non continuous functions
(obviously L∞ ⊂ BMO), while in [C] and [M] it is shown that for 0 < β < 1,
all the functions are continuous and, moreover, their modulus of continuity
is not worse than tβ.

Spanne [Sp], considered the problem of smoothness for functions in BMOϕ,
posing the questions of finding conditions on ϕ to guarantee that BMOϕ con-
tains only smooth functions and when such situation does not occur.

To answer these questions we introduce the space of Lipschitz-ϕ functions,
as those functions whose modulus of continuity is controlled by ϕ, i.e.

Λϕ =
{
f : ωf (t) = sup

|x−y|≤t

|f(x)− f(y)| ≤ c ϕ(t)
}
.

It is immediate to check that Λϕ ⊂ BMOϕ and also that Λϕ = L∞/c when
ϕ(t) ' 1 (Here L∞/c means that we have identified functions differing a.e.
by a constant.)

In the next theorem we state the results by Spanne.

Theorem 5. Let ϕ be a non-decreasing and positive function. Then we have

(a) If the function ϕ also satisfies
∫ δ

0
ϕ(t) dt/t <∞ for some δ > 0 then any

function in BMOϕ is continuous and moreover ωf (s) ≤ c
∫ s

0
ϕ(t) dt/t.

(b) If ϕ(t)/t is non increasing and
∫ δ

0
ϕ(t) dt/t diverges, then the space BMOϕ

contains discontinuous and locally unbounded functions.

Corollary 6. If ϕ is such that
∫ s

0
ϕ(t) dt/t < ∞ for some δ > 0, denoting

by ϕ̃(s) =
∫ s

0
ϕ(t) dt/t, it follows that BMOϕ ⊂ Λϕ̃.
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We will not show the result (a) of Spanne in its full generality. Instead,
to make the computations easier, we are going to assume that ϕ(t)/t is non
increasing also for the proof of (a).

We shall make use of the following simple lemma.

Lemma 7. Let f ∈ BMOϕ and B ⊂ B two balls in Rn. Then

|mBf −mBf | ≤ ‖f‖∗,ϕ
|B|
|B|

ϕ(|B|1/n).

Proof.

|mBf −mBf | =
1

|B|

∫
B

|f −mBf |

≤ |B|
|B|

1

|B|

∫
B

|f −mBf | ≤
|B|
|B|

ϕ(|B|1/n) ‖f‖∗,ϕ.

Proof of theorem 5 (a). Let us start by noticing that ϕ(t)/t non increasing
implies that for any fixed a ≥ 1, there is a constant c such that ϕ(at) ≤ c ϕ(t).
On the other hand if a < 1 such inequality holds with constant one, since ϕ is
non-decreasing. It is also clear that ϕ(t/2) ≤ c

∫ t

t/2
ϕ(s) ds/s ≤ c

∫ t

0
ϕ(s) ds/s.

Hence ϕ(t) ≤ c ϕ̃(t).
Let x, y ∈ Rn and B = B(x, |x−y|), B′ = B(y, |x−y|) and B̃ = B(x, 2|x−

y|).

|f(x)− f(y)| ≤ |f(x)−mBf |+ |f(y)−mB′f |
+ |mB′f −mB̃f |+ |mB̃f −mBf | = I + II + III + IV.

Since both, B y B′ are contained in B̃, the terms III y IV, according to
lemma 7, are bounded by

2n ϕ(|B̃|1/n) ‖f‖∗,ϕ ≤ c 2n ϕ(|x− y|) ‖f‖∗,ϕ ≤ c ‖f‖∗,ϕ
∫ |x−y|

0

ϕ(t)
dt

t
.

The terms I y II are quite similar, so we only bound the first. We set
Bi = B(x, 2−i|x− y|) for i ≥ 1 y B0 = B. Then we have

|f(x)−mBf | ≤ |f(x)−mBmf |+
m−1∑
i=0

|mBi+1
f −mBi

f |.

Since f is locally integrable, Lebesgue’s differentiation theorem applies.
Let us assume that x is in fact a Lebesgue point. Then, taking limit for
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m → ∞, the first term on the right hand side goes to zero, and applying
lemma 7 to each term in the series we get

|f(x)−mBf | ≤
∞∑
i=0

|mBi+1
f −mBi

f | ≤ c ‖f‖∗,ϕ
∞∑
i=0

ϕ(2−i|B|1/n)

≤ C ′ ‖f‖∗,ϕ
∞∑
i=0

∫ 2−i+1

2−i

ϕ(t|B|1/n)
dt

t
≤ C ‖f‖∗,ϕ

∫ 1

0

ϕ(t|B|1/n)
dt

t
.

Since |B|1/n = ωn |x − y| with ωn = |B(0, 1)|1/n, performing the change
of variables s = t|x− y| and using that ϕ(as) ≤ c ϕ(s) it follows that

I ≤ c ‖f‖∗,ϕ
∫ |x−y|

0

ϕ(s)
ds

s
,

for some appropriate constant c. Therefore, part (a) of the theorem is proved
under the extra assumption ϕ(t)/t non-increasing.

Before proceeding with the proof of part (b), let us observe that a function
f satisfying the property: for any ball B there is a constant CB such that

1

|B|

∫
B

|f − CB| ≤ Aϕ(|B|1/n),

with A independent of the ball B, certainly belongs to BMOϕ, and moreover
||f ||∗,ϕ ≤ 2A. In fact,

1

|B|

∫
B

|f −mBf | ≤
1

|B|

∫
B

|f − CB|+ |CB −mBf |

≤ Aϕ(|B|1/n) +
1

|B|

∫
B

|f − CB| ≤ 2Aϕ(|B|1/n).

Consequently, in order to prove that a function does belong to BMOϕ we
may use any constant CB instead of mBf .

Proof of theorem 5 (b). We set

h(x) =

∫ 1

|x|

ϕ(t)

t
dt.

Then h is continuous at x 6= 0 and under the assumptions on ϕ, it is
discontinuous at x = 0 and unbounded nearby. To check that h ∈ BMOϕ, it
is enough to consider balls B(z, r) with z 6= 0.
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We set B = B(z, r), zB = z + r z
|z| and CB = h(zB). Let us notice that

|zB| = |z| + r and that for x ∈ B, |x| ≤ |x − z| + |z| ≤ |z| + r. Hence for
x ∈ B,

|h(x)− CB| = |h(x)− h(zB)| =
∫ |z|+r

|x|
ϕ(t)

dt

t
.

In order to estimate the oscillation, let us consider first the case |z| < 2r.
In this situation we have∫

B

|h(x)− CB| =
∫

B

∫ |z|+r

|x|
ϕ(t)

dt

t
dx ≤

∫ |z|+r

0

ϕ(t)

t
(

∫
|x|≤t

dx) dt

≤ C ϕ(|z|+ r)

∫ |z|+r

0

tn−1 ≤ C ϕ(3r) rn ≤ C ϕ(|B|1/n)|B|,

where we have used ϕ non-decreasing, |z| < 2r and ϕ(ar) ≤ Cϕ(r).
Now if |z| > 2r, the distance from the origin to the ball is at least r. In

fact, if x ∈ B, |x| ≥ |z| − |z − x| ≥ |z| − r ≥ r.
In this way∫
B

|h(x)− CB| ≤
∫

B

(∫ |z|+r

r

ϕ(t)
dt

t

)
dx ≤ |B| ϕ(r)

r
2r = 2|B|ϕ(|B|1/n),

where we have used that ϕ(t)/t is non-increasing.

Remarks.

1. It is worth noting that the proof of h ∈ BMOϕ does not make use of
the divergence of the integral, we just used ϕ non-decreasing and ϕ(t)/t
non increasing.

2. For ϕ(t)/t non increasing, (a) and (b) imply that if
∫ δ

0
ϕ(t) dt/t diverges

then Λϕ  BMOϕ. In fact, when ϕ(0+) = 0, all the functions in Λϕ are
continuous and when ϕ(0+) > 0 they are bounded (locally). On the
other hand, if the integral converges and ϕ ' ϕ̃, then Λϕ = BMOϕ.
Conversely, it can be seen that if both spaces agree, not only the integral
must converge (a consequence of (b)) but ϕ ' ϕ̃ must hold. Indeed,
by the previous remark, h ∈ BMOϕ and hence h ∈ Λϕ. Therefore,

|h(x)− h(0)| ≤ Cϕ(|x|).

But, according to the definition of h,

|h(x)− h(0)| =
∫ |x|

0

ϕ(t)
dt

t
= ϕ̃(|x|).

12



Then ϕ̃(r) ≤ Cϕ(r), for any positive r. Since the converse inequality
always holds, we arrive to ϕ ' ϕ̃.

3. An example where the assumptions made in (b) hold is ϕ(t) ≡ 1. In
such case the function h is

h(|x|) = log(1/|x|),

which is the classical example of unbounded function (even locally)
which does belong to BMO . ♦

3 Smooth function spaces and wavelets
Besides BMOϕ, there are other families of spaces that generalize Lipschitz-
α spaces. We will introduce another line of spaces and we shall present a
problem arising in non-linear approximation where they become the appro-
priate spaces. We will follow closely the exposition given in the book by
Wojtaszczyk [W, Ch. 9].

In the sequel, for simplicity, we will restrict our functions to one dimen-
sion, even though most of the results have an extension to higher dimensions.

As we have seen, a Lipschitz function is defined in terms of its pointwise
modulus of continuity, i.e.,

ωf (t) = sup
|h|≤t

sup
x
|f(x+ h)− f(x)| = sup

|h|≤t

‖f(x+ h)− f(x)‖∞,

which measures in some sense, the size of the difference between a function
and its translation. Since there are many ways of measuring the size of a
function, it is natural to introduce the p-modulus of continuity by

ωp(f, t) = sup
|h|≤t

‖f(x+ h)− f(x)‖p.

Clearly, ω∞(f, t) = ωf (t).
Next we establish several simple properties of ωp:

(i) ωp(f, t) is a non-decreasing function of t.

(ii) If 1 ≤ p < ∞ and f ∈ Lp, then limt→0 ωp(f, t) = 0, and moreover
ωp(f, t) ≤ 2 ‖f‖p for t > 0.

(iii) ωp(f,mt) ≤ mωp(f, t) if m ∈ N.

(iv) limt→0
1
t
ωp(f, t) = 0 ⇒ f = constant.

13



Clearly (i) and (iii) hold. For (ii) the claim on the limit is obvious for
smooth functions with compact support, and the result follows by the density
of such functions in Lp. Finally from (iii) we get

ωp(f, t) = ωp(f,mt/m) ≤ ωp(f, t/m)

t/m
t.

Making m tend to infinity, the assumption in (iv) implies that ωp(f, t) = 0
for each t > 0 and then f equal a.e to a constant.

A function belongs to a Lipschitz-α space whenever supt>0 t
−α ω∞(f, t) <

∞. Again, we may change the sup-norm by a different norm, to introduce a
new family of spaces: the non homogeneous Besov spaces Ḃp

α,s, with 0 < α ≤
1 and 1 ≤ p, s ≤ ∞, as the set of functions such that ‖f‖p,α,s <∞, where

‖f‖p,α,s =


(∫∞

0

[
t−αωp(f, t)

]s dt
t

)1/s

if 1 ≤ s <∞,

supt>0 t
−α ωp(f, t) if s = ∞.

In fact, ‖ ‖p,α,s are seminorms and they vanish on constant functions. If
we want to work with a norm we should identify functions differing by a
constant, but the resulting spaces may not be complete. When these spaces
are completed, they involve not only functions but also distributions, and
their treatment becomes more difficult.

One way to bypass this difficulty is to introduce the so called homogeneous
Besov spaces Bp

α,s, as the set of functions in Lp such that ‖f‖p,α,s <∞. In this
way, it turns to be a Banach space with respect to the norm ‖f‖p + ‖f‖p,α,s.

The seminorm ‖ ‖p,α,s has a discrete version as it is easy to check.
Proposition 8. For p, α, s as above, there exist positive constants c and C
such that

c ‖f‖p,α,s ≤
∑
j∈Z

2αjs ωp(f, 2
−j)

s ≤ C ‖f‖p,α,s.

Proof. Splitting the integral into dyadic intervals and using (i) and (iii) we
get∫ ∞

0

[
t−αωp(f, t)

]s dt

t
=

∑
j∈Z

∫ 2−j+1

2−j

ωp(f, t)
s dt

tαs+1
≤ 2s

∑
j∈Z

2αjs ωp(f, 2
−j)

s
.

Also by (i) the integral is bounded below by

2−αs−1
∑
j∈Z

2αjs ωp(f, 2
−j)

s
,

and the proposition is proved for s < ∞. The case s = ∞ follows similarly,
just replacing integrals and sums by suprema.
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To illustrate a situation where Besov’s spaces appear in a natural way,
we shall introduce, in an informal way, some basics concepts and facts from
the one dimensional wavelet theory.

A wavelet on R is a function ψ ∈ L2(R) such that the family of functions

ψjk(t) = 2j/2 ψ(2j t− k) with j, k ∈ Z,

gives an orthonormal system in L2(R).
A first natural question is whether or not such functions do exist. Let

us observe that taking ψ = χ
(0,1/2)

− χ
(1/2,1)

, the family {ψjk} is the well
known Haar system that is in fact a basis for L2(R). If we want to have
a wavelet ψ, smooth and with some decay at infinity, the examples are not
that easy. Daubechies and Meyer, among others, constructed wavelets with
both properties through a method called a multiresolution analysis.

One of the main advantages in analyzing functions by means of wavelets
rather than through the Fourier method, is that it makes possible to obtain
characterizations of most of the useful function spaces in terms of wavelet
coefficients.

Here we will not give details on what a multiresolution analysis is. For
those knowing this method for constructing wavelets, we say that we will be
working with a ψ coming from a scale-function φ satisfying

(i) φ ∈ C1(R), and

(ii) |φ(x)|+ |φ′(x)| ≤ C (1 + |x|)−A, with A > 3.

Given a function f , its coefficients with respect to the system ψjk are
given by

〈f, ψjk〉 =

∫
f(t)ψjk(t) dt.

Although any function in L2 can be described in terms of coefficients
derived from any basis, if we have a system coming from a “good” wavelet,
that result can also be extended to Lp, 1 < p <∞. In that case we obtain

‖f‖p '
∥∥∥(∑

|〈f, ψjk〉|2 χIjk
|Ijk|−1)1/2

∥∥∥
p
,

where Ijk denotes the interval
[
k 2−j, (k + 1) 2−j

]
.

Also, the Besov seminorm of a function can be described in terms of
wavelet coefficients. For the application we have in mind we shall need the
following result (for a proof see [W, p. 228]).
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Theorem 9. Let ψ be a wavelet associated to a multiresolution analysis
satisfying (i) and (ii). Assume further that |ψ(x)| ≤ c (1 + |x|)−A. Then, for
0 < α < 1 and 1 ≤ p, s ≤ ∞ there exists a constant C such that(∑

j∈Z

[
2jα

(∑
k

2jp (1/2−1/p) |〈f, ψjk〉|p
)1/p]s

)1/s

≤ C ‖f‖p,α,s.

We are interested in the case s = p =
(
α+ 1

2

)−1 with α ≤ 1/2. In that
situation the above theorem establishes∑

j,k

|〈f, ψjk〉|p ≤ C ‖f‖p
p,α,p.

Assuming this result, it is our intention to investigate the following prob-
lem in data compression.

Suppose we have a function f ∈ L2. We know in this case that f
may be approximated in the L2-norm by a finite sum of its expansion,∑

jk〈f, ψjk〉ψjk. Now, assume that we can keep records of only a fix number
of coefficients N , not necessarily the first ones. How good is this approxima-
tion measured in the L2 norm? In other words: can we express the order of
the approximation in terms of N for all functions in L2?

The following example shows that the answer is negative if we deal with a
general function in L2. In fact, suppose we are allowed to use N coefficients
to approximate f , i.e., we search for the best approximation of f , in the sense
of L2, by

∑
(j,k)∈A〈f, ψjk〉ψjk, where A ⊂ Z× Z, and card(A) ≤ N .

Let fN =
∑2N

k=1
1√
2N
ψ0,k. Then ‖fN‖2 = 1, and for any A with card(A) ≤

N we have ∥∥∥fN −
∑

(j,k)∈A

〈f, ψjk〉ψjk

∥∥∥
2
≥ 1√

2
.

This is so because the best choice for A is to keep non-vanishing coeffi-
cients and having only 2N of them and with the same size, we may choose
for example A = {(0, k) : k = 1, . . . , N}, and the norm of the difference gives
in this case

(∑2N
N+1 1/(2N)

)1/2
= 1/

√
2.

Since the L2-norm of a function is the `2-norm of its coefficients taken
with respect to an orthonormal basis, we may think the above problem in
the following way.

Given a sequence a = {ak}k∈Z, with ‖a‖`2 = 1, and a natural number N :
what additional conditions on the sequence would guarantee that choosing
the N largest coefficients (in absolute value) we will get a “good” approxi-
mation of the original one? (“good” means here that the error goes to zero
with N , or better yet, that goes to zero like a negative power of N).
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Let us define the set B ⊂ Z such that card(B) = N and |ak| ≥ |a`|
whenever k ∈ B and ` /∈ B. Let b the sequence defined by

bk =

{
ak if k ∈ B,
0 if k /∈ B.

Assume further that a ∈ `p for some p, 1 ≤ p < 2 with ‖a‖`p ≤ C. Then
we have

sup
k/∈B

|ak| ≤ min
k∈B

|ak| ≤
( 1

N

∑
k∈B

|ak|p
)1/p

≤ C N−1/p.

Since p < 2, it follows that

‖b− a‖`2 =
(∑

k/∈B

|ak|2
)1/2

=
(∑

k/∈B

|ak|2−p |ak|p
)1/2

≤
(
C N−1/p

)1−p/2
Cp/2 = C N1/2−1/p,

and we obtain a “good” approximation since 1/2− 1/p < 0.
We may rephrase what we have done in the following way. Assume as

above a ∈ `2∩ `p, with p < 2, ‖a‖`2 = 1, and ‖a‖`p ≤ C. Instead of fixing N ,
we fix a lower threshold for the size of the coefficients, say δ with δ > 0, and
let us approximate by the sequence neglecting those coefficients less than δ.
Let now B = {k : |ak| ≥ δ} and define the sequence b as above. The previous
estimates give that

card(B) ≤ Cp

mink∈B |ak|p
≤ Cp δ−p,

and hence
‖b− a‖`2 ≤ Cp/2 δ1−p/2.

In this way the approximation improves as δ → 0, and the velocity of con-
vergence increases when p gets closer to 1.

Coming back to wavelet expansions, the above discussion shows that al-
though such non linear approximation methods may not be good for all the
functions in L2, they will work for some special subspaces, namely those
functions satisfying (∑

jk

|〈f, ψjk〉|p
)1/p

≤ C

for some p < 2.
The description of Besov spaces in terms of wavelet coefficients allows

us to conclude that they are the appropriate spaces to make these methods
converge. The precise result is the following.
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Theorem 10. Let 0 < α ≤ 1/2, p =
(
α+ 1

2

)−1, and f ∈ L2 ∩ Ḃp
α,p. Then,

there exists a constant K such that for any N ∈ N it is possible to find a set
A, A ⊂ Z× Z, with card(A) = N and∥∥∥f − ∑

(j,k)∈A

〈f, ψjk〉ψjk

∥∥∥
2
≤ K ‖f‖p,α,pN

−α.

Or, alternatively, there exists a constant M such that for any δ > 0, if
Bδ = {(j, k) : |〈f, ψjk〉| ≥ δ}, we have∥∥∥f − ∑

(j,k)∈Bδ

〈f, ψjk〉ψjk

∥∥∥
2
≤M ‖f‖p,α,p δ

2α.
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