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Our goal is to explore the structure of the “small” subspaces of Lp, mainly for 2 < p < ∞,

discussing older classical results and ultimately presenting some new results of [HOS]. We will

review first some Banach space basics. By Lp we shall mean Lp[0, 1], under Lebesgue measure

m.

Unless we say otherwise X, Y, . . . shall denote a separable infinite dimensional Banach space.

X ⊆ Y means that X is a closed subspace of Y . X
C∼ Y means that X is C-isomorphic to Y ,

i.e., there exits an invertible bounded linear T : X → Y with ‖T‖ ‖T−1‖ ≤ C. IfX
1∼ Y we

shall say X is isometric to Y . X
C
↪→ Y means X is C-isomorphic to a subspace of Y .

Definition. A basis for X is a sequence (xi)
∞
1 ⊆ X so that for all x ∈ X there exists a unique

sequence (ai) ⊆ R with x =
∑∞

1 aixi, i.e., limn

∑n
i=1 aixi = x.

Example. The unit vector basis (ei)
∞
i=1 is a basis for �p (1 ≤ p < ∞). Of course ei = (δi,j)

∞
j=1

where δi,j = 1 if i = j and 0 otherwise.

Definition. (xi)
∞
1 ⊆ X is basic if (xi)

∞
1 is a basis for [(xi)] ≡ the closed linear span of (xi)

∞
1 .

Proposition 1. Let (xi)
∞
1 ⊆ X. Then

1) (xi) is basic iff xi 	= 0 for all i and for some K < ∞, all n < m in N and all (ai)
m
1 ⊆ R,

∥
∥

n∑

1

aixi

∥
∥ ≤ K

∥
∥

m∑

1

aixi

∥
∥ .

(In this case (xi) is called K-basic and the smallest K satisfying 1) is called the basis constant

of (xi).)

2) (xi) is a basis for X iff 1) holds and [(xi)] = X.

(xi) is called monotone if its basis constant is 1.

The proof of this and other background facts we present can be found in any of the standard

texts such as [LT1], [AK], [D], [FHHSPZ]. The paper [AO] contains further background on

Lp spaces.

Definition. A bounded linear operator P : X → X is a projection if P 2 = P .

In this case if Y = P (X) then X = Y ⊕ Ker P . Writing X = Y ⊕ Z means that Y and Z

are closed subspaces of X and every x ∈ X can be uniquely written x = y + z for some y ∈ Y ,

z ∈ Z. In this case Px = y defines a projection of X onto Y . Y is said to be complemented

in X if it is the range of a projection on X. Y is C-complemented in X if ‖P‖ ≤ C.

If F ⊆ X is a finite dimensional subspace then F is complemented in X. If X is isomorphic

to �2 then all Y ⊆ X are complemented but this fails to be the case if X � �2 by a result of

Lindenstrauss and Tzafriri [LT2].
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Now from Propostion 1 if (xi) is a basis for X then setting Pn(
∑

aixi) =
∑n

i=1 aixi yields

a projection of X onto 〈(xi)
n
1 〉 ≡ linear span of (xi)

n
i=1. Moreover the Pn’s are uniformly

bounded and supn ‖Pn‖ is the basis constant of (xi).

Not every Banach space X has a basis but the standard ones do.

The Haar basis for Lp (1 ≤ p < ∞): The Haar basis (hi)
∞
1 is a monotone basis for Lp.

h1 ≡ 1

h2 = 1[0, 1/2] − 1[1/2, 1]

h3 = 1[0, 1/4] − 1[1/4, 1/2] , h4 = 1[1/2, 3/4] − 1[3/4, 1]

. . .

To see this is a monotone basis for Lp is not hard via Proposition 1. We need only check a

couple of things. First

〈(hi)
2n

1 〉 =

{

f =

2n
∑

1

ai1Dn
i

: (ai)
2n

1 ⊆ R

}

where Dn
i =

[
i − 1

2n
,

i

2n

]

.

From real analysis these functions (over all n) are dense in Lp (1 ≤ p < ∞).

Secondly to see 1) holds with K = 1 it suffices to show for all n, (ai)
n+1
1 ⊆ R,

∥
∥

n∑

1

aihi

∥
∥

p
≤ ∥

∥
n+1∑

1

aihi

∥
∥

p
.

This reduces to proving if D = [ i−1
2j , i

2j ] is a dyadic interval with left half D+ and right half

D− supporting the Haar function h = 1D+ − 1D− then for all a, b ∈ R, ‖a1D‖p = ‖a1D + h‖p

or

‖a1D‖p ≤ ‖(a + b)1D+ + (a − b)1D−‖p .

This is an easy exercise.

Definition. Basic sequences (xi) and (yi) are C-equivalent if there exist A, B with A−1B ≤ C

and for all (ai) ⊆ R

1

A

∥
∥

∑
aiyi

∥
∥ ≤ ∥

∥
∑

aixi

∥
∥ ≤ B

∥
∥

∑
aiyi

∥
∥ .

This just says that the linear map T : [(xi)] → [(yi)] with Txi = yi for all i is an onto

isomorphism with ‖T‖ ‖T−1‖ ≤ C.

Proposition 2 (Perturbations). Let (xi) be a normalized K-basic sequence in X and let

(yi) ⊆ X satisfy
∞∑

i=1

‖xi − yi‖ ≡ λ <
1

2K
.
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Then (xi) is C(λ)-equivalent to (yi) where C(λ) ↓ 1 as λ ↓ 0. If in addition [(yi)] is comple-

mented in X by a projection P and λ < 1
8K‖P‖ then [(xi)] is complemented in X by a projection

Q where ‖Q‖ → ‖P‖ as λ ↓ 0.

Notation. If (xi) and (yi) are C-equivalent basic sequences we write (xi)
C∼ (yi).

Definition. Let (xi) be basic. (yi) is a block basis of (xi) if yi 	= 0 for all i and for some

0 = n0 < n1 < n2 < · · · and (ai) ⊆ R, yi =
∑ni

j=ni−1+1 ajxj .

Note. (yi) is then automatically basic with basis constant not exceeding that of (xi).

If (xi) is a normalized K-basis for X we define the coordinate or biorthogonal functionals

(x∗
i ) via x∗

i (
∑

ajxj) = ai. From Proposition 1 we obtain ‖x∗
i ‖ ≤ 2K and so for all (ai)

1

2K
‖(ai)‖∞ ≤ ∥

∥
∑

aixi

∥
∥ ≤

∑
|ai| = ‖(ai)‖�1 .

In other words ‖∑
aixi‖ is trapped between the c0 and �1 norms of (ai).

From Proposition 2 we obtain

Proposition 3. Let X have a basis (xi) and let (yi) ⊂ SX ≡ {x ∈ X : ‖x‖ = 1} be weakly

null (i.e., x∗(yi) → 0 for all x∗ ∈ X∗). Then given εi ↓ 0 there exists a subsequence (zi) of

(yi) and a block basis (bi) ⊆ SX of (xi) with ‖zi − bi‖ < εi for all i. In particular given ε > 0

we can choose (zi) to be (1 + ε)-equivalent to a normalized block basis of (xi).

Definition. A basis (xi) for X is K-unconditional if for all
∑

aixi ∈ X and all εi = ±1,
∥
∥

∑
aixi

∥
∥ ≤ K

∥
∥

∑
εiaixi

∥
∥ .

It is not hard to show (xi) is unconditional iff for all x =
∑

aixi ∈ X and all permutations

π of N,

x =
∑

aπ(i)xπ(i) .

iff for some C < ∞, all
∑

aixi ∈ X and all M ⊆ N, ‖∑
i∈M aixi‖ ≤ C‖∑

aixi‖. (This

just says that the projections (PM : M ⊆ N) given as above are well defined and uniformly

bounded.)

Easily, the unit vector basis (ei) is a 1-unconditional basis for �p (1 ≤ p < ∞) or c0.

Fact. The Haar basis is an unconditional basis for Lp if 1 < p < ∞.

This is a more difficult result (see [Bu1]), if p 	= 2. For p = 2, (hi) is an orthogonal basis
∥
∥
∥

∑
ai

hi

‖hi‖2

∥
∥
∥

2
=

(∑
|ai|2

)1/2

.
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More generally if (xi) is a normalized block basis of (hi) then ‖∑
aixi‖2 = (

∑ |ai|2)1/2.

It is easy to check that (hi) is not unconditional in L1. For example if

(yi) = (h1, h2, h3, h5, h9, h17, . . .)

is the sequence of “left most” hi’s then

∥
∥

n∑

1

yi

‖yi‖1

∥
∥

1
= 1 while for some c > 0 ,

∥
∥

n∑

1

(−1)i yi

‖yi‖1

∥
∥

1
≥ cn .

Definition. A finite dimensional decomposition (FDD) for X is a sequence of non-zero finite

dimensional subspaces (Fi) of X so that for all x ∈ X there exists a unique sequence (xi) with

xi ∈ Fi for all i and x =
∑

xi.

As with bases the projections Pnx = Pn(
∑

xi) =
∑n

1 xi are uniformly bounded and

supn ‖Pn‖ is the basis constant of the FDD. Also for n ≤ m if P[n,m]x =
∑m

n xi, then the

P[n,m]’s are uniformly bounded and supn≤m ‖P[n,m]‖ is the projection constant of the FDD.

(Ei) is monotone if its basis constant is 1 and bimonotone if its projection constant is 1.

A blocking (Gi) of an FDD (Fi) for X is given by Gi = 〈(Fj)
ni
j=ni−1+1〉 for some 0 = n0 <

n1 < · · · . (Gi) is then also an FDD for X.

A basis (xi) also may be regarded as an FDD with Fi = 〈xi〉.
From Proposition 3 we see that if 1 < p < ∞ and (yi) ⊆ SLp is weakly null (equivalently,

∫
E

yi → 0 for all measurable E ⊆ [0, 1]) then some subsequence is a perturbation of a block

basis of (hi) and hence is unconditional (just like for bases, block bases of unconditional bases

are unconditional). This fails in L1 by a deep new result of Johnson, Maurey and Schechtman.

Theorem 4. [JMS] There exists a weakly null sequence (xi) ⊆ SL1 satisfying: for all ε > 0

and all subsequences (yi) ⊆ (xi), (hi) is (1 + ε)-equivalent to a block basis of (yi).

Now lets fix 2 < p < ∞ and let Kp be the unconditional constant of (hi) in Lp. We shall

list what we consider to be the small subspaces of Lp. These are also subspaces of Lp for

1 < p < 2 but as we shall note shortly the situation there as to what constitutes “small” is

more complicated.

Lp contains the following “small” subspaces
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• �p (isometrically): If (xi) ⊆ SLp are disjointly supported then

∥
∥

∑
aixi

∥
∥ =

( ∫

|
∑

aixi(t)|p dt

)1/p

=

( ∑ ∫

|ai|p|xi(t)|p dt

)1/p

=

( ∑
|ai|p

)1/p

.

Also [(xi)] is 1-complemented in X via Px =
∑∞

i=1 x∗
i (x)xi where (x∗

i ) are the functions

naturally biorthogonal to (xi), x∗
i = sign(xi)|xi|p−1.

• �2 (isomorphically) via the Rademacher functions (rn). (rn) are ±1 valued independent

random variables of mean 0.

Khintchin’s inequality: For 2 < p < ∞,
(∑

|an|2
)1/2

=
∥
∥

∑
anrn

∥
∥

2
≤ ∥

∥
∑

anrn

∥
∥

p

≤ Bp

(∑
|an|2

)1/2

.

For 1 < p < 2

Ap

(∑
|an|2

)1/2

≤ ‖
∑

anrn‖p ≤ ‖
∑

anrn‖2 =
(∑

|an|2
)1/2

.

The constants Ap, Bp depend solely on p.

• �2 (isometrically) via a sequence of symmetric Gaussian independent random variables

in SLp

• (�2 ⊕ �p)p (isometrically)

For this we use that Lp
1∼ (Lp[0,

1
2
]⊕Lp[

1
2
, 1])p and Lp[0,

1
2
]

1∼ Lp[
1
2
, 1]

1∼ Lp[0, 1]. More generally

if we partition [0, 1] into disjoint intervals of positive measure (In)∞n=1 then Lp(In)
1∼ Lp and

Lp
1∼ (

∑
Lp(In))p. Hence Lp contains also

• (
∑

�2)p = (�2 ⊕ �2 ⊕ · · · )p ≡ {(xi) : xi ∈ �2 for all i

and ‖(xi)‖ = (
∑ ‖xi‖p

2)
1/p < ∞} (isometrically)

Our topic will be to characterize when X ⊆ Lp, 2 < p < ∞, embeds isomorphically into or

contains isomorphically one of the four spaces �p, �2, �p ⊕ �2 or (
∑

�2)p.

Now some remarks are in order here. First it is known that Lq
1

↪→Lp if p < q ≤ 2 (X
C
↪→Y

means X is C-isomorphic to a subspace of Y ). Thus Lp contain �q if p < q < 2 so is this

“small”? Secondly we have
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Proposition 5. Let X ⊆ �p (1 ≤ p < ∞). Then for all ε > 0 there exists Y ⊆ X with

Y
1+ε∼ �p and Y is 1 + ε-complemented in �p.

This is due to Pe�lczyński [P]. Every normalized block basis of (ei) in �p is 1-equivalent

to (ei) and 1-complemented in �p as is easily checked. Then one uses perturbation as in

Proposition 2.

Some other classical facts are

i) The �p spaces are totally incomparable, i.e., for all X ⊆ �p, Y ⊆ �q, p 	= q, X 	∼ Y .

ii) For 1 ≤ p, q < ∞, Lq ↪→ Lp iff q = 2 or 1 ≤ p ≤ q < 2. Also �q ↪→ Lp iff 1 ≤ p ≤ q < 2

or q = 2.

Our next result shows that normalized unconditional basic sequences in Lp, 1 < p < ∞, are

trapped between the �p and �2 norms.

Proposition 6. a) Let 2 < p < ∞ and let (xi) ⊆ SLp be λ-unconditional. Then for all

(an) ⊆ R,

λ−1
(∑

|an|p
)1/p

≤ ∥
∥

∑
anxn

∥
∥

p
≤ λBp

(∑
|an|2

)1/2

.

b) Let 1 < p < 2 and let (xi) ⊆ SLp be λ-unconditional. Then for all (ai) ⊆ R,

(λAp)
−1

(∑
|an|2

)1/2

≤ ∥
∥

∑
anxn

∥
∥

p
≤ λ

(∑
|an|p

)1/p

.

Proof. For t ∈ [0, 1], 2 < p < ∞,

∥
∥

∑
anxn

∥
∥

p
≤ λ

∥
∥

∑
anxnrn(t)

∥
∥

p

and so
∥
∥

∑
anxn

∥
∥p

p
≤ λp

∫ 1

0

∥
∥

∑
anxnrn(t)

∥
∥p

p
dt

(Fubini)
= λp

∫ 1

0

∫ 1

0

∣
∣
∑

anxn(s)rn(t)
∣
∣p dt ds

≤ (λBp)
p

∫ 1

0

(∑
a2

nxn(s)2
)p/2

ds

≤ (λBp)
p
(∑

‖a2
nx2

n‖p/2

)p/2

(by the triangle inequality in Lp/2)

= (λBp)
p
(∑

|an|2
)p/2

.

This gives the upper �2-estimate.
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Similarly,

λp
∥
∥

∑
anxn

∥
∥p ≥

∫ 1

0

(∑
a2

nx2
n(s)

)p/2

ds

≥
∫ 1

0

∑
|an|p|xn(s)|p ds =

∑
|an|p

(using ‖ · ‖�p ≤ ‖ · ‖�2). The argument is similar for 1 < p < 2. �

The technique of proof, integrating against the Rademacher functions, yields

Proposition 7. For 1 < p < ∞ there exists C(p) so that if (xi) ⊆ SLp is λ-unconditional

then for all (ai)

(1)
∥
∥

∑
anxn

∥
∥

p

λC(p)∼
( ∫ 1

0

(∑
|an|2|xn(s)|2

)p/2

ds

)1/p

.

The expression on the right is the so called “square function.” By A
C∼ B we mean A ≤ CB

and B ≤ CA.

Corollary 8. [S2] Let (xn) ⊆ SLp, 1 < p < ∞, be unconditional basic. Then (xn) is equivalent

to a block basis (yn) of (hn).

Sketch. By (1) it follows that if (yi) is a block basis of (hi) with |yi| = |xi| on [0, 1] then

(yi) ∼ (xi). By a perturbation argument we may assume each xi ∈ 〈hj〉. Then it is easy to

construct the yi’s. Indeed given a simple dyadic function x and any n one can find y ∈ 〈hi〉∞n
so that |y| = |x|. �

We are now ready to begin our investigation announced previously: if X ⊆ Lp (2 < p < ∞)

when does X contain or embed into one of the 4 small subspaces of Lp, namely �p, �2, �p ⊕ �2

or (
∑

�2)p? We begin with a result from 1960.

Theorem 9 (Kadets and Pe�lczyński [KP]). Let X ⊆ Lp, 2 < p < ∞. Then X ∼ �2 iff

‖ · ‖2 ∼ ‖ · ‖p on X; i.e., for some C, ‖x‖2 ≤ ‖x‖p ≤ C‖x‖2 for all x ∈ X. Moreover there is

a projection P : Lp → X.

Sketch. First note that if x ∈ SLp and m{t : |x(t)| ≥ ε} ≥ ε then ‖x‖2 ≤ ‖x‖p = 1 ≤ ε−3/2‖x‖2.

Indeed

‖x‖2 =

( ∫

|x(t)|2 dt

)1/2

≥
( ∫

[|x|≥ε]

|x(t)|2 dt

)1/2

≥ ε · ε1/2 .

The direction requiring proof is if X ∼ �2 then ‖ · ‖2 ∼ ‖ · ‖p on X. If not we can find

(xi) ⊆ SX , xi
ω−→ 0, so that for all ε > 0, limn m[|xn| ≥ ε] = 0. From this we can construct a
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subsequence (xni
) and disjointly supported (fi) ⊆ SLp with limi ‖xni

− fi‖ = 0. Hence by a

perturbation argument a subsequence of (xi) is equivalent to the unit vector basis of �p which

contradicts X ∼ �2.

The projection onto X with ‖x‖p ≤ C‖x‖2 for x ∈ X is given by the orthogonal projection

P : L2 → X acting on Lp. For y ∈ Lp,

‖Py‖p ≤ C‖Py‖2 ≤ C‖y‖2 ≤ C‖y‖p .

�

Remarks. The proof yields that if X ⊆ Lp, 2 < p < ∞, and X 	∼ �2 then for all ε > 0, �p
1+ε
↪→ X.

Moreover if (xi) ⊆ SLp is weakly null and ε = limi ‖xi‖2 then a subsequence is equivalent to

the �p basis if ε = 0 and the �2 basis if ε > 0.

In the latter case we have essentially (assuming say (xi) is a normalized block basis of (hi)

with ‖xi‖2 = ε for all i)

ε(
∑

a2
i )

1/2 = ‖
∑

aixi‖2 ≤ ‖
∑

aixi‖p ≤ KpBp(
∑

a2
i )

1/2 .

Pe�lczyński and Rosenthal [PR] proved that if X
K∼ �2 then X is C(K)-complemented in Lp

via a change of density argument.

Our next result shows that if X does not contain an isomorph of �2 then it embeds into �p.

The argument uses “Pe�lczyński’s decomposition method.”

Proposition 10. [P] Let X be a complemented subspace of �p, 1 ≤ p < ∞. Then X ∼ �p.

Proof. �p ∼ X ⊕ V for some V ⊆ �p. Also X ∼ �p ⊕ W for some W ⊆ X by Proposition 5.

Finally �p ∼ �p ⊕ �p and moreover �p ∼ (�p ⊕ �p ⊕ · · · )p. The latter is proved by splitting (ei)

into infinitely many infinite subsets. Thus

�p ∼ (�p ⊕ �p ⊕ · · · )p ∼ ((X ⊕ V ) ⊕ (X ⊕ V ) ⊕ · · · )p

∼ (X ⊕ X ⊕ · · · )p ⊕ (V ⊕ V ⊕ · · · )p

∼ X ⊕ (X ⊕ X ⊕ · · · )p ⊕ (V ⊕ V ⊕ · · · )p

∼ X ⊕ �p ∼ W ⊕ �p ⊕ �p ∼ W ⊕ �p ∼ X .

�

A consequence of this is that if (Hn) is any blocking of (hi) into an FDD then (
∑

Hn)p ∼ �p.

Indeed each Hn is uniformly complemented in �mn
p for some mn, hence (

∑
Hn)p is comple-

mented in (
∑

�mn
p )p = �p.
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Theorem 11. [JO1] Let 2 < p < ∞, X ⊆ Lp. Then X ↪→ �p ⇔ �2 	↪→ X. ([KW] If �2 	↪→ X

then for all ε > 0, X
1+ε
↪→ �p.)

The scheme of the argument is to show if �2 	↪→ X then there is a blocking (Hn) of the Haar

basis into an FDD so that X ↪→(
∑

Hn)p in a natural way; x =
∑

xn, xn ∈ Hn → (xn) ∈
(
∑

Hn)p. Since (
∑

Hn)p ∼ �p we are done.

We won’t discuss the specifics here of this argument but rather will sketch shortly the proof

of a stronger result. First we note the analogous theorem for 1 < p < 2, which has a different

form. Note the Theorem would also hold for 2 < p < ∞ and, unlike 1 < p < 2, the constant

K need not be specified.

Theorem 12. [Jo] Let X ⊆ Lp, 1 < p < 2. Then X ↪→ �p if (and only if) there exists K < ∞
so that for all weakly null (xi) ⊆ SX some subsequence is K-equivalent to the unit vector basis

of �p.

These results were unified using the infinite asymptotic game/weakly null trees machinery

which we will discuss after stating

Theorem 13. Let X ⊆ Lp, 1 < p < ∞. Then X ↪→ �p iff every weakly null tree in SX admits

a branch equivalent to the unit vector basis of �p.

A tree in SX is (xα)α∈T∞ ⊆ SX where

T∞ = {(n1, . . . , nk) : k ∈ N , n1 < · · · < nk are in N} .

A node in T∞ is all (x(α,n))n>nk
where α = (n1, . . . , nk) or α = ∅. The tree is weakly null

means each node is a weakly null sequence. A branch is (xi)
∞
i=1 given by xi = x(n1,...,ni) for

some subsequence (ni) of N.

It is worth noting that, just as in Proposition 3, if X ⊆ Z, a space with a basis (zi) and

(xα)α∈T∞ ⊆ SX is a weakly null tree then the tree admits a full subtree (yα)α∈T∞ so that each

branch is a perturbation of a block basis of (zi). By full subtree we mean that (yα)α∈T∞ =

(xα)α∈T ′ where T ′ ⊆ T∞ is order isomorphic to T and if yα = xγ(α) then |γ(α)| = |α| = length

of α. |(n1, . . . , nk)| = k.

Remarks. The conditions for a general reflexive X,

A) Every weakly null sequence (xi) ⊆ X has a subsequence K-equivalent to the unit vector

basis of �p and

B) Every weakly null tree in SX admits a branch equivalent to the unit vector basis of �p

are generally different. It is not hard to show that B) actually implies

10



B)′ For some C every weakly null tree in SX admits a branch C-equivalent to the unit

vector basis of �p.

Also B)′ ⇒ A) by considering the tree (xα)α∈Tα where x(n1,...,nk) = xnk
. Indeed the branches

of (xα) coincide with the subsequences of (xi). But in Lp one can show that A) and B) are in

fact equivalent. Thus Theorem 13 encompasses both Theorems 11 and 12.

Theorem 13 follows from

Theorem 14. [OS] Let 1 < p < ∞, let X be reflexive and assume that every weakly null tree

in SX admits a branch C-equivalent to the unit vector basis of �p. Assume X ⊆ Z, a reflexive

space with an FDD(Ei). Then there exists a blocking (Fi) of (Ei) so that X naturally embeds

into (
∑

Fi)p.

The conclusion means that for some K and all x ∈ X, x =
∑

xn, xn ∈ Fn, we have

‖x‖ K∼ (
∑ ‖xn‖p)1/p.

We shall outline the steps involved in the proof. First we give a definition.

Definition. Let (Ei) be an FDD for Z. Let δ̄ = (δi), δi ↓ 0. A sequence (zi) ⊆ SZ is a

δ̄-skipped block sequence w.r.t. (Ei) if there exist integers 1 ≤ k1 < �1 < k2 < �2 < · · · so that

‖zn − P E
(kn,�n]zn‖ < δn for all n .

Here for x =
∑

xi, xi ∈ Ei, P E
(k,�]x =

∑
i∈(k,�] xi. Thus above the “skipping” is the P E

kn

terms. (zn) is almost a block basis of (En) with the Ekn almost skipped.

Now let X ⊆ Z = [(Ei)] be as in the statement of Theorem 14.

Step 1. There exists a blocking (Gi) of (Ei) and δ̄ so that every δ̄-skipped block sequence

w.r.t. (Gi) in SX is 2C-equivalent to the unit vector basis of �p.

To obtain this one first shows that the weakly null tree hypothesis on X is equivalent to

(S) having a winning strategy in the following game (for all ε > 0).

The infinite asymptotic game: Two players (S) for subspace and (V ) for vector

alternate plays forever as follows. (S) chooses n1 ∈ N. (V ) chooses x1 ∈
SX ∩ [(Ei)i≥n1], . . . . Thus the plays are (n1, x1, n2, x2, . . .).

(S) wins if (xi) ∈ A(C + ε) ≡ {all normalized bases (C + ε)-equivalent to the unit vector

basis of �p}.
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(S) has a winning strategy means that

∃ n1 ∀ x1 ∈ SX ∩ [(Ei)i≥n1]

∃ n2 ∀ x2 ∈ SX ∩ [(Ei)i≥n2]

· · ·
(xi) ∈ A(C + ε)

(V ) wins if (xi) /∈ A(C + ε).

(V ) has a winning strategy means that

∀ n1 ∃ x1 ∈ SX ∩ [(Ei)i≥n1]

∀ n2 ∃ x2 ∈ SX ∩ [(Ei)i≥n2]

· · ·
(xi) /∈ A(C + ε)

Now these two winning strategies are the formal negations of each other, but they are infinite

sentences so must one be true? Yes, if the game is determined which it is in this case since

Borel games are determined [Ma]. Now if (V ) had a winning strategy one could easily produce

a weakly null tree in SX all of whose branches did not lie in A(C + ε). So (S) has a winning

strategy. Then by a compactness argument one can deduce Step 1 (2C could be any C + ε

here).

The next step is a lemma of W.B. Johnson [Jo] which allows us to decompose any x ∈ SX

into (almost) a linear combination of δ̄-skipped blocks, in X.

Step 2. Let K be the projection constant of (Gi). There exists a blocking (Fi) of (Gi),

Fi = 〈Gi〉j∈(Ni−1,Ni], N0 = 0 < N1 < · · · , satisfying the following.

For all x ∈ SX there exists (xi) ⊆ X and for all i there exists ti ∈ (Ni−1, Ni) (t0 = 0, t1 > 1)

satisfying

a) x =
∑

xj

b) ‖xi‖ < δi or ‖P G
(ti−1,ti)

xi − xi‖ < δi‖xi‖
c) ‖P G

(ti−1,ti)
x − xi‖ < δi

d) ‖xi‖ < K + 1

e) ‖P G
ti

x‖ < δi

Moreover the above holds for any further blocking of (Gi) (which redefines the Ni’s).
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Remark. Thus if x ∈ SX we can write x =
∑

xi, (xi) ⊆ X where if B = {i : ‖xi‖ ≥ δi}
then ( xi

‖xi‖)i∈B is a δ̄-skipped block sequence w.r.t. (Gi). Also the skipped blocks (Gti) are in

predictable intervals, ti ∈ (Ni−1, Ni). And
∑

i/∈B ‖xi‖ <
∑

δi.

To prove Step 2 we have a

Lemma. ∀ ε > 0 ∀ N ∈ N ∃ n > N so that if x ∈ BX, x =
∑

yi, yi ∈ Gi, then there exists

t ∈ (N, n) with

‖yt‖ < ε and dist

( t−1∑

1

yi, X

)

< ε .

Proof. If not we obtain y(n) ∈ BX for n > N failing the conclusion for t ∈ (N, n). Choose

y(ni) ω−→ y ∈ BX and let t > N satisfy ‖P G
[t,∞)y‖ < ε/2K. Choose y(n) from (y(ni)) so that

n > t and ‖P G
[1,t)(y

(n) − y)‖ < ε/2K. Then

‖P G
[1,t)y

(n) − y‖ ≤ ‖P G
[1,t)(y

(n) − y)‖ + ‖P G
[t,∞)y‖ <

ε

2K
+

ε

2K
≤ ε .

Also

‖P G
t y(n)‖ ≤ ‖P G

t (y(n) − y)‖ + ‖P G
t y‖ <

ε

2
+

ε

2
= ε .

This contradicts our choice of y(n). �

To use the lemma we select N0 = 0 < N1 < N2 < · · · so that for all x ∈ BX there exists

ti ∈ (Ni−1, Ni) and zi ∈ X with ‖P G
ti

x‖ < εi and ‖P G
[1,ti)

x−zi‖ < εi. Set xi = z1, xi = zi−zi−1

for i > 1. Then
∑n

1 xi = zn → x and the other properties b)–d) hold, as is easily checked, if

(K + 1)(εi + 2εi−1) < δ2
i . �

Now let (Fi) be the blocking obtained in Step 2. It is not hard to show that if x =
∑

xi is

as in Step 2 then ‖x‖ 3C∼ (
∑ ‖xi‖p)1/p, provided δ̄ = (δi) is small enough. But this is not the

decomposition given by x =
∑

yi, yi ∈ Fi. However we do have

xi ≈ P G
(ti−1,ti)

(yi−1 + yi) and

yi ≈ P G
(Ni−1,Ni)

(xi + xi+1)

which yields ‖x‖ K(C)∼ (
∑ ‖yi‖p)1/p by making the appropriate estimates. �

Returning to X ⊆ Lp (2 < p < ∞) we have seen that one of these holds:

• X ∼ �2

• X ↪→ �p

• �p ⊕ �2 ↪→X
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The latter comes from Theorems 9 and 11. If X � �2 and X 	↪→ �p then X contains a

subspace isomorphic to �2 so X ∼ �2 ⊕Y . Now Y also contains �p (or else X ∼ �2) and in fact

complementably (as a perturbation of a disjointly supported (fi) ⊆ SLp) so �p ⊕ �2 ↪→ X.

Our next goal will be to characterize when X ↪→ �p ⊕ �2 and if not to then show that

(
∑

�2)p ↪→X.

First we recall one more old result.

Theorem 15. [JO2] Let X ⊆ Lp, 2 < p < ∞. Assume there exists Y ⊆ �p⊕�2 and a quotient

(onto) map Q : Y → X. Then X ↪→ �p ⊕ �2.

This is an answer, of a sort, to when X ↪→ �p ⊕ �2 but it is not an intrinsic characterization.

The proof however provides a clue as to how to find one. The isomorphism X ↪→ �p ⊕ �2 is

given by a blocking (Hn) of (hi) so that X naturally embeds into
(∑

Hn

)

p
⊕

(∑
(Hn, ‖ · ‖2)

)

2
∼ �p ⊕ �2 .

Before proceeding we recall some more inequalities.

Theorem 16. [R] Let 2 < p < ∞. There exists Kp < ∞ so that if (xi) is a normalized mean

zero sequence of independent random variables in Lp then for all (ai) ⊆ R,
∥
∥
∥

∑
aixi

∥
∥
∥

p

Kp∼
(∑

|ai|p
)1/p

∨
(∑

|ai|2‖xi‖2
2

)1/2

.

Note that in this case [(xi)] ↪→ �p ⊕ �2 via the embedding
∑

aixi �−→
(
(ai)i, (ai‖xi‖2)i

)
∈ �p ⊕ �2 .

The next result generalizes this to martingale difference sequences, e.g., block bases of (hi).

Theorem 17. [Bu2], [BDG] Let 2 < p < ∞. There exists Cp < ∞ so that if (zi) is a

martingale difference sequence in Lp with respect to the sequence of σ-algebras (Fn), then
∥
∥
∥

∑
zi

∥
∥
∥

p

Cp∼
( ∑

‖zi‖p
p

)1/p

∨
∥
∥
∥
(∑

EFi
(z2

i+1)
)1/2∥∥

∥
p

.

Recall something we said earlier. Suppose that (xi) ⊆ SLp is weakly null. Passing to a

subsequence we obtain (yi) which, by perturbing, we may assume is a block basis of (hi).

Passing to a further subsequence we may assume ε ≡ limi ‖yi‖2 exists. If ε = 0 a subsequence

of (yi) is equivalent to the unit vector basis of �p by the [KP] arguments. Otherwise we have

(essentially)

ε
(∑

|ai|2
)1/2

=
∥
∥
∥

∑
aiyi

∥
∥
∥

2
≤

∥
∥
∥

∑
aiyi

∥
∥
∥

p

≤ C(p)
(∑

|ai|2
)1/2

,
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using the fundamental inequality, Proposition 6. Thus [(yi)] embeds into �p ⊕ �2 with (yi) as

a block basis of the natural basis for �p ⊕ �2.

Johnson, Maurey, Schechtman and Tzafriri obtained a stronger version of this dichotomy

using Theorem 17.

Theorem 18. [JMST] Let 2 < p < ∞. There exists Dp < ∞ with the following property.

Every normalized weakly null sequence in Lp admits a subsequence (xi) satisfying, for some

w ∈ [0, 1] and all (ai) ⊆ R,
∥
∥
∥

∑
aixi

∥
∥
∥

p

Dp∼
( ∑

|ai|p
)1/p

∨ w
(∑

|ai|2
)1/2

.

We are now ready for an intrinsic characterization of when X ⊆ Lp embeds into �p ⊕ �2.

Theorem 19. [HOS] Let X ⊆ Lp, 2 < p < ∞. The following are equivalent.

a) X ↪→ �p ⊕ �2

b) Every weakly null tree in SX admits a branch (xi) satisfying for some K and all (ai)
∥
∥
∥

∑
aixi

∥
∥
∥

K∼
(∑

|ai|p
)1/p

∨
∥
∥
∥

∑
aixi

∥
∥
∥

2

≈
(∑

|ai|p
)1/p

∨
( ∑

|ai|2‖xi‖2
2

)1/2

.

c) Every weakly null tree in SX admits a branch (xi) satisfying for some K and (wi) ⊆
[0, 1] and all (ai),

∥
∥
∥

∑
aixi

∥
∥
∥

K∼
(∑

|ai|p
)1/p

∨
(∑

|ai|2w2
i

)1/2

.

d) There exists K so that every weakly null sequence in SX admits a subsequence (xi)

satisfying the condition in b):
∥
∥
∥

∑
aixi

∥
∥
∥

K∼
(∑

|ai|p
)1/p

∨
∥
∥
∥

∑
aixi

∥
∥
∥

2

≈
(∑

|ai|p
)1/p

∨
(∑

|ai|2ε2
)1/2

where ε = lim
i
‖xi‖2 .

Condition c) just says that every weakly null tree in SX admits a branch equivalent to a

block basis of the natural basis for �p ⊕ �2 (discussed more below).

Conditions b) and c) do not require K to be universal but the “all weakly null trees...”

hypothesis yields this.

The latter “≈” near equalities in b) (and d)) come from the fact that every weakly null

tree in SLp can be first pruned to a full subtree so that each branch is essentially a normalized

block basis of (hi).
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Condition d) is an anomaly in that usually “every sequence has a subsequence...” is a

vastly different condition than “every tree admits a branch...”. Here the special nature of Lp

is playing a role.

The embedding of X into �p ⊕ �2 will follow the clue from Theorem 15 by producing a

blocking (Hn) of (hi) and embedding X naturally into

(
∑

Hn)p ⊕ (
∑

(Hn, ‖ · ‖2))2 .

Thus if x =
∑

xn, xn ∈ Hn then ‖x‖ ∼ (
∑ ‖xn‖p)1/p ∨ (

∑ ‖xn‖2
2)

1/2.

The proof of b) ⇒ a) is much like that of Theorem 14. We produce a blocking (Hn) of (hn)

so that X naturally embeds into (
∑

Hn)p ⊕ (
∑

(Hn, ‖ · ‖2))2 ∼ �p ⊕ �2. In fact we obtain a

more general result.

A basis (vi) is 1-subsymmetric if it is 1-unconditional and ‖∑
aivi‖ = ‖∑

aivni
‖ for all (ai)

and all n1 < n2 < · · · .

Theorem 20. Let X and Y be Banach spaces with X reflexive. Let V be a space with a 1-

subsymmetric normalized basis (vi) and let T : X → Y be a bounded linear operator. Assume

that for some C every normalized weakly null tree in X admits a branch (xn) satisfying:
∥
∥
∥

∑
anxn

∥
∥
∥

X

C∼
∥
∥
∥

∑
anvn

∥
∥
∥

V
∨

∥
∥
∥T

(∑
anxn

)∥
∥
∥

Y
.

Then if X ⊆ Z, a reflexive space with an FDD(Ei), there exists a blocking (Gi) of (Ei) so that

X naturally embeds into (
∑

Gi)V ⊕Y : if x =
∑

xi, xi ∈ Gi then x �→ (xi)⊕Tx ∈ (
∑

Gi)V ⊕Y .

This is applied to V = �p, Z = Lp and Y = L2 where T : X → L2 is the identity map.

So we obtain b) ⇒ a) and clearly a) ⇒ c). Indeed suppose that X ⊆ (�p ⊕ �2)∞. Then

given a weakly null tree in X some branch (xi) is a perturbation of a normalized block basis

(yi) of the unit vector basis for �p ⊕ �2. Thus if ‖yi‖�p = ci and ‖yi‖�2 = wi then ‖∑
aiyi‖ =

(
∑ |ai|p|ci|p)1/p ∨ (

∑ |ai|2w2
i )

1/2. From Proposition 6, ‖∑
aiyi‖(�p⊕�2)p ≥ (

∑ |ai|p)1/p, hence

(
∑

|ai|p)1/p ∨ (
∑

|ai|2w2
i )

1/2 ≤ ‖
∑

aiyi‖(�p⊕�2)p ≤ 2‖
∑

aiyi‖
≤ 2

[
(
∑

|ai|p)1/p ∨ (
∑

|ai|2w2
i )

1/2
]

.

To see c) ⇒ b) we begin with a weakly null tree in SX and choose a branch (xi) satisfying the

c) condition:
∥
∥
∥

∑
aixi

∥
∥
∥

K∼
(∑

|ai|p
)1/p

∨
(∑

|ai|2|wi|2
)1/2

.
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Now we could first have “pruned” our tree so that each branch may be assumed to be a

block basis of (hi), by perturbations. We want to say that for some K ′,
∥
∥
∥

∑
aixi

∥
∥
∥

K ′∼
(∑

|ai|p
)1/p

∨
∥
∥
∥

∑
aixi

∥
∥
∥

2
.

(We have
K ′
≥ by the fundamental inequality.)

If this fails we can find a block basis (yn) of (xn),

yn =

kn∑

i=kn−1+1

aixi , with

kn∑

i=kn−1+1

w2
i a

2
i = 1

and
( kn∑

i=kn−1+1

|ai|p
)1/p

∨ ‖yn‖2 < 2−n .

But then from the c) condition (yn) is equivalent to the unit vector basis of �2 and from the

above condition and the [KP] argument, a subsequence is equivalent to the unit vector basis

of �p, a contradiction.

Note that b) ⇒ d) since if (xi) is a normalized weakly null sequence and we define (xα)α∈T∞

by x(n1,...,nk) = xnk
then the branches of (xα)α∈T∞ coincide with the subsequences of (xn). Note

that the condition d) just says we may take the weight “w” in [JMST] to be “limi ‖xi‖2”.

It remains to show d) ⇒ b) in Theorem 19 and this will complete the proof of Theorem 21.

The idea is to use Burkholder’s inequality using d) on nodes of a weakly null tree, following

the scheme of [JMST] to accomplish this. That argument will obtain a branch (xn) = (xαn),

αn = (m1, . . . , mn) with
∥
∥
∥

∑
aixi

∥
∥
∥ ∼

(∑
|ai|p

)1/p

∨
(∑

w2
i a

2
i

)1/2

where wi
C(p)∼ limn ‖x(αn,n)‖2 using d). �

Our next goal is to show that if X ⊆ Lp and X dos not embed into �p ⊕ �2 then X contains

an isomorphic copy of (
∑

�2)p. The idea will be to use the failure of d) to show (
∑

�2)p ↪→ X.

In the [KP] argument we obtained a sequence (xi) ⊆ SX with the xi’s becoming more and

more skinny:

lim
i

m[|xi| ≥ ε] = 0 for all ε > 0

and then extracted an �p subsequence, of almost disjointly supported functions. Here we want

to replace xi by a sequence of skinny K-isomorphic copies of �2.

Theorem 21. Let X ⊆ Lp, 2 < p < ∞. If X does not embed into �p ⊕ �2 then (
∑

�2)p ↪→X.
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We want to produce Xi ⊆ X, Xi
K∼ �2 where two things happen. First for all ε > 0 there

exists i so that if x ∈ SXi
then m[|x| ≥ ε] < ε. Secondly we need that Xi is not too skinny,

namely each BXi
is p-uniformly integrable.

Definition. A ⊆ Lp is p-uniformly integrable if ∀ ε > 0 ∃ δ > 0 ∀ m(E) < δ ∀ z ∈ A, we

have
∫

E
|z|p < ε.

Lemma. Assume for some K and all n there exists (xn
i )∞n=1 ⊆ SX with limi ‖xn

i ‖2 = εn ↓ 0

and (xn
i )i is K-equivalent to the unit vector basis of �2. Then (

∑
�2)p ↪→X.

Sketch of proof. Note that if y =
∑

i aix
n
i has norm 1 then, assuming as we may that (xn

i )i is

a block basis of (hi) and ‖xn
i ‖2 ≈ εn then

‖y‖2 ≈
( ∑

a2
i ‖xn

i ‖2
2

)1/2

� Kεn .

So we have a sequence of skinny K−�2’s inside of X. We would like to have if yn ∈ [(xn
i )i] then

they are essentially disjointly supported so ‖∑
yn‖ ∼ (

∑ ‖yn‖p)1/p, as in the [KP] argument.

Unlike in [KP] we cannot select one yn from each [(xn
i )i] and pass to a subsequence. We

need to fix a given [(xn
i )i] for large n so it is skinny enough based on the earlier selections of

subspaces and also so that its unit ball is p-uniformly integrable so that future selections of

[(xm
i )i] will be essentially disjoint from it.

To achieve this we need a sublemma.

Sublemma. Let Y ⊆ Lp, 2 < p < ∞, with Y ∼ �2. There exists Z ⊆ Y with SZ p-uniformly

integrable.

This is proved in two steps. First showing a normalized martingale difference sequence (xn)

with {(xn)} p-uniformly integrable has A = {∑ aixi :
∑

a2
i ≤ 1} also p-uniformly integrable

by a stopping time argument.

The general case is to use the subsequence splitting lemma to write a subsequence of an �2

basis as xi = yi +zi where the (yi) are a p-uniformly integrable (perturbation of) a martingale

difference sequence and the zi’s are disjointly supported and then use an averaging argument

to get a block basis where the zi’s disappear. �
The subsequence splitting lemma is a nice exercise in real analysis: Given a bounded (x′

i) ⊆
L1 there exists a subsequence (xi) ⊆ (x′

i) with xi = yi + zi, yi ∧ zi = 0, (yi) is uniformly

integrable and the zi’s are disjointly supported.

18



Now we return to condition d) in Theorem 19 and recall by [JMST] every weakly null

sequence in SX has a subsequence (xi) with for some w ∈ [0, 1],
∥
∥
∥

∑
aixi

∥
∥
∥

Dp∼
( ∑

|ai|p
)1/p

∨ w
(∑

|ai|2)1/2

and d) asserts that for some absolute C, w
C∼ limi ‖xi‖2. Now clearly we can assume that

w ≥ limi ‖xi‖2 and if d) fails we can use this to construct our �2’s satisfying the lemma and

thus obtain (
∑

�2)p ↪→X.

Indeed d) fails yields that we can take a normalized block basis (yi) of a given (xi) failing

the condition for a large C to obtain (yi)
Dp∼ �2 basis yet ‖yi‖2 remains small. �

So we have the dichotomy for X ⊆ Lp, 2 < p < ∞. Either

• X ↪→ �p ⊕ �2 or

• (
∑

�2)p ↪→X.

In the latter case using Lp is stable we can get for all ε > 0, (
∑

�2)p
1+ε
↪→ X.

The theory of stable spaces was developed by Krivine and Maurey [KM]. X is stable if for

all bounded (xn), (yn) ⊆ X,

lim
m

lim
n

‖xn + ym‖ = lim
n

lim
m

‖xn + ym‖
provided both limits exist. They proved that if X is stable then for some p and all ε > 0,

�p
1+ε
↪→ X. They also proved Lp is stable, 1 ≤ p < ∞.

We have obtained in our proof that if X 	↪→ �p ⊕ �2 then for some K and all ε > 0 there

exist Xn ⊆ X, Xn
K∼ �2 and if xn ∈ Xn, ‖∑

xn‖ 1+ε∼ (
∑ ‖xn‖p)1/p. Using Lp is stable we can

choose Yn ⊆ Xn, Yn
1+ε∼ �2 for all n.

In fact we can get (
∑

�2)p complemented in X via the next result.

We note first that if (xi) ⊆ SLp is K-equivalent to the unit vector basis of �2 then, as

mentioned earlier, by [PR] it is C(K)-complemented in Lp by some projection P . Also P

must have the form (true for any projection of any space onto �2)

Px =
∑

x∗
i (x)xi where (x∗

i ) is biorthogonal to (xi) and is weakly null in Lp′

(1
p

+ 1
p′ = 1).

Proposition 22. For all n let (yn
i )i be a normalized basic sequence in Lp, 2 < p < ∞, which

is K-equivalent to the unit vector basis of �2 and so that for yn ∈ [(yn
i )i],

∥
∥
∥

∑
yn

∥
∥
∥

K∼
(∑

‖yn‖p
)1/p

.

Then there exists subsequences (xn
i )i ⊆ (yn

i )i, for each n, so that [{xn
i : n, i ∈ N}] is comple-

mented in Lp.
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Proof. By [PR] each [(yn
i )i] is C(K)-complemented in Lp via projections Pn =

∑
m yn

m
∗(x)yn

m.

Passing to a subsequence and using a diagonal argument and perturbing we may assume there

exists a blocking (Hn
m) of (hi), in some order over all n, m, so that for all n, m, supp(yn

m
∗),

supp(yn
m) ⊆ Hn

m. This uses yn
m

w−→ 0 and yn
m
∗ w−→ 0 (in Lp′) as m → ∞ for each n. Set

Py =
∑

n,m yn
m
∗(y)yn

m. We show P is bounded, hence a projection onto a copy of (
∑

�2)p.

Let y =
∑

n,m y(n, m), y(n, m) ∈ Hm
n .

‖Py‖ =
∥
∥
∥

∑

n

∑

m

yn
m
∗(y(n, m))yn

m

∥
∥
∥

∼
( ∑

n

(∑

m

|yn
m
∗(y(n, m))|2

)p/2
)1/p

.

Now
( ∑

m

|yn
m
∗(y(n, m))|2

)1/2

∼ ‖Pny(n)‖ ≤ C(K)‖y(n)‖

where y(n) =
∑

m y(n, m). So

‖Py‖ ≤ C̄(K)
(∑

‖yn‖p
)1/p

≤
=

C(K)‖y‖ .

�

Remarks. The proof of Proposition 22 above is due to Schechtman. He also proved by a

different much more complicated argument that the proposition extends to

1 < p < 2.

In [HOS] the proofs of all the results are also considered using Aldous’ [Ald] theory of

random measures. We are able to show if (
∑

�2)p ↪→X ⊆ Lp, 2 < p < ∞, then given ε > 0

there exists (
∑

Yn)p
1+ε
↪→ X, d(Yn, �2) < 1+ ε and moreover: there exist disjoint sets An ⊆ [0, 1]

with for all n, y ∈ Yn, ‖y|An‖ ≥ (1 − ε2−n)‖y‖ and [Yn : n ∈ N] is (1 + ε) C−1
p complemented

in Lp where Cp is the norm of a symmetric normalized Gaussian random variable in Lp. This

is best possible by [GLR].

We can also deduce the [JO2] result: X ⊆ Lp, 2 < p < ∞, and X is a quotient of a subspace

of �p ⊕ �2 ⇒ X ↪→ �p ⊕ �2, by showing that such an X cannot contain (
∑

�2)p.

We shall prove something more general, namely that (
∑

�q)p is not a quotient of a subspace

of �p ⊕ �q when p, q > 1 and p 	= q. By duality it will be enough to consider the case

p > q. For elements w = (w1, w2) of �p ⊕ �q we shall write ‖w‖p = ‖w1‖p, ‖w‖q = ‖w2‖q and

‖w‖ = ‖w‖p ∨ ‖w‖q.
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Lemma. Let 1 < q < p < ∞ and let W be a subspace of �p ⊕ �q. Let X = �q, let Q : W → X

be a quotient mapping and let λ be a constant with 0 < λ < ‖Q‖−1. For every M > 0 there is

a finite co-dimensional subspace Y of X such that, for w ∈ W we have

‖w‖ ≤ M, Q(w) ∈ Y, ‖Q(w)‖ = 1 =⇒ ‖w‖q > λ.

Proof. Suppose otherwise. We can find a normalized block basis (xn) in X and elements wn

of W with ‖wn‖ ≤ M , Q(wn) = xn and ‖wn‖q ≤ λ. Taking a subsequence and perturbing

slightly, we may suppose that wn = w + w′
n, where (w′

n) is a block basis in �p ⊕ �q, satisfying

‖w′
n‖ ≤ M , ‖w′

n‖q ≤ λ.

Since Q(w) = w-lim Q(wn) = 0, we see that Q(w′
n) = xn. We may now estimate as follows

using the fact that the w′
n are disjointly supported:

∥
∥
∥

N∑

n=1

w′
n

∥
∥
∥ =

( N∑

n=1

‖w′
n‖p

p

)1/p

∨
( N∑

n=1

‖w′
n‖q

q

)1/q

≤ N1/pM ∨ N1/qλ.

Since the xn are normalized blocks in X = �q we have

N1/q =
∥
∥
∥

N∑

n=1

xn

∥
∥
∥ ≤ ‖Q‖

∥
∥
∥

N∑

n=1

w′
n

∥
∥
∥ ≤ M‖Q‖N1/p ∨ λ‖Q‖N1/q.

Since λ‖Q‖ < 1, this is impossible once N is large enough. �

Proposition 23. If 1 < q < p < ∞ then (
∑

�q)p is not a quotient of a subspace of �p ⊕ �q.

Proof. Suppose, if possible, that there exists a quotient operator

�p ⊕ �q ⊇ Z
Q−→ X =

(⊕

n∈N

Xn

)

p

where Xn = �q for all n. Let K be a constant such that T [KBZ ] ⊇ BX , let λ be fixed with

0 < λ < ‖Q‖−1, choose a natural number m with m1/q−1/p > Kλ−1, and set M = 2Km1/p.

Applying the lemma, we find, for each n, a finite co-dimensional subspace Yn of Xn such

that

(2) z ∈ MBZ , Q(z) ∈ Yn, ‖Q(z‖ = 1 =⇒ ‖z‖q > λ.

For each n, let (e
(n)
i ) be a sequence in Yn, 1-equivalent to the unit vector basis of �q. For each

m-tuple i = (i1, i2, . . . , im) ∈ N
m, let z(i) ∈ Z be chosen with

Q(z(i) = e
(1)
i1

+ e
(2)
i2

+ · · ·+ e
(m)
im ,

and ‖z(i)‖ ≤ Km1/p.
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Taking subsequences in each co-ordinate, we may suppose that the following weak limits

exist in Z

z(i1, i2, . . . , im−1) = w-limim→∞ z(i1, i2, . . . , im)

...

z(i1, i2, . . . , ij) = w-limij+1→∞ z(i1, i2, . . . , ij+1)

...

z(i1) = w-limi2→∞z(i1, i2).

Notice that, for all j and all i1, i2, . . . , ij , the following hold:

Q(z(i1, . . . , ij) = e
(1)
i1

+ · · ·+ e
(j)
ij

‖z(i1, . . . , ij)‖ ≤ Km1/p

‖z(i1, . . . , ij) − z(i1, . . . , ij−1)‖ ≤ 2Km1/p = M.

Since Q(z(i1, . . . , ij) − z(i1, . . . , ij−1)) = e
(j)
ij

∈ SYj
it must be that

(3) ‖z(i1, . . . , ij) − z(i1, . . . , ij−1)‖q > λ, [by (2)].

We shall now choose recursively some special ij in such a way that ‖z(i1, . . . , ij)‖q > λj1/q for

all j. Start with i1 = 1; since ‖z(i1)‖ ≤ M and Q(z(i1)) = e
(1)
i1

we certainly have ‖z(i1)‖q > λ

by 2. Since z(i1, k)−z(i1) → 0 weakly we can choose i2 such that z(i1, i2)−z(i1) is essentially

disjoint from z(i1). More precisely, because of 3, we can ensure that

‖z(i1, i2)‖q = ‖z(i1) + (z(i1, i2) − z(i1))‖q > (λq + λq)1/q = λ21/q.

Continuing in this way, we can indeed choose i3, . . . , im in such a way that

‖z(i1, . . . , ij)‖q ≥ λj1/q.

However, for j = m this yields

λm1/q ≤ Km1/p,

contradicting our initial choice of m. �

Remark. The proof we have just given actually establishes the following quantitative result:

if Y is a quotient of a subspace of �p ⊕ �q then the Banach-Mazur distance d
(
Y,

(⊕m
j=1 �q

)
p

)

is at least m|1/q−1/p|.

We can also obtain some asymptotic results. First we recall the relevant definitions

cof(X) = {Y ⊆ X : Y is of finite co-dimension in X} .
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Definition. [MMT] Let (ei)
n
1 be a normalized monotone basis. (ei) ∈ {X}n, the nth asymp-

totic structure of X, if the following holds;

∀ ε > 0 ∀ X1 ∈ cof(X) ∃ x1 ∈ SX1

∀ X2 ∈ cof(X) ∃ x2 ∈ SX2

· · ·
∀ Xn ∈ cof(X) ∃ xn ∈ SXn

with db((xi)
n
1 , (ei)

n
1 ) < 1 + ε

The latter means that for some AB < 1 + ε for all (ai)
n
1 ⊆ R,

A−1
∥
∥
∥

n∑

1

aiei

∥
∥
∥ ≤

∥
∥
∥

n∑

1

aixi

∥
∥
∥ ≤ B

∥
∥
∥

n∑

1

aiei

∥
∥
∥ ,

i.e., (xi)
n
1

1+ε∼ (ei)
n
1 . db(·) is the basis distance and is defined to be the minimum of such AB.

An alternate way of looking at this when X∗ is separable is that {X}n is the smallest closed

subset of (Mn, db(·, ·)) satisfying: ∀ ε > 0 every weakly null tree (of length n) in SX admits a

branch (xi)
n
1 with db((xi)

n
1 , {X}n) < 1+ε. Here Mn is the set of normalized bases of length n.

The metric on Mn is actually log db(·, ·) and Mn is compact under this metric.

Definition. X is K-asymptotic �p if for all n and all (ei)
n
1 ∈ {X}n, (ei)

n
1 is K-equivalent to

the unit vector basis of �n
p .

The [KP], [JO1] results yield for X ⊆ Lp, 2 < p < ∞
• X is asymptotic �p ⇒ X ↪→ �p (since �2 	↪→ X)

• X is asymptotic �2 ⇒ X ↪→ �2 (since �p 	↪→ X).

Definition. X is asymptotically �p ⊕ �2 if ∃ K ∀ n∀ (ei)
n
1 ∈ {X}n ∃ (wi)

n
1 with

∥
∥
∥

n∑

1

aiei

∥
∥
∥

K∼
( n∑

1

|ai|p
)1/p

∨
( n∑

1

w2
i a

2
i

)1/2

.

This just says that for some K every weakly null tree of n-levels in SX admits a branch

K-equivalent to a normalized block basis of �p ⊕ �2.

Proposition 24. Let X ⊆ Lp, 2 < p < ∞. X is asymptotically �p ⊕ �2 iff X ↪→ �p ⊕ �2.

This follows easily from our results by showing that (
∑

�2)p is not asymptotically �p ⊕ �2.

Problem. Let X ⊆ Lp, p > 2. Give an intrinsic characterization of when X ↪→(
∑

�2)p.
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In light of the [JO2] �p ⊕ �2 quotient result (see paragraph 7.1 above) we ask the following.

Problem 25. Let X ⊆ Lp (2 < p < ∞). If X is a quotient of (
∑

�2)p does X embed into

(
∑

�2)p?

Extensive study has been made of the Lp spaces, i.e., the complemented subspaces of Lp

which are not isomorphic to �2 (see e.g., [LP] and [LR]). In particular there are uncountably

many such spaces [BRS] and even infinitely many which embed into (
∑

�2)p [S1]. Thus it

seems that a deeper study of the index in [BRS] will be needed for further progress. However

some things, which we now recall, are known.

Theorem 26. [P] If Y is complemented in �p then Y is isomorphic to �p (Proposition 10).

Theorem 27. [JZ] If Y is a Lp subspace of �p then Y is isomorphic to �p.

Theorem 28. [EW] If Y is complemented in �p ⊕ �2 then Y is isomorphic to �p, �2 or �p ⊕ �2.

Theorem 29. [O] If Y is complemented in (
∑

�2)p then Y is isomorphic to �p, �2, �p ⊕ �2 or

(
∑

�2)p.

We recall that Xp is the Lp discovered by H. Rosenthal [R]. For p > 2, Xp may be defined to

be the subspace of �p ⊕ �2 spanned by (ei +wifi), where (ei) and (fi) are the unit vector bases

of �p and �2, respectively, and where wi → 0 with
∑

w
2p/p−2
i = ∞. Since �p ⊕ �2 embeds into

Xp, the subspaces of Xp and of �p ⊕ �2 are (up to isomorphism) the same. For 1 < p < 2 the

space Xp is defined to be the dual of Xp′ where 1/p+1/p′ = 1. When restricted to Lp-spaces,

the results of this paper lead to a dichotomy valid for 1 < p < ∞.

Proposition 30. Let Y be a Lp-space (1 < p < ∞). Either Y is isomorphic to a complemented

subspace of Xp or Y has a complemented subspace isomorphic to (
∑

�2)p.

Proof. For p > 2 it is shown in [JO2] that a Lp-space which embeds in �p ⊕ �2 embeds

complementedly in Xp. Combining this with the main theorem of the present paper gives

what we want for p > 2. When 1 < p < 2, the space Xp is defined to be the dual of Xp′ and

so a simple duality argument extends the result to the full range 1 < p < ∞. �

It remains a challenging problem to understand more deeply the structure of the Lp-

subspaces of Xp and �p ⊕ �2.

Theorem 31. [JO2] If Y is a Lp subspace of �p ⊕ �2 (or Xp), 2 < p < ∞, and Y has an

unconditional basis then Y is isomorphic to �p, �p ⊕ �2 or Xp.
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It is known [JRZ] that every Lp space has a basis but it remains open if it has an uncondi-

tional basis.

Theorem 32. [JO2] If Y is a Lp subspace of �p ⊕ �2 (1 < p < 2) with an unconditional basis

then Y is isomorphic to �p or �p ⊕ �2.

So the main open problem for small Lp spaces is to overcome the unconditional basis

requirement of 31 and 32.

Problem 33. (a) Let X be a Lp subspace of �p ⊕ �2 (2 < p < ∞). Is X isomorphic to �p,

�p ⊕ �2 or Xp?

(b) Let X be a Lp subspace of �p ⊕ �2 (1 < p < ∞). Is X isomorphic to �p or �p ⊕ �2?
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