The Banach space L_{p}

by

E. Odell

The III International course of Mathematical Analysis in Andalucia
Huelva, Spain

September 2007

Our goal is to explore the structure of the "small" subspaces of L_{p}, mainly for $2<p<\infty$, discussing older classical results and ultimately presenting some new results of [HOS]. We will review first some Banach space basics. By L_{p} we shall mean $L_{p}[0,1]$, under Lebesgue measure m.

Unless we say otherwise X, Y, \ldots shall denote a separable infinite dimensional Banach space. $X \subseteq Y$ means that X is a closed subspace of $Y . X \stackrel{C}{\sim} Y$ means that X is C-isomorphic to Y, i.e., there exits an invertible bounded linear $T: X \rightarrow Y$ with $\|T\|\left\|T^{-1}\right\| \leq C$. If $X \stackrel{1}{\sim} Y$ we shall say X is isometric to $Y . X \stackrel{C}{\hookrightarrow} Y$ means X is C-isomorphic to a subspace of Y.

Definition. A basis for X is a sequence $\left(x_{i}\right)_{1}^{\infty} \subseteq X$ so that for all $x \in X$ there exists a unique sequence $\left(a_{i}\right) \subseteq \mathbb{R}$ with $x=\sum_{1}^{\infty} a_{i} x_{i}$, i.e., $\lim _{n} \sum_{i=1}^{n} a_{i} x_{i}=x$.

Example. The unit vector basis $\left(e_{i}\right)_{i=1}^{\infty}$ is a basis for $\ell_{p}(1 \leq p<\infty)$. Of course $e_{i}=\left(\delta_{i, j}\right)_{j=1}^{\infty}$ where $\delta_{i, j}=1$ if $i=j$ and 0 otherwise.

Definition. $\left(x_{i}\right)_{1}^{\infty} \subseteq X$ is basic if $\left(x_{i}\right)_{1}^{\infty}$ is a basis for $\left[\left(x_{i}\right)\right] \equiv$ the closed linear span of $\left(x_{i}\right)_{1}^{\infty}$.
Proposition 1. Let $\left(x_{i}\right)_{1}^{\infty} \subseteq X$. Then

1) (x_{i}) is basic iff $x_{i} \neq 0$ for all i and for some $K<\infty$, all $n<m$ in \mathbb{N} and all $\left(a_{i}\right)_{1}^{m} \subseteq \mathbb{R}$,

$$
\left\|\sum_{1}^{n} a_{i} x_{i}\right\| \leq K\left\|\sum_{1}^{m} a_{i} x_{i}\right\|
$$

(In this case $\left(x_{i}\right)$ is called K-basic and the smallest K satisfying 1) is called the basis constant of $\left(x_{i}\right)$.)
2) $\left(x_{i}\right)$ is a basis for X iff 1) holds and $\left[\left(x_{i}\right)\right]=X$.
$\left(x_{i}\right)$ is called monotone if its basis constant is 1.
The proof of this and other background facts we present can be found in any of the standard texts such as [LT1], [AK], [D], [FHHSPZ]. The paper [AO] contains further background on L_{p} spaces.

Definition. A bounded linear operator $P: X \rightarrow X$ is a projection if $P^{2}=P$.
In this case if $Y=P(X)$ then $X=Y \oplus \operatorname{Ker} P$. Writing $X=Y \oplus Z$ means that Y and Z are closed subspaces of X and every $x \in X$ can be uniquely written $x=y+z$ for some $y \in Y$, $z \in Z$. In this case $P x=y$ defines a projection of X onto $Y . Y$ is said to be complemented in X if it is the range of a projection on $X . Y$ is C-complemented in X if $\|P\| \leq C$.

If $F \subseteq X$ is a finite dimensional subspace then F is complemented in X. If X is isomorphic to ℓ_{2} then all $Y \subseteq X$ are complemented but this fails to be the case if $X \nsim \ell_{2}$ by a result of Lindenstrauss and Tzafriri [LT2].

Now from Propostion 1 if $\left(x_{i}\right)$ is a basis for X then setting $P_{n}\left(\sum a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} x_{i}$ yields a projection of X onto $\left\langle\left(x_{i}\right)_{1}^{n}\right\rangle \equiv$ linear span of $\left(x_{i}\right)_{i=1}^{n}$. Moreover the P_{n} 's are uniformly bounded and $\sup _{n}\left\|P_{n}\right\|$ is the basis constant of $\left(x_{i}\right)$.

Not every Banach space X has a basis but the standard ones do.
The Haar basis for $L_{p}(1 \leq p<\infty)$: The Haar basis $\left(h_{i}\right)_{1}^{\infty}$ is a monotone basis for L_{p}.

$$
\begin{aligned}
& h_{1} \equiv 1 \\
& h_{2}=\mathbf{1}_{[0,1 / 2]}-\mathbf{1}_{[1 / 2,1]} \\
& h_{3}=\mathbf{1}_{[0,1 / 4]}-\mathbf{1}_{[1 / 4,1 / 2]}, \quad h_{4}=\mathbf{1}_{[1 / 2,3 / 4]}-\mathbf{1}_{[3 / 4,1]}
\end{aligned}
$$

To see this is a monotone basis for L_{p} is not hard via Proposition 1. We need only check a couple of things. First

$$
\left\langle\left(h_{i}\right)_{1}^{2^{n}}\right\rangle=\left\{f=\sum_{1}^{2^{n}} a_{i} \mathbf{1}_{D_{i}^{n}}:\left(a_{i}\right)_{1}^{2^{n}} \subseteq \mathbb{R}\right\} \text { where } D_{i}^{n}=\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right]
$$

From real analysis these functions (over all n) are dense in $L_{p}(1 \leq p<\infty)$.
Secondly to see 1) holds with $K=1$ it suffices to show for all $n,\left(a_{i}\right)_{1}^{n+1} \subseteq \mathbb{R}$,

$$
\left\|\sum_{1}^{n} a_{i} h_{i}\right\|_{p} \leq\left\|\sum_{1}^{n+1} a_{i} h_{i}\right\|_{p} .
$$

This reduces to proving if $D=\left[\frac{i-1}{2^{j}}, \frac{i}{2^{j}}\right]$ is a dyadic interval with left half D_{+}and right half D_{-}supporting the Haar function $h=\mathbf{1}_{D_{+}}-\mathbf{1}_{D_{-}}$then for all $a, b \in \mathbb{R},\left\|a \mathbf{1}_{D}\right\|_{p}=\left\|a \mathbf{1}_{D}+h\right\|_{p}$ or

$$
\left\|a \mathbf{1}_{D}\right\|_{p} \leq\left\|(a+b) \mathbf{1}_{D_{+}}+(a-b) \mathbf{1}_{D_{-}}\right\|_{p} .
$$

This is an easy exercise.
Definition. Basic sequences $\left(x_{i}\right)$ and $\left(y_{i}\right)$ are C-equivalent if there exist A, B with $A^{-1} B \leq C$ and for all $\left(a_{i}\right) \subseteq \mathbb{R}$

$$
\frac{1}{A}\left\|\sum a_{i} y_{i}\right\| \leq\left\|\sum a_{i} x_{i}\right\| \leq B\left\|\sum a_{i} y_{i}\right\|
$$

This just says that the linear map $T:\left[\left(x_{i}\right)\right] \rightarrow\left[\left(y_{i}\right)\right]$ with $T x_{i}=y_{i}$ for all i is an onto isomorphism with $\|T\|\left\|T^{-1}\right\| \leq C$.

Proposition 2 (Perturbations). Let $\left(x_{i}\right)$ be a normalized K-basic sequence in X and let $\left(y_{i}\right) \subseteq X$ satisfy

$$
\sum_{i=1}^{\infty}\left\|x_{i}-y_{i}\right\| \equiv \lambda<\frac{1}{2 K}
$$

Then $\left(x_{i}\right)$ is $C(\lambda)$-equivalent to $\left(y_{i}\right)$ where $C(\lambda) \downarrow 1$ as $\lambda \downarrow 0$. If in addition $\left[\left(y_{i}\right)\right]$ is complemented in X by a projection P and $\lambda<\frac{1}{8 K\|P\|}$ then $\left[\left(x_{i}\right)\right]$ is complemented in X by a projection Q where $\|Q\| \rightarrow\|P\|$ as $\lambda \downarrow 0$.

Notation. If $\left(x_{i}\right)$ and $\left(y_{i}\right)$ are C-equivalent basic sequences we write $\left(x_{i}\right) \stackrel{C}{\sim}\left(y_{i}\right)$.
Definition. Let $\left(x_{i}\right)$ be basic. $\left(y_{i}\right)$ is a block basis of $\left(x_{i}\right)$ if $y_{i} \neq 0$ for all i and for some $0=n_{0}<n_{1}<n_{2}<\cdots$ and $\left(a_{i}\right) \subseteq \mathbb{R}, y_{i}=\sum_{j=n_{i-1}+1}^{n_{i}} a_{j} x_{j}$.

Note. $\left(y_{i}\right)$ is then automatically basic with basis constant not exceeding that of $\left(x_{i}\right)$.
If $\left(x_{i}\right)$ is a normalized K-basis for X we define the coordinate or biorthogonal functionals $\left(x_{i}^{*}\right)$ via $x_{i}^{*}\left(\sum a_{j} x_{j}\right)=a_{i}$. From Proposition 1 we obtain $\left\|x_{i}^{*}\right\| \leq 2 K$ and so for all $\left(a_{i}\right)$

$$
\frac{1}{2 K}\left\|\left(a_{i}\right)\right\|_{\infty} \leq\left\|\sum a_{i} x_{i}\right\| \leq \sum\left|a_{i}\right|=\left\|\left(a_{i}\right)\right\|_{\ell_{1}}
$$

In other words $\left\|\sum a_{i} x_{i}\right\|$ is trapped between the c_{0} and ℓ_{1} norms of $\left(a_{i}\right)$.
From Proposition 2 we obtain
Proposition 3. Let X have a basis $\left(x_{i}\right)$ and let $\left(y_{i}\right) \subset S_{X} \equiv\{x \in X:\|x\|=1\}$ be weakly null (i.e., $x^{*}\left(y_{i}\right) \rightarrow 0$ for all $x^{*} \in X^{*}$). Then given $\varepsilon_{i} \downarrow 0$ there exists a subsequence $\left(z_{i}\right)$ of $\left(y_{i}\right)$ and a block basis $\left(b_{i}\right) \subseteq S_{X}$ of $\left(x_{i}\right)$ with $\left\|z_{i}-b_{i}\right\|<\varepsilon_{i}$ for all i. In particular given $\varepsilon>0$ we can choose $\left(z_{i}\right)$ to be $(1+\varepsilon)$-equivalent to a normalized block basis of $\left(x_{i}\right)$.

Definition. A basis $\left(x_{i}\right)$ for X is K-unconditional if for all $\sum a_{i} x_{i} \in X$ and all $\varepsilon_{i}= \pm 1$,

$$
\left\|\sum a_{i} x_{i}\right\| \leq K\left\|\sum \varepsilon_{i} a_{i} x_{i}\right\|
$$

It is not hard to show $\left(x_{i}\right)$ is unconditional iff for all $x=\sum a_{i} x_{i} \in X$ and all permutations π of \mathbb{N},

$$
x=\sum a_{\pi(i)} x_{\pi(i)}
$$

iff for some $C<\infty$, all $\sum a_{i} x_{i} \in X$ and all $M \subseteq \mathbb{N},\left\|\sum_{i \in M} a_{i} x_{i}\right\| \leq C\left\|\sum a_{i} x_{i}\right\|$. (This just says that the projections ($P_{M}: M \subseteq \mathbb{N}$) given as above are well defined and uniformly bounded.)

Easily, the unit vector basis $\left(e_{i}\right)$ is a 1 -unconditional basis for $\ell_{p}(1 \leq p<\infty)$ or c_{0}.
Fact. The Haar basis is an unconditional basis for L_{p} if $1<p<\infty$.
This is a more difficult result (see [Bu1]), if $p \neq 2$. For $p=2,\left(h_{i}\right)$ is an orthogonal basis

$$
\left\|\sum a_{i} \frac{h_{i}}{\left\|h_{i}\right\|_{2}}\right\|_{2}=\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2}
$$

More generally if $\left(x_{i}\right)$ is a normalized block basis of $\left(h_{i}\right)$ then $\left\|\sum a_{i} x_{i}\right\|_{2}=\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2}$.
It is easy to check that $\left(h_{i}\right)$ is not unconditional in L_{1}. For example if

$$
\left(y_{i}\right)=\left(h_{1}, h_{2}, h_{3}, h_{5}, h_{9}, h_{17}, \ldots\right)
$$

is the sequence of "left most" h_{i} 's then

$$
\left\|\sum_{1}^{n} \frac{y_{i}}{\left\|y_{i}\right\|_{1}}\right\|_{1}=1 \text { while for some } c>0, \quad\left\|\sum_{1}^{n}(-1)^{i} \frac{y_{i}}{\left\|y_{i}\right\|_{1}}\right\|_{1} \geq c n
$$

Definition. A finite dimensional decomposition (FDD) for X is a sequence of non-zero finite dimensional subspaces $\left(F_{i}\right)$ of X so that for all $x \in X$ there exists a unique sequence $\left(x_{i}\right)$ with $x_{i} \in F_{i}$ for all i and $x=\sum x_{i}$.

As with bases the projections $P_{n} x=P_{n}\left(\sum x_{i}\right)=\sum_{1}^{n} x_{i}$ are uniformly bounded and $\sup _{n}\left\|P_{n}\right\|$ is the basis constant of the FDD. Also for $n \leq m$ if $P_{[n, m]} x=\sum_{n}^{m} x_{i}$, then the $P_{[n, m]}$'s are uniformly bounded and $\sup _{n \leq m}\left\|P_{[n, m]}\right\|$ is the projection constant of the FDD. $\left(E_{i}\right)$ is monotone if its basis constant is 1 and bimonotone if its projection constant is 1.

A blocking $\left(G_{i}\right)$ of an FDD $\left(F_{i}\right)$ for X is given by $G_{i}=\left\langle\left(F_{j}\right)_{j=n_{i-1}+1}^{n_{i}}\right\rangle$ for some $0=n_{0}<$ $n_{1}<\cdots .\left(G_{i}\right)$ is then also an FDD for X.

A basis $\left(x_{i}\right)$ also may be regarded as an FDD with $F_{i}=\left\langle x_{i}\right\rangle$.
From Proposition 3 we see that if $1<p<\infty$ and $\left(y_{i}\right) \subseteq S_{L_{p}}$ is weakly null (equivalently, $\int_{E} y_{i} \rightarrow 0$ for all measurable $\left.E \subseteq[0,1]\right)$ then some subsequence is a perturbation of a block basis of $\left(h_{i}\right)$ and hence is unconditional (just like for bases, block bases of unconditional bases are unconditional). This fails in L_{1} by a deep new result of Johnson, Maurey and Schechtman.

Theorem 4. [JMS] There exists a weakly null sequence $\left(x_{i}\right) \subseteq S_{L_{1}}$ satisfying: for all $\varepsilon>0$ and all subsequences $\left(y_{i}\right) \subseteq\left(x_{i}\right),\left(h_{i}\right)$ is $(1+\varepsilon)$-equivalent to a block basis of $\left(y_{i}\right)$.

Now lets fix $2<p<\infty$ and let K_{p} be the unconditional constant of $\left(h_{i}\right)$ in L_{p}. We shall list what we consider to be the small subspaces of L_{p}. These are also subspaces of L_{p} for $1<p<2$ but as we shall note shortly the situation there as to what constitutes "small" is more complicated.
L_{p} contains the following "small" subspaces

- ℓ_{p} (isometrically): If $\left(x_{i}\right) \subseteq S_{L_{p}}$ are disjointly supported then

$$
\begin{aligned}
\left\|\sum a_{i} x_{i}\right\| & =\left(\int\left|\sum a_{i} x_{i}(t)\right|^{p} d t\right)^{1 / p} \\
& =\left(\sum\left|a_{i}\right|^{p}\left|x_{i}(t)\right|^{p} d t\right)^{1 / p} \\
& =\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p}
\end{aligned}
$$

Also [($\left.\left.x_{i}\right)\right]$ is 1-complemented in X via $P x=\sum_{i=1}^{\infty} x_{i}^{*}(x) x_{i}$ where $\left(x_{i}^{*}\right)$ are the functions naturally biorthogonal to $\left(x_{i}\right), x_{i}^{*}=\operatorname{sign}\left(x_{i}\right)\left|x_{i}\right|^{p-1}$.

- ℓ_{2} (isomorphically) via the Rademacher functions $\left(r_{n}\right) .\left(r_{n}\right)$ are ± 1 valued independent random variables of mean 0 .

Khintchin's inequality: For $2<p<\infty$,

$$
\begin{aligned}
\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2} & =\left\|\sum a_{n} r_{n}\right\|_{2} \leq\left\|\sum a_{n} r_{n}\right\|_{p} \\
& \leq B_{p}\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

For $1<p<2$

$$
A_{p}\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\left\|\sum a_{n} r_{n}\right\|_{p} \leq\left\|\sum a_{n} r_{n}\right\|_{2}=\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

The constants A_{p}, B_{p} depend solely on p.

- ℓ_{2} (isometrically) via a sequence of symmetric Gaussian independent random variables in $S_{L_{p}}$
- $\left(\ell_{2} \oplus \ell_{p}\right)_{p}$ (isometrically)

For this we use that $L_{p} \stackrel{1}{\sim}\left(L_{p}\left[0, \frac{1}{2}\right] \oplus L_{p}\left[\frac{1}{2}, 1\right]\right)_{p}$ and $L_{p}\left[0, \frac{1}{2}\right] \stackrel{1}{\sim} L_{p}\left[\frac{1}{2}, 1\right] \stackrel{1}{\sim} L_{p}[0,1]$. More generally if we partition $[0,1]$ into disjoint intervals of positive measure $\left(I_{n}\right)_{n=1}^{\infty}$ then $L_{p}\left(I_{n}\right) \stackrel{1}{\sim} L_{p}$ and $L_{p} \stackrel{1}{\sim}\left(\sum L_{p}\left(I_{n}\right)\right)_{p}$. Hence L_{p} contains also

- $\left(\sum \ell_{2}\right)_{p}=\left(\ell_{2} \oplus \ell_{2} \oplus \cdots\right)_{p} \equiv\left\{\left(x_{i}\right): x_{i} \in \ell_{2}\right.$ for all i and $\left.\left\|\left(x_{i}\right)\right\|=\left(\sum\left\|x_{i}\right\|_{2}^{p}\right)^{1 / p}<\infty\right\}$ (isometrically)

Our topic will be to characterize when $X \subseteq L_{p}, 2<p<\infty$, embeds isomorphically into or contains isomorphically one of the four spaces $\ell_{p}, \ell_{2}, \ell_{p} \oplus \ell_{2}$ or $\left(\sum \ell_{2}\right)_{p}$.

Now some remarks are in order here. First it is known that $L_{q} \stackrel{1}{\hookrightarrow} L_{p}$ if $p<q \leq 2(X \stackrel{C}{\hookrightarrow} Y$ means X is C-isomorphic to a subspace of Y). Thus L_{p} contain ℓ_{q} if $p<q<2$ so is this "small"? Secondly we have

Proposition 5. Let $X \subseteq \ell_{p}(1 \leq p<\infty)$. Then for all $\varepsilon>0$ there exists $Y \subseteq X$ with $Y \stackrel{1+\varepsilon}{\sim} \ell_{p}$ and Y is $1+\varepsilon$-complemented in ℓ_{p}.

This is due to Pełczyński [P]. Every normalized block basis of $\left(e_{i}\right)$ in ℓ_{p} is 1-equivalent to (e_{i}) and 1-complemented in ℓ_{p} as is easily checked. Then one uses perturbation as in Proposition 2.

Some other classical facts are
i) The ℓ_{p} spaces are totally incomparable, i.e., for all $X \subseteq \ell_{p}, Y \subseteq \ell_{q}, p \neq q, X \nsim Y$.
ii) For $1 \leq p, q<\infty, L_{q} \hookrightarrow L_{p}$ iff $q=2$ or $1 \leq p \leq q<2$. Also $\ell_{q} \hookrightarrow L_{p}$ iff $1 \leq p \leq q<2$ or $q=2$.

Our next result shows that normalized unconditional basic sequences in $L_{p}, 1<p<\infty$, are trapped between the ℓ_{p} and ℓ_{2} norms.

Proposition 6. a) Let $2<p<\infty$ and let $\left(x_{i}\right) \subseteq S_{L_{p}}$ be λ-unconditional. Then for all $\left(a_{n}\right) \subseteq \mathbb{R}$,

$$
\lambda^{-1}\left(\sum\left|a_{n}\right|^{p}\right)^{1 / p} \leq\left\|\sum a_{n} x_{n}\right\|_{p} \leq \lambda B_{p}\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2}
$$

b) Let $1<p<2$ and let $\left(x_{i}\right) \subseteq S_{L_{p}}$ be λ-unconditional. Then for all $\left(a_{i}\right) \subseteq \mathbb{R}$,

$$
\left(\lambda A_{p}\right)^{-1}\left(\sum\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\left\|\sum a_{n} x_{n}\right\|_{p} \leq \lambda\left(\sum\left|a_{n}\right|^{p}\right)^{1 / p}
$$

Proof. For $t \in[0,1], 2<p<\infty$,

$$
\left\|\sum a_{n} x_{n}\right\|_{p} \leq \lambda\left\|\sum a_{n} x_{n} r_{n}(t)\right\|_{p}
$$

and so

$$
\begin{aligned}
&\left\|\sum a_{n} x_{n}\right\|_{p}^{p} \leq \lambda^{p} \int_{0}^{1}\left\|\sum a_{n} x_{n} r_{n}(t)\right\|_{p}^{p} d t \\
& \stackrel{\text { (Fubini) }}{=} \lambda^{p} \int_{0}^{1} \int_{0}^{1}\left|\sum a_{n} x_{n}(s) r_{n}(t)\right|^{p} d t d s \\
& \leq\left(\lambda B_{p}\right)^{p} \int_{0}^{1}\left(\sum a_{n}^{2} x_{n}(s)^{2}\right)^{p / 2} d s \\
& \leq\left(\lambda B_{p}\right)^{p}\left(\sum\left\|a_{n}^{2} x_{n}^{2}\right\|_{p / 2}\right)^{p / 2}
\end{aligned}
$$

(by the triangle inequality in $L_{p / 2}$)

$$
=\left(\lambda B_{p}\right)^{p}\left(\sum\left|a_{n}\right|^{2}\right)^{p / 2}
$$

This gives the upper ℓ_{2}-estimate.

Similarly,

$$
\begin{aligned}
\lambda^{p}\left\|\sum a_{n} x_{n}\right\|^{p} & \geq \int_{0}^{1}\left(\sum a_{n}^{2} x_{n}^{2}(s)\right)^{p / 2} d s \\
& \geq \int_{0}^{1} \sum\left|a_{n}\right|^{p}\left|x_{n}(s)\right|^{p} d s=\sum\left|a_{n}\right|^{p}
\end{aligned}
$$

(using $\|\cdot\|_{\ell_{p}} \leq\|\cdot\|_{\ell_{2}}$). The argument is similar for $1<p<2$.
The technique of proof, integrating against the Rademacher functions, yields
Proposition 7. For $1<p<\infty$ there exists $C(p)$ so that if $\left(x_{i}\right) \subseteq S_{L_{p}}$ is λ-unconditional then for all $\left(a_{i}\right)$

$$
\begin{equation*}
\left\|\sum a_{n} x_{n}\right\|_{p} \stackrel{\lambda C(p)}{\sim}\left(\int_{0}^{1}\left(\sum\left|a_{n}\right|^{2}\left|x_{n}(s)\right|^{2}\right)^{p / 2} d s\right)^{1 / p} . \tag{1}
\end{equation*}
$$

The expression on the right is the so called "square function." By $A \stackrel{C}{\sim} B$ we mean $A \leq C B$ and $B \leq C A$.

Corollary 8. [S2] Let $\left(x_{n}\right) \subseteq S_{L_{p}}, 1<p<\infty$, be unconditional basic. Then $\left(x_{n}\right)$ is equivalent to a block basis $\left(y_{n}\right)$ of $\left(h_{n}\right)$.

Sketch. By (1) it follows that if $\left(y_{i}\right)$ is a block basis of $\left(h_{i}\right)$ with $\left|y_{i}\right|=\left|x_{i}\right|$ on $[0,1]$ then $\left(y_{i}\right) \sim\left(x_{i}\right)$. By a perturbation argument we may assume each $x_{i} \in\left\langle h_{j}\right\rangle$. Then it is easy to construct the y_{i} 's. Indeed given a simple dyadic function x and any n one can find $y \in\left\langle h_{i}\right\rangle_{n}^{\infty}$ so that $|y|=|x|$.

We are now ready to begin our investigation announced previously: if $X \subseteq L_{p}(2<p<\infty)$ when does X contain or embed into one of the 4 small subspaces of L_{p}, namely $\ell_{p}, \ell_{2}, \ell_{p} \oplus \ell_{2}$ or $\left(\sum \ell_{2}\right)_{p}$? We begin with a result from 1960.

Theorem 9 (Kadets and Pełczyński [KP]). Let $X \subseteq L_{p}, 2<p<\infty$. Then $X \sim \ell_{2}$ iff $\|\cdot\|_{2} \sim\|\cdot\|_{p}$ on X; i.e., for some $C,\|x\|_{2} \leq\|x\|_{p} \leq C\|x\|_{2}$ for all $x \in X$. Moreover there is a projection $P: L_{p} \rightarrow X$.

Sketch. First note that if $x \in S_{L_{p}}$ and $m\{t:|x(t)| \geq \varepsilon\} \geq \varepsilon$ then $\|x\|_{2} \leq\|x\|_{p}=1 \leq \varepsilon^{-3 / 2}\|x\|_{2}$. Indeed

$$
\|x\|_{2}=\left(\int|x(t)|^{2} d t\right)^{1 / 2} \geq\left(\int_{[|x| \geq \varepsilon]}|x(t)|^{2} d t\right)^{1 / 2} \geq \varepsilon \cdot \varepsilon^{1 / 2}
$$

The direction requiring proof is if $X \sim \ell_{2}$ then $\|\cdot\|_{2} \sim\|\cdot\|_{p}$ on X. If not we can find $\left(x_{i}\right) \subseteq S_{X}, x_{i} \xrightarrow{\omega} 0$, so that for all $\varepsilon>0, \lim _{n} m\left[\left|x_{n}\right| \geq \varepsilon\right]=0$. From this we can construct a
subsequence $\left(x_{n_{i}}\right)$ and disjointly supported $\left(f_{i}\right) \subseteq S_{L_{p}}$ with $\lim _{i}\left\|x_{n_{i}}-f_{i}\right\|=0$. Hence by a perturbation argument a subsequence of $\left(x_{i}\right)$ is equivalent to the unit vector basis of ℓ_{p} which contradicts $X \sim \ell_{2}$.

The projection onto X with $\|x\|_{p} \leq C\|x\|_{2}$ for $x \in X$ is given by the orthogonal projection $P: L_{2} \rightarrow X$ acting on L_{p}. For $y \in L_{p}$,

$$
\|P y\|_{p} \leq C\|P y\|_{2} \leq C\|y\|_{2} \leq C\|y\|_{p} .
$$

Remarks. The proof yields that if $X \subseteq L_{p}, 2<p<\infty$, and $X \nsim \ell_{2}$ then for all $\varepsilon>0, \ell_{p} \stackrel{1+\varepsilon}{\hookrightarrow} X$. Moreover if $\left(x_{i}\right) \subseteq S_{L_{p}}$ is weakly null and $\varepsilon=\lim _{i}\left\|x_{i}\right\|_{2}$ then a subsequence is equivalent to the ℓ_{p} basis if $\varepsilon=0$ and the ℓ_{2} basis if $\varepsilon>0$.

In the latter case we have essentially (assuming say $\left(x_{i}\right)$ is a normalized block basis of $\left(h_{i}\right)$ with $\left\|x_{i}\right\|_{2}=\varepsilon$ for all i)

$$
\varepsilon\left(\sum a_{i}^{2}\right)^{1 / 2}=\left\|\sum a_{i} x_{i}\right\|_{2} \leq\left\|\sum a_{i} x_{i}\right\|_{p} \leq K_{p} B_{p}\left(\sum a_{i}^{2}\right)^{1 / 2} .
$$

Pełczyński and Rosenthal [PR] proved that if $X \stackrel{K}{\sim} \ell_{2}$ then X is $C(K)$-complemented in L_{p} via a change of density argument.

Our next result shows that if X does not contain an isomorph of ℓ_{2} then it embeds into ℓ_{p}. The argument uses "Pełczyński's decomposition method."

Proposition 10. [P] Let X be a complemented subspace of $\ell_{p}, 1 \leq p<\infty$. Then $X \sim \ell_{p}$.
Proof. $\ell_{p} \sim X \oplus V$ for some $V \subseteq \ell_{p}$. Also $X \sim \ell_{p} \oplus W$ for some $W \subseteq X$ by Proposition 5. Finally $\ell_{p} \sim \ell_{p} \oplus \ell_{p}$ and moreover $\ell_{p} \sim\left(\ell_{p} \oplus \ell_{p} \oplus \cdots\right)_{p}$. The latter is proved by splitting $\left(e_{i}\right)$ into infinitely many infinite subsets. Thus

$$
\begin{aligned}
& \ell_{p} \sim\left(\ell_{p} \oplus \ell_{p} \oplus \cdots\right)_{p} \sim((X \oplus V) \oplus(X \oplus V) \oplus \cdots)_{p} \\
& \sim(X \oplus X \oplus \cdots)_{p} \oplus(V \oplus V \oplus \cdots)_{p} \\
& \sim X \oplus(X \oplus X \oplus \cdots)_{p} \oplus(V \oplus V \oplus \cdots)_{p} \\
& \sim X \oplus \ell_{p} \sim W \oplus \ell_{p} \oplus \ell_{p} \sim W \oplus \ell_{p} \sim X .
\end{aligned}
$$

A consequence of this is that if $\left(H_{n}\right)$ is any blocking of $\left(h_{i}\right)$ into an FDD then $\left(\sum H_{n}\right)_{p} \sim \ell_{p}$. Indeed each H_{n} is uniformly complemented in $\ell_{p}^{m_{n}}$ for some m_{n}, hence $\left(\sum H_{n}\right)_{p}$ is complemented in $\left(\sum \ell_{p}^{m_{n}}\right)_{p}=\ell_{p}$.

Theorem 11. [JO1] Let $2<p<\infty, X \subseteq L_{p}$. Then $X \hookrightarrow \ell_{p} \Leftrightarrow \ell_{2} \nrightarrow X$. ([KW] If $\ell_{2} \nrightarrow X$ then for all $\varepsilon>0, X \xrightarrow{1+\varepsilon} \ell_{p}$.)

The scheme of the argument is to show if $\ell_{2} \nLeftarrow X$ then there is a blocking $\left(H_{n}\right)$ of the Haar basis into an FDD so that $X \hookrightarrow\left(\sum H_{n}\right)_{p}$ in a natural way; $x=\sum x_{n}, x_{n} \in H_{n} \rightarrow\left(x_{n}\right) \in$ $\left(\sum H_{n}\right)_{p}$. Since $\left(\sum H_{n}\right)_{p} \sim \ell_{p}$ we are done.

We won't discuss the specifics here of this argument but rather will sketch shortly the proof of a stronger result. First we note the analogous theorem for $1<p<2$, which has a different form. Note the Theorem would also hold for $2<p<\infty$ and, unlike $1<p<2$, the constant K need not be specified.

Theorem 12. [Jo] Let $X \subseteq L_{p}, 1<p<2$. Then $X \hookrightarrow \ell_{p}$ if (and only if) there exists $K<\infty$ so that for all weakly null $\left(x_{i}\right) \subseteq S_{X}$ some subsequence is K-equivalent to the unit vector basis of ℓ_{p}.

These results were unified using the infinite asymptotic game/weakly null trees machinery which we will discuss after stating

Theorem 13. Let $X \subseteq L_{p}, 1<p<\infty$. Then $X \hookrightarrow \ell_{p}$ iff every weakly null tree in S_{X} admits a branch equivalent to the unit vector basis of ℓ_{p}.

A tree in S_{X} is $\left(x_{\alpha}\right)_{\alpha \in T_{\infty}} \subseteq S_{X}$ where

$$
T_{\infty}=\left\{\left(n_{1}, \ldots, n_{k}\right): k \in \mathbb{N}, n_{1}<\cdots<n_{k} \text { are in } \mathbb{N}\right\} .
$$

A node in T_{∞} is all $\left(x_{(\alpha, n)}\right)_{n>n_{k}}$ where $\alpha=\left(n_{1}, \ldots, n_{k}\right)$ or $\alpha=\emptyset$. The tree is weakly null means each node is a weakly null sequence. A branch is $\left(x_{i}\right)_{i=1}^{\infty}$ given by $x_{i}=x_{\left(n_{1}, \ldots, n_{i}\right)}$ for some subsequence $\left(n_{i}\right)$ of \mathbb{N}.

It is worth noting that, just as in Proposition 3, if $X \subseteq Z$, a space with a basis $\left(z_{i}\right)$ and $\left(x_{\alpha}\right)_{\alpha \in T_{\infty}} \subseteq S_{X}$ is a weakly null tree then the tree admits a full subtree $\left(y_{\alpha}\right)_{\alpha \in T_{\infty}}$ so that each branch is a perturbation of a block basis of $\left(z_{i}\right)$. By full subtree we mean that $\left(y_{\alpha}\right)_{\alpha \in T_{\infty}}=$ $\left(x_{\alpha}\right)_{\alpha \in T^{\prime}}$ where $T^{\prime} \subseteq T_{\infty}$ is order isomorphic to T and if $y_{\alpha}=x_{\gamma(\alpha)}$ then $|\gamma(\alpha)|=|\alpha|=$ length of α. $\left|\left(n_{1}, \ldots, n_{k}\right)\right|=k$.

Remarks. The conditions for a general reflexive X,
A) Every weakly null sequence $\left(x_{i}\right) \subseteq X$ has a subsequence K-equivalent to the unit vector basis of ℓ_{p} and
B) Every weakly null tree in S_{X} admits a branch equivalent to the unit vector basis of ℓ_{p} are generally different. It is not hard to show that B) actually implies
B) ${ }^{\prime}$ For some C every weakly null tree in S_{X} admits a branch C-equivalent to the unit vector basis of ℓ_{p}.

Also B$\left.)^{\prime} \Rightarrow \mathrm{A}\right)$ by considering the tree $\left(x_{\alpha}\right)_{\alpha \in T_{\alpha}}$ where $x_{\left(n_{1}, \ldots, n_{k}\right)}=x_{n_{k}}$. Indeed the branches of $\left(x_{\alpha}\right)$ coincide with the subsequences of $\left(x_{i}\right)$. But in L_{p} one can show that A) and B) are in fact equivalent. Thus Theorem 13 encompasses both Theorems 11 and 12.

Theorem 13 follows from

Theorem 14. [OS] Let $1<p<\infty$, let X be reflexive and assume that every weakly null tree in S_{X} admits a branch C-equivalent to the unit vector basis of ℓ_{p}. Assume $X \subseteq Z$, a reflexive space with an $\operatorname{FDD}\left(E_{i}\right)$. Then there exists a blocking $\left(F_{i}\right)$ of $\left(E_{i}\right)$ so that X naturally embeds into $\left(\sum F_{i}\right)_{p}$.

The conclusion means that for some K and all $x \in X, x=\sum x_{n}, x_{n} \in F_{n}$, we have $\|x\| \stackrel{K}{\sim}\left(\sum\left\|x_{n}\right\|^{p}\right)^{1 / p}$.

We shall outline the steps involved in the proof. First we give a definition.
Definition. Let $\left(E_{i}\right)$ be an FDD for Z. Let $\bar{\delta}=\left(\delta_{i}\right), \delta_{i} \downarrow 0$. A sequence $\left(z_{i}\right) \subseteq S_{Z}$ is a $\bar{\delta}$-skipped block sequence w.r.t. $\left(E_{i}\right)$ if there exist integers $1 \leq k_{1}<\ell_{1}<k_{2}<\ell_{2}<\cdots$ so that

$$
\left\|z_{n}-P_{\left(k_{n}, \ell_{n}\right]}^{E} z_{n}\right\|<\delta_{n} \text { for all } n .
$$

Here for $x=\sum x_{i}, x_{i} \in E_{i}, P_{(k, \ell]}^{E} x=\sum_{i \in(k, \ell]} x_{i}$. Thus above the "skipping" is the $P_{k_{n}}^{E}$ terms. $\left(z_{n}\right)$ is almost a block basis of $\left(E_{n}\right)$ with the $E_{k_{n}}$ almost skipped.

Now let $X \subseteq Z=\left[\left(E_{i}\right)\right]$ be as in the statement of Theorem 14 .
Step 1. There exists a blocking $\left(G_{i}\right)$ of $\left(E_{i}\right)$ and $\bar{\delta}$ so that every $\bar{\delta}$-skipped block sequence w.r.t. $\left(G_{i}\right)$ in S_{X} is $2 C$-equivalent to the unit vector basis of ℓ_{p}.

To obtain this one first shows that the weakly null tree hypothesis on X is equivalent to (S) having a winning strategy in the following game (for all $\varepsilon>0$).

The infinite asymptotic game: Two players (S) for subspace and (V) for vector alternate plays forever as follows. (S) chooses $n_{1} \in \mathbb{N}$. (V) chooses $x_{1} \in$ $S_{X} \cap\left[\left(E_{i}\right)_{i \geq n_{1}}\right], \ldots$. Thus the plays are $\left(n_{1}, x_{1}, n_{2}, x_{2}, \ldots\right)$.
(S) wins if $\left(x_{i}\right) \in \mathcal{A}(C+\varepsilon) \equiv\{$ all normalized bases $(C+\varepsilon)$-equivalent to the unit vector basis of $\left.\ell_{p}\right\}$.
(S) has a winning strategy means that

$$
\begin{aligned}
& \exists n_{1} \forall x_{1} \in S_{X} \cap\left[\left(E_{i}\right)_{i \geq n_{1}}\right] \\
& \exists n_{2} \forall x_{2} \in S_{X} \cap\left[\left(E_{i}\right)_{i \geq n_{2}}\right] \\
& \ldots \\
& \left(x_{i}\right) \in \mathcal{A}(C+\varepsilon)
\end{aligned}
$$

(V) wins if $\left(x_{i}\right) \notin \mathcal{A}(C+\varepsilon)$.
(V) has a winning strategy means that

$$
\begin{aligned}
& \forall n_{1} \exists x_{1} \in S_{X} \cap\left[\left(E_{i}\right)_{i \geq n_{1}}\right] \\
& \forall n_{2} \exists x_{2} \in S_{X} \cap\left[\left(E_{i}\right)_{i \geq n_{2}}\right] \\
& \ldots \\
& \left(x_{i}\right) \notin \mathcal{A}(C+\varepsilon)
\end{aligned}
$$

Now these two winning strategies are the formal negations of each other, but they are infinite sentences so must one be true? Yes, if the game is determined which it is in this case since Borel games are determined [Ma]. Now if (V) had a winning strategy one could easily produce a weakly null tree in S_{X} all of whose branches did not lie in $\mathcal{A}(C+\varepsilon)$. So (S) has a winning strategy. Then by a compactness argument one can deduce Step 1 ($2 C$ could be any $C+\varepsilon$ here).

The next step is a lemma of W.B. Johnson [Jo] which allows us to decompose any $x \in S_{X}$ into (almost) a linear combination of $\bar{\delta}$-skipped blocks, in X.
Step 2. Let K be the projection constant of $\left(G_{i}\right)$. There exists a blocking $\left(F_{i}\right)$ of $\left(G_{i}\right)$, $F_{i}=\left\langle G_{i}\right\rangle_{j \in\left(N_{i-1}, N_{i}\right]}, N_{0}=0<N_{1}<\cdots$, satisfying the following.

For all $x \in S_{X}$ there exists $\left(x_{i}\right) \subseteq X$ and for all i there exists $t_{i} \in\left(N_{i-1}, N_{i}\right)\left(t_{0}=0, t_{1}>1\right)$ satisfying
a) $x=\sum x_{j}$
b) $\left\|x_{i}\right\|<\delta_{i}$ or $\left\|P_{\left(t_{i-1}, t_{i}\right)}^{G} x_{i}-x_{i}\right\|<\delta_{i}\left\|x_{i}\right\|$
c) $\left\|P_{\left(t_{i-1}, t_{i}\right)}^{G} x-x_{i}\right\|<\delta_{i}$
d) $\left\|x_{i}\right\|<K+1$
e) $\left\|P_{t_{i}}^{G} x\right\|<\delta_{i}$

Moreover the above holds for any further blocking of $\left(G_{i}\right)$ (which redefines the N_{i} 's).

Remark. Thus if $x \in S_{X}$ we can write $x=\sum x_{i},\left(x_{i}\right) \subseteq X$ where if $B=\left\{i:\left\|x_{i}\right\| \geq \delta_{i}\right\}$ then $\left(\frac{x_{i}}{\left\|x_{i}\right\|}\right)_{i \in B}$ is a $\bar{\delta}$-skipped block sequence w.r.t. $\left(G_{i}\right)$. Also the skipped blocks $\left(G_{t_{i}}\right)$ are in predictable intervals, $t_{i} \in\left(N_{i-1}, N_{i}\right)$. And $\sum_{i \notin B}\left\|x_{i}\right\|<\sum \delta_{i}$.

To prove Step 2 we have a
Lemma. $\forall \varepsilon>0 \forall N \in \mathbb{N} \exists n>N$ so that if $x \in B_{X}, x=\sum y_{i}, y_{i} \in G_{i}$, then there exists $t \in(N, n)$ with

$$
\left\|y_{t}\right\|<\varepsilon \quad \text { and } \quad \operatorname{dist}\left(\sum_{1}^{t-1} y_{i}, X\right)<\varepsilon
$$

Proof. If not we obtain $y^{(n)} \in B_{X}$ for $n>N$ failing the conclusion for $t \in(N, n)$. Choose $y^{\left(n_{i}\right)} \xrightarrow{\omega} y \in B_{X}$ and let $t>N$ satisfy $\left\|P_{[t, \infty)}^{G} y\right\|<\varepsilon / 2 K$. Choose $y^{(n)}$ from $\left(y^{\left(n_{i}\right)}\right)$ so that $n>t$ and $\left\|P_{[1, t)}^{G}\left(y^{(n)}-y\right)\right\|<\varepsilon / 2 K$. Then

$$
\left\|P_{[1, t)}^{G} y^{(n)}-y\right\| \leq\left\|P_{[1, t)}^{G}\left(y^{(n)}-y\right)\right\|+\left\|P_{[t, \infty)}^{G} y\right\|<\frac{\varepsilon}{2 K}+\frac{\varepsilon}{2 K} \leq \varepsilon
$$

Also

$$
\left\|P_{t}^{G} y^{(n)}\right\| \leq\left\|P_{t}^{G}\left(y^{(n)}-y\right)\right\|+\left\|P_{t}^{G} y\right\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

This contradicts our choice of $y^{(n)}$.
To use the lemma we select $N_{0}=0<N_{1}<N_{2}<\cdots$ so that for all $x \in B_{X}$ there exists $t_{i} \in\left(N_{i-1}, N_{i}\right)$ and $z_{i} \in X$ with $\left\|P_{t_{i}}^{G} x\right\|<\varepsilon_{i}$ and $\left\|P_{\left[1, t_{i}\right)}^{G} x-z_{i}\right\|<\varepsilon_{i}$. Set $x_{i}=z_{1}, x_{i}=z_{i}-z_{i-1}$ for $i>1$. Then $\sum_{1}^{n} x_{i}=z_{n} \rightarrow x$ and the other properties b$)-\mathrm{d}$) hold, as is easily checked, if $(K+1)\left(\varepsilon_{i}+2 \varepsilon_{i-1}\right)<\delta_{i}^{2}$.

Now let $\left(F_{i}\right)$ be the blocking obtained in Step 2. It is not hard to show that if $x=\sum x_{i}$ is as in Step 2 then $\|x\| \stackrel{3 C}{\sim}\left(\sum\left\|x_{i}\right\|^{p}\right)^{1 / p}$, provided $\bar{\delta}=\left(\delta_{i}\right)$ is small enough. But this is not the decomposition given by $x=\sum y_{i}, y_{i} \in F_{i}$. However we do have

$$
\begin{aligned}
x_{i} & \approx P_{\left(t_{i-1}, t_{i}\right)}^{G}\left(y_{i-1}+y_{i}\right) \quad \text { and } \\
y_{i} & \approx P_{\left(N_{i-1}, N_{i}\right)}^{G}\left(x_{i}+x_{i+1}\right)
\end{aligned}
$$

which yields $\|x\| \stackrel{K(C)}{\sim}\left(\sum\left\|y_{i}\right\|^{p}\right)^{1 / p}$ by making the appropriate estimates.
Returning to $X \subseteq L_{p}(2<p<\infty)$ we have seen that one of these holds:

- $X \sim \ell_{2}$
- $X \hookrightarrow \ell_{p}$
- $\ell_{p} \oplus \ell_{2} \hookrightarrow X$

The latter comes from Theorems 9 and 11. If $X \nsim \ell_{2}$ and $X \nLeftarrow \ell_{p}$ then X contains a subspace isomorphic to ℓ_{2} so $X \sim \ell_{2} \oplus Y$. Now Y also contains ℓ_{p} (or else $X \sim \ell_{2}$) and in fact complementably (as a perturbation of a disjointly supported $\left(f_{i}\right) \subseteq S_{L_{p}}$) so $\ell_{p} \oplus \ell_{2} \hookrightarrow X$.

Our next goal will be to characterize when $X \hookrightarrow \ell_{p} \oplus \ell_{2}$ and if not to then show that $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X$.

First we recall one more old result.
Theorem 15. [JO2] Let $X \subseteq L_{p}, 2<p<\infty$. Assume there exists $Y \subseteq \ell_{p} \oplus \ell_{2}$ and a quotient (onto) map $Q: Y \rightarrow X$. Then $X \hookrightarrow \ell_{p} \oplus \ell_{2}$.

This is an answer, of a sort, to when $X \hookrightarrow \ell_{p} \oplus \ell_{2}$ but it is not an intrinsic characterization. The proof however provides a clue as to how to find one. The isomorphism $X \hookrightarrow \ell_{p} \oplus \ell_{2}$ is given by a blocking $\left(H_{n}\right)$ of $\left(h_{i}\right)$ so that X naturally embeds into

$$
\left(\sum H_{n}\right)_{p} \oplus\left(\sum\left(H_{n},\|\cdot\|_{2}\right)\right)_{2} \sim \ell_{p} \oplus \ell_{2} .
$$

Before proceeding we recall some more inequalities.
Theorem 16. [R] Let $2<p<\infty$. There exists $K_{p}<\infty$ so that if $\left(x_{i}\right)$ is a normalized mean zero sequence of independent random variables in L_{p} then for all $\left(a_{i}\right) \subseteq \mathbb{R}$,

$$
\left\|\sum a_{i} x_{i}\right\|_{p} \stackrel{K_{p}}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2}\left\|x_{i}\right\|_{2}^{2}\right)^{1 / 2} .
$$

Note that in this case $\left[\left(x_{i}\right)\right] \hookrightarrow \ell_{p} \oplus \ell_{2}$ via the embedding

$$
\sum a_{i} x_{i} \longmapsto\left(\left(a_{i}\right)_{i},\left(a_{i}\left\|x_{i}\right\|_{2}\right)_{i}\right) \in \ell_{p} \oplus \ell_{2}
$$

The next result generalizes this to martingale difference sequences, e.g., block bases of $\left(h_{i}\right)$.
Theorem 17. [Bu2], [BDG] Let $2<p<\infty$. There exists $C_{p}<\infty$ so that if $\left(z_{i}\right)$ is a martingale difference sequence in L_{p} with respect to the sequence of σ-algebras $\left(\mathcal{F}_{n}\right)$, then

$$
\left\|\sum z_{i}\right\|_{p} \stackrel{C_{p}}{\sim}\left(\sum\left\|z_{i}\right\|_{p}^{p}\right)^{1 / p} \vee\left\|\left(\sum \mathbb{E}_{\mathcal{F}_{i}}\left(z_{i+1}^{2}\right)\right)^{1 / 2}\right\|_{p} .
$$

Recall something we said earlier. Suppose that $\left(x_{i}\right) \subseteq S_{L_{p}}$ is weakly null. Passing to a subsequence we obtain $\left(y_{i}\right)$ which, by perturbing, we may assume is a block basis of $\left(h_{i}\right)$. Passing to a further subsequence we may assume $\varepsilon \equiv \lim _{i}\left\|y_{i}\right\|_{2}$ exists. If $\varepsilon=0$ a subsequence of $\left(y_{i}\right)$ is equivalent to the unit vector basis of ℓ_{p} by the $[\mathrm{KP}]$ arguments. Otherwise we have (essentially)

$$
\begin{aligned}
\varepsilon\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2} & =\left\|\sum a_{i} y_{i}\right\|_{2} \leq\left\|\sum a_{i} y_{i}\right\|_{p} \\
& \leq C(p)\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

using the fundamental inequality, Proposition 6. Thus $\left[\left(y_{i}\right)\right]$ embeds into $\ell_{p} \oplus \ell_{2}$ with $\left(y_{i}\right)$ as a block basis of the natural basis for $\ell_{p} \oplus \ell_{2}$.

Johnson, Maurey, Schechtman and Tzafriri obtained a stronger version of this dichotomy using Theorem 17.

Theorem 18. [JMST] Let $2<p<\infty$. There exists $D_{p}<\infty$ with the following property. Every normalized weakly null sequence in L_{p} admits a subsequence $\left(x_{i}\right)$ satisfying, for some $w \in[0,1]$ and all $\left(a_{i}\right) \subseteq \mathbb{R}$,

$$
\left\|\sum a_{i} x_{i}\right\| \stackrel{D_{p}}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee w\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2} .
$$

We are now ready for an intrinsic characterization of when $X \subseteq L_{p}$ embeds into $\ell_{p} \oplus \ell_{2}$.
Theorem 19. [HOS] Let $X \subseteq L_{p}, 2<p<\infty$. The following are equivalent.
a) $X \hookrightarrow \ell_{p} \oplus \ell_{2}$
b) Every weakly null tree in S_{X} admits a branch $\left(x_{i}\right)$ satisfying for some K and all $\left(a_{i}\right)$

$$
\begin{aligned}
& \left\|\sum a_{i} x_{i}\right\| \stackrel{K}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left\|\sum a_{i} x_{i}\right\|_{2} \\
& \approx\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2}\left\|x_{i}\right\|_{2}^{2}\right)^{1 / 2} .
\end{aligned}
$$

c) Every weakly null tree in S_{X} admits a branch $\left(x_{i}\right)$ satisfying for some K and $\left(w_{i}\right) \subseteq$ $[0,1]$ and all $\left(a_{i}\right)$,

$$
\left\|\sum a_{i} x_{i}\right\| \stackrel{K}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2} w_{i}^{2}\right)^{1 / 2}
$$

d) There exists K so that every weakly null sequence in S_{X} admits a subsequence $\left(x_{i}\right)$ satisfying the condition in b):

$$
\begin{gathered}
\left\|\sum a_{i} x_{i}\right\| \stackrel{K}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left\|\sum a_{i} x_{i}\right\|_{2} \\
\approx\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2} \varepsilon^{2}\right)^{1 / 2} \\
\text { where } \varepsilon=\lim _{i}\left\|x_{i}\right\|_{2} .
\end{gathered}
$$

Condition c) just says that every weakly null tree in S_{X} admits a branch equivalent to a block basis of the natural basis for $\ell_{p} \oplus \ell_{2}$ (discussed more below).

Conditions b) and c) do not require K to be universal but the "all weakly null trees..." hypothesis yields this.

The latter " \approx " near equalities in b) (and d)) come from the fact that every weakly null tree in $S_{L_{p}}$ can be first pruned to a full subtree so that each branch is essentially a normalized block basis of $\left(h_{i}\right)$.

Condition d) is an anomaly in that usually "every sequence has a subsequence..." is a vastly different condition than "every tree admits a branch...". Here the special nature of L_{p} is playing a role.

The embedding of X into $\ell_{p} \oplus \ell_{2}$ will follow the clue from Theorem 15 by producing a blocking $\left(H_{n}\right)$ of $\left(h_{i}\right)$ and embedding X naturally into

$$
\left(\sum H_{n}\right)_{p} \oplus\left(\sum\left(H_{n},\|\cdot\|_{2}\right)\right)_{2}
$$

Thus if $x=\sum x_{n}, x_{n} \in H_{n}$ then $\|x\| \sim\left(\sum\left\|x_{n}\right\|^{p}\right)^{1 / p} \vee\left(\sum\left\|x_{n}\right\|_{2}^{2}\right)^{1 / 2}$.
The proof of $\mathbf{b}) \Rightarrow$ a) is much like that of Theorem 14. We produce a blocking $\left(H_{n}\right)$ of $\left(h_{n}\right)$ so that X naturally embeds into $\left(\sum H_{n}\right)_{p} \oplus\left(\sum\left(H_{n},\|\cdot\|_{2}\right)\right)_{2} \sim \ell_{p} \oplus \ell_{2}$. In fact we obtain a more general result.

A basis $\left(v_{i}\right)$ is 1-subsymmetric if it is 1-unconditional and $\left\|\sum a_{i} v_{i}\right\|=\left\|\sum a_{i} v_{n_{i}}\right\|$ for all $\left(a_{i}\right)$ and all $n_{1}<n_{2}<\cdots$.

Theorem 20. Let X and Y be Banach spaces with X reflexive. Let V be a space with a 1subsymmetric normalized basis $\left(v_{i}\right)$ and let $T: X \rightarrow Y$ be a bounded linear operator. Assume that for some C every normalized weakly null tree in X admits a branch $\left(x_{n}\right)$ satisfying:

$$
\left\|\sum a_{n} x_{n}\right\|_{X} \stackrel{C}{\sim}\left\|\sum a_{n} v_{n}\right\|_{V} \vee\left\|T\left(\sum a_{n} x_{n}\right)\right\|_{Y} .
$$

Then if $X \subseteq Z$, a reflexive space with an $\operatorname{FDD}\left(E_{i}\right)$, there exists a blocking $\left(G_{i}\right)$ of $\left(E_{i}\right)$ so that X naturally embeds into $\left(\sum G_{i}\right)_{V} \oplus Y:$ if $x=\sum x_{i}, x_{i} \in G_{i}$ then $x \mapsto\left(x_{i}\right) \oplus T x \in\left(\sum G_{i}\right)_{V} \oplus Y$.

This is applied to $V=\ell_{p}, Z=L_{p}$ and $Y=L_{2}$ where $T: X \rightarrow L_{2}$ is the identity map.
So we obtain b) \Rightarrow a) and clearly a) \Rightarrow c). Indeed suppose that $X \subseteq\left(\ell_{p} \oplus \ell_{2}\right)_{\infty}$. Then given a weakly null tree in X some branch $\left(x_{i}\right)$ is a perturbation of a normalized block basis $\left(y_{i}\right)$ of the unit vector basis for $\ell_{p} \oplus \ell_{2}$. Thus if $\left\|y_{i}\right\|_{\ell_{p}}=c_{i}$ and $\left\|y_{i}\right\|_{\ell_{2}}=w_{i}$ then $\left\|\sum a_{i} y_{i}\right\|=$ $\left(\sum\left|a_{i}\right|^{p}\left|c_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2} w_{i}^{2}\right)^{1 / 2}$. From Proposition $6,\left\|\sum a_{i} y_{i}\right\|_{\left(\ell_{p} \oplus \ell_{2}\right)_{p}} \geq\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p}$, hence

$$
\begin{aligned}
\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} & \vee\left(\sum\left|a_{i}\right|^{2} w_{i}^{2}\right)^{1 / 2} \leq\left\|\sum a_{i} y_{i}\right\|_{\left(\ell_{p} \oplus \ell_{2}\right)_{p}} \leq 2\left\|\sum a_{i} y_{i}\right\| \\
& \leq 2\left[\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2} w_{i}^{2}\right)^{1 / 2}\right] .
\end{aligned}
$$

To see c) $\Rightarrow \mathrm{b}$) we begin with a weakly null tree in S_{X} and choose a branch $\left(x_{i}\right)$ satisfying the c) condition:

$$
\left\|\sum a_{i} x_{i}\right\| \stackrel{K}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum\left|a_{i}\right|^{2}\left|w_{i}\right|^{2}\right)^{1 / 2}
$$

Now we could first have "pruned" our tree so that each branch may be assumed to be a block basis of $\left(h_{i}\right)$, by perturbations. We want to say that for some K^{\prime},

$$
\left\|\sum a_{i} x_{i}\right\| \stackrel{K^{\prime}}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left\|\sum a_{i} x_{i}\right\|_{2} .
$$

(We have ${ }^{K^{\prime}} \geq$ by the fundamental inequality.)
If this fails we can find a block basis $\left(y_{n}\right)$ of $\left(x_{n}\right)$,

$$
\begin{gathered}
y_{n}=\sum_{i=k_{n-1}+1}^{k_{n}} a_{i} x_{i}, \text { with } \sum_{i=k_{n-1}+1}^{k_{n}} w_{i}^{2} a_{i}^{2}=1 \\
\text { and }\left(\sum_{i=k_{n-1}+1}^{k_{n}}\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left\|y_{n}\right\|_{2}<2^{-n} .
\end{gathered}
$$

But then from the c) condition $\left(y_{n}\right)$ is equivalent to the unit vector basis of ℓ_{2} and from the above condition and the $[\mathrm{KP}]$ argument, a subsequence is equivalent to the unit vector basis of ℓ_{p}, a contradiction.

Note that b$) \Rightarrow \mathrm{d})$ since if $\left(x_{i}\right)$ is a normalized weakly null sequence and we define $\left(x_{\alpha}\right)_{\alpha \in T_{\infty}}$ by $x_{\left(n_{1}, \ldots, n_{k}\right)}=x_{n_{k}}$ then the branches of $\left(x_{\alpha}\right)_{\alpha \in T_{\infty}}$ coincide with the subsequences of $\left(x_{n}\right)$. Note that the condition d) just says we may take the weight " w " in [JMST] to be "lim ${ }_{i}\left\|x_{i}\right\|_{2}$ ".

It remains to show $d) \Rightarrow b$) in Theorem 19 and this will complete the proof of Theorem 21. The idea is to use Burkholder's inequality using d) on nodes of a weakly null tree, following the scheme of [JMST] to accomplish this. That argument will obtain a branch $\left(x_{n}\right)=\left(x_{\alpha_{n}}\right)$, $\alpha_{n}=\left(m_{1}, \ldots, m_{n}\right)$ with

$$
\left\|\sum a_{i} x_{i}\right\| \sim\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum w_{i}^{2} a_{i}^{2}\right)^{1 / 2}
$$

where $w_{i} \stackrel{C(p)}{\sim} \lim _{n}\left\|x_{\left(\alpha_{n}, n\right)}\right\|_{2}$ using d).
Our next goal is to show that if $X \subseteq L_{p}$ and X dos not embed into $\ell_{p} \oplus \ell_{2}$ then X contains an isomorphic copy of $\left(\sum \ell_{2}\right)_{p}$. The idea will be to use the failure of d$)$ to show $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X$. In the $[\mathrm{KP}]$ argument we obtained a sequence $\left(x_{i}\right) \subseteq S_{X}$ with the x_{i} 's becoming more and more skinny:

$$
\lim _{i} m\left[\left|x_{i}\right| \geq \varepsilon\right]=0 \text { for all } \varepsilon>0
$$

and then extracted an ℓ_{p} subsequence, of almost disjointly supported functions. Here we want to replace x_{i} by a sequence of skinny K-isomorphic copies of ℓ_{2}.

Theorem 21. Let $X \subseteq L_{p}, 2<p<\infty$. If X does not embed into $\ell_{p} \oplus \ell_{2}$ then $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X$.

We want to produce $X_{i} \subseteq X, X_{i} \stackrel{K}{\sim} \ell_{2}$ where two things happen. First for all $\varepsilon>0$ there exists i so that if $x \in S_{X_{i}}$ then $m[|x| \geq \varepsilon]<\varepsilon$. Secondly we need that X_{i} is not too skinny, namely each $B_{X_{i}}$ is p-uniformly integrable.

Definition. $A \subseteq L_{p}$ is p-uniformly integrable if $\forall \varepsilon>0 \exists \delta>0 \forall m(E)<\delta \forall z \in A$, we have $\int_{E}|z|^{p}<\varepsilon$.

Lemma. Assume for some K and all n there exists $\left(x_{i}^{n}\right)_{n=1}^{\infty} \subseteq S_{X}$ with $\lim _{i}\left\|x_{i}^{n}\right\|_{2}=\varepsilon_{n} \downarrow 0$ and $\left(x_{i}^{n}\right)_{i}$ is K-equivalent to the unit vector basis of ℓ_{2}. Then $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X$.

Sketch of proof. Note that if $y=\sum_{i} a_{i} x_{i}^{n}$ has norm 1 then, assuming as we may that $\left(x_{i}^{n}\right)_{i}$ is a block basis of $\left(h_{i}\right)$ and $\left\|x_{i}^{n}\right\|_{2} \approx \varepsilon_{n}$ then

$$
\|y\|_{2} \approx\left(\sum a_{i}^{2}\left\|x_{i}^{n}\right\|_{2}^{2}\right)^{1 / 2} \lesssim K \varepsilon_{n}
$$

So we have a sequence of skinny $K-\ell_{2}$'s inside of X. We would like to have if $y^{n} \in\left[\left(x_{i}^{n}\right)_{i}\right]$ then they are essentially disjointly supported so $\left\|\sum y^{n}\right\| \sim\left(\sum\left\|y^{n}\right\|^{p}\right)^{1 / p}$, as in the [KP] argument. Unlike in $[\mathrm{KP}]$ we cannot select one y_{n} from each $\left[\left(x_{i}^{n}\right)_{i}\right]$ and pass to a subsequence. We need to fix a given $\left[\left(x_{i}^{n}\right)_{i}\right]$ for large n so it is skinny enough based on the earlier selections of subspaces and also so that its unit ball is p-uniformly integrable so that future selections of $\left[\left(x_{i}^{m}\right)_{i}\right]$ will be essentially disjoint from it.

To achieve this we need a sublemma.
Sublemma. Let $Y \subseteq L_{p}, 2<p<\infty$, with $Y \sim \ell_{2}$. There exists $Z \subseteq Y$ with S_{Z} p-uniformly integrable.

This is proved in two steps. First showing a normalized martingale difference sequence (x_{n}) with $\left\{\left(x_{n}\right)\right\}$ p-uniformly integrable has $A=\left\{\sum a_{i} x_{i}: \sum a_{i}^{2} \leq 1\right\}$ also p-uniformly integrable by a stopping time argument.

The general case is to use the subsequence splitting lemma to write a subsequence of an ℓ_{2} basis as $x_{i}=y_{i}+z_{i}$ where the $\left(y_{i}\right)$ are a p-uniformly integrable (perturbation of) a martingale difference sequence and the z_{i} 's are disjointly supported and then use an averaging argument to get a block basis where the z_{i} 's disappear.

The subsequence splitting lemma is a nice exercise in real analysis: Given a bounded $\left(x_{i}^{\prime}\right) \subseteq$ L_{1} there exists a subsequence $\left(x_{i}\right) \subseteq\left(x_{i}^{\prime}\right)$ with $x_{i}=y_{i}+z_{i}, y_{i} \wedge z_{i}=0,\left(y_{i}\right)$ is uniformly integrable and the z_{i} 's are disjointly supported.

Now we return to condition d) in Theorem 19 and recall by [JMST] every weakly null sequence in S_{X} has a subsequence $\left(x_{i}\right)$ with for some $w \in[0,1]$,

$$
\left\|\sum a_{i} x_{i}\right\| \stackrel{D_{p}}{\sim}\left(\sum\left|a_{i}\right|^{p}\right)^{1 / p} \vee w\left(\sum\left|a_{i}\right|^{2}\right)^{1 / 2}
$$

and d) asserts that for some absolute $C, w \stackrel{C}{\sim} \lim _{i}\left\|x_{i}\right\|_{2}$. Now clearly we can assume that $w \geq \lim _{i}\left\|x_{i}\right\|_{2}$ and if d) fails we can use this to construct our ℓ_{2} 's satisfying the lemma and thus obtain $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X$.

Indeed d) fails yields that we can take a normalized block basis $\left(y_{i}\right)$ of a given $\left(x_{i}\right)$ failing the condition for a large C to obtain $\left(y_{i}\right) \stackrel{D_{p}}{\sim} \ell_{2}$ basis yet $\left\|y_{i}\right\|_{2}$ remains small.

So we have the dichotomy for $X \subseteq L_{p}, 2<p<\infty$. Either

- $X \hookrightarrow \ell_{p} \oplus \ell_{2}$ or
- $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X$.

In the latter case using L_{p} is stable we can get for all $\varepsilon>0,\left(\sum \ell_{2}\right)_{p} \stackrel{1+\varepsilon}{\hookrightarrow} X$.
The theory of stable spaces was developed by Krivine and Maurey [KM]. X is stable if for all bounded $\left(x_{n}\right),\left(y_{n}\right) \subseteq X$,

$$
\lim _{m} \lim _{n}\left\|x_{n}+y_{m}\right\|=\lim _{n} \lim _{m}\left\|x_{n}+y_{m}\right\|
$$

provided both limits exist. They proved that if X is stable then for some p and all $\varepsilon>0$, $\ell_{p} \stackrel{1+\varepsilon}{\hookrightarrow} X$. They also proved L_{p} is stable, $1 \leq p<\infty$.

We have obtained in our proof that if $X \nprec \ell_{p} \oplus \ell_{2}$ then for some K and all $\varepsilon>0$ there exist $X_{n} \subseteq X, X_{n} \stackrel{K}{\sim} \ell_{2}$ and if $x_{n} \in X_{n},\left\|\sum x_{n}\right\| \stackrel{1+\varepsilon}{\sim}\left(\sum\left\|x_{n}\right\|^{p}\right)^{1 / p}$. Using L_{p} is stable we can choose $Y_{n} \subseteq X_{n}, Y_{n} \stackrel{1+\varepsilon}{\sim} \ell_{2}$ for all n.

In fact we can get $\left(\sum \ell_{2}\right)_{p}$ complemented in X via the next result.
We note first that if $\left(x_{i}\right) \subseteq S_{L_{p}}$ is K-equivalent to the unit vector basis of ℓ_{2} then, as mentioned earlier, by [PR] it is $C(K)$-complemented in L_{p} by some projection P. Also P must have the form (true for any projection of any space onto ℓ_{2})

$$
\begin{aligned}
& P x=\sum x_{i}^{*}(x) x_{i} \text { where }\left(x_{i}^{*}\right) \text { is biorthogonal to }\left(x_{i}\right) \text { and is weakly null in } L_{p^{\prime}} \\
& \left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right) .
\end{aligned}
$$

Proposition 22. For all n let $\left(y_{i}^{n}\right)_{i}$ be a normalized basic sequence in $L_{p}, 2<p<\infty$, which is K-equivalent to the unit vector basis of ℓ_{2} and so that for $y_{n} \in\left[\left(y_{i}^{n}\right)_{i}\right]$,

$$
\left\|\sum y_{n}\right\| \stackrel{K}{\sim}\left(\sum\left\|y_{n}\right\|^{p}\right)^{1 / p}
$$

Then there exists subsequences $\left(x_{i}^{n}\right)_{i} \subseteq\left(y_{i}^{n}\right)_{i}$, for each n, so that $\left[\left\{x_{i}^{n}: n, i \in \mathbb{N}\right\}\right]$ is complemented in L_{p}.

Proof. By $[\mathrm{PR}]$ each $\left[\left(y_{i}^{n}\right)_{i}\right]$ is $C(K)$-complemented in L_{p} via projections $P_{n}=\sum_{m} y_{m}^{n *}(x) y_{m}^{n}$. Passing to a subsequence and using a diagonal argument and perturbing we may assume there exists a blocking $\left(H_{m}^{n}\right)$ of $\left(h_{i}\right)$, in some order over all n, m, so that for all $n, m, \operatorname{supp}\left(y_{m}^{n}{ }^{*}\right)$, $\operatorname{supp}\left(y_{m}^{n}\right) \subseteq H_{m}^{n}$. This uses $y_{m}^{n} \xrightarrow{w} 0$ and $y_{m}^{n *} \xrightarrow{w} 0$ (in $L_{p^{\prime}}$) as $m \rightarrow \infty$ for each n. Set $P y=\sum_{n, m} y_{m}^{n *}(y) y_{m}^{n}$. We show P is bounded, hence a projection onto a copy of $\left(\sum \ell_{2}\right)_{p}$.

Let $y=\sum_{n, m} y(n, m), y(n, m) \in H_{n}^{m}$.

$$
\begin{aligned}
& \|P y\|=\left\|\sum_{n} \sum_{m} y_{m}^{n *}(y(n, m)) y_{m}^{n}\right\| \\
\sim & \left(\sum_{n}\left(\sum_{m}\left|y_{m}^{n *}(y(n, m))\right|^{2}\right)^{p / 2}\right)^{1 / p} .
\end{aligned}
$$

Now

$$
\left(\sum_{m}\left|y_{m}^{n *}(y(n, m))\right|^{2}\right)^{1 / 2} \sim\left\|P_{n} y(n)\right\| \leq C(K)\|y(n)\|
$$

where $y(n)=\sum_{m} y(n, m)$. So

$$
\|P y\| \leq \bar{C}(K)\left(\sum\left\|y_{n}\right\|^{p}\right)^{1 / p} \leq \overline{\bar{C}}(K)\|y\|
$$

Remarks. The proof of Proposition 22 above is due to Schechtman. He also proved by a different much more complicated argument that the proposition extends to $1<p<2$.

In [HOS] the proofs of all the results are also considered using Aldous' [Ald] theory of random measures. We are able to show if $\left(\sum \ell_{2}\right)_{p} \hookrightarrow X \subseteq L_{p}, 2<p<\infty$, then given $\varepsilon>0$ there exists $\left(\sum Y_{n}\right)_{p} \stackrel{1+\varepsilon}{\hookrightarrow} X, d\left(Y_{n}, \ell_{2}\right)<1+\varepsilon$ and moreover: there exist disjoint sets $A_{n} \subseteq[0,1]$ with for all $n, y \in Y_{n},\left\|\left.y\right|_{A_{n}}\right\| \geq\left(1-\varepsilon 2^{-n}\right)\|y\|$ and $\left[Y_{n}: n \in \mathbb{N}\right]$ is $(1+\varepsilon) C_{p}^{-1}$ complemented in L_{p} where C_{p} is the norm of a symmetric normalized Gaussian random variable in L_{p}. This is best possible by [GLR].

We can also deduce the [JO2] result: $X \subseteq L_{p}, 2<p<\infty$, and X is a quotient of a subspace of $\ell_{p} \oplus \ell_{2} \Rightarrow X \hookrightarrow \ell_{p} \oplus \ell_{2}$, by showing that such an X cannot contain $\left(\sum \ell_{2}\right)_{p}$.

We shall prove something more general, namely that $\left(\sum \ell_{q}\right)_{p}$ is not a quotient of a subspace of $\ell_{p} \oplus \ell_{q}$ when $p, q>1$ and $p \neq q$. By duality it will be enough to consider the case $p>q$. For elements $w=\left(w_{1}, w_{2}\right)$ of $\ell_{p} \oplus \ell_{q}$ we shall write $\|w\|_{p}=\left\|w_{1}\right\|_{p},\|w\|_{q}=\left\|w_{2}\right\|_{q}$ and $\|w\|=\|w\|_{p} \vee\|w\|_{q}$.

Lemma. Let $1<q<p<\infty$ and let W be a subspace of $\ell_{p} \oplus \ell_{q}$. Let $X=\ell_{q}$, let $Q: W \rightarrow X$ be a quotient mapping and let λ be a constant with $0<\lambda<\|Q\|^{-1}$. For every $M>0$ there is a finite co-dimensional subspace Y of X such that, for $w \in W$ we have

$$
\|w\| \leq M, Q(w) \in Y,\|Q(w)\|=1 \Longrightarrow\|w\|_{q}>\lambda
$$

Proof. Suppose otherwise. We can find a normalized block basis $\left(x_{n}\right)$ in X and elements w_{n} of W with $\left\|w_{n}\right\| \leq M, Q\left(w_{n}\right)=x_{n}$ and $\left\|w_{n}\right\|_{q} \leq \lambda$. Taking a subsequence and perturbing slightly, we may suppose that $w_{n}=w+w_{n}^{\prime}$, where $\left(w_{n}^{\prime}\right)$ is a block basis in $\ell_{p} \oplus \ell_{q}$, satisfying $\left\|w_{n}^{\prime}\right\| \leq M,\left\|w_{n}^{\prime}\right\|_{q} \leq \lambda$.

Since $Q(w)=\mathrm{w}-\lim Q\left(w_{n}\right)=0$, we see that $Q\left(w_{n}^{\prime}\right)=x_{n}$. We may now estimate as follows using the fact that the w_{n}^{\prime} are disjointly supported:

$$
\left\|\sum_{n=1}^{N} w_{n}^{\prime}\right\|=\left(\sum_{n=1}^{N}\left\|w_{n}^{\prime}\right\|_{p}^{p}\right)^{1 / p} \vee\left(\sum_{n=1}^{N}\left\|w_{n}^{\prime}\right\|_{q}^{q}\right)^{1 / q} \leq N^{1 / p} M \vee N^{1 / q} \lambda
$$

Since the x_{n} are normalized blocks in $X=\ell_{q}$ we have

$$
N^{1 / q}=\left\|\sum_{n=1}^{N} x_{n}\right\| \leq\|Q\|\left\|\sum_{n=1}^{N} w_{n}^{\prime}\right\| \leq M\|Q\| N^{1 / p} \vee \lambda\|Q\| N^{1 / q} .
$$

Since $\lambda\|Q\|<1$, this is impossible once N is large enough.
Proposition 23. If $1<q<p<\infty$ then $\left(\sum \ell_{q}\right)_{p}$ is not a quotient of a subspace of $\ell_{p} \oplus \ell_{q}$.
Proof. Suppose, if possible, that there exists a quotient operator

$$
\ell_{p} \oplus \ell_{q} \supseteq Z \xrightarrow{\mathrm{Q}} X=\left(\bigoplus_{n \in \mathbb{N}} X_{n}\right)_{p}
$$

where $X_{n}=\ell_{q}$ for all n. Let K be a constant such that $T\left[K B_{Z}\right] \supseteq B_{X}$, let λ be fixed with $0<\lambda<\|Q\|^{-1}$, choose a natural number m with $m^{1 / q-1 / p}>K \lambda^{-1}$, and set $M=2 K m^{1 / p}$.

Applying the lemma, we find, for each n, a finite co-dimensional subspace Y_{n} of X_{n} such that

$$
\begin{equation*}
z \in M B_{Z}, Q(z) \in Y_{n}, \| Q\left(z\|=1 \Longrightarrow\| z \|_{q}>\lambda\right. \tag{2}
\end{equation*}
$$

For each n, let $\left(e_{i}^{(n)}\right)$ be a sequence in Y_{n}, 1-equivalent to the unit vector basis of ℓ_{q}. For each m-tuple $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathbb{N}^{m}$, let $z(\mathbf{i}) \in Z$ be chosen with

$$
Q\left(z(\mathbf{i})=e_{i_{1}}^{(1)}+e_{i_{2}}^{(2)}+\cdots+e_{i_{m}}^{(m)},\right.
$$

and $\|z(\mathbf{i})\| \leq K m^{1 / p}$.

Taking subsequences in each co-ordinate, we may suppose that the following weak limits exist in Z

$$
\begin{aligned}
z\left(i_{1}, i_{2}, \ldots, i_{m-1}\right) & =\mathrm{w}-\lim _{i_{m} \rightarrow \infty} z\left(i_{1}, i_{2}, \ldots, i_{m}\right) \\
& \vdots \\
z\left(i_{1}, i_{2}, \ldots, i_{j}\right) & =\mathrm{w}-\lim _{i_{j+1} \rightarrow \infty} z\left(i_{1}, i_{2}, \ldots, i_{j+1}\right) \\
& \vdots \\
z\left(i_{1}\right) & =\mathrm{w}-\lim _{i_{2} \rightarrow \infty} z\left(i_{1}, i_{2}\right)
\end{aligned}
$$

Notice that, for all j and all $i_{1}, i_{2}, \ldots, i_{j}$, the following hold:

$$
\begin{aligned}
Q\left(z\left(i_{1}, \ldots, i_{j}\right)\right. & =e_{i_{1}}^{(1)}+\cdots+e_{i_{j}}^{(j)} \\
\left\|z\left(i_{1}, \ldots, i_{j}\right)\right\| & \leq K m^{1 / p} \\
\left\|z\left(i_{1}, \ldots, i_{j}\right)-z\left(i_{1}, \ldots, i_{j-1}\right)\right\| & \leq 2 K m^{1 / p}=M
\end{aligned}
$$

Since $Q\left(z\left(i_{1}, \ldots, i_{j}\right)-z\left(i_{1}, \ldots, i_{j-1}\right)\right)=e_{i_{j}}^{(j)} \in S_{Y_{j}}$ it must be that

$$
\begin{equation*}
\left\|z\left(i_{1}, \ldots, i_{j}\right)-z\left(i_{1}, \ldots, i_{j-1}\right)\right\|_{q}>\lambda, \quad[\text { by }(2)] \tag{3}
\end{equation*}
$$

We shall now choose recursively some special i_{j} in such a way that $\left\|z\left(i_{1}, \ldots, i_{j}\right)\right\|_{q}>\lambda j^{1 / q}$ for all j. Start with $i_{1}=1$; since $\left\|z\left(i_{1}\right)\right\| \leq M$ and $Q\left(z\left(i_{1}\right)\right)=e_{i_{1}}^{(1)}$ we certainly have $\left\|z\left(i_{1}\right)\right\|_{q}>\lambda$ by 2 . Since $z\left(i_{1}, k\right)-z\left(i_{1}\right) \rightarrow 0$ weakly we can choose i_{2} such that $z\left(i_{1}, i_{2}\right)-z\left(i_{1}\right)$ is essentially disjoint from $z\left(i_{1}\right)$. More precisely, because of 3 , we can ensure that

$$
\left\|z\left(i_{1}, i_{2}\right)\right\|_{q}=\left\|z\left(i_{1}\right)+\left(z\left(i_{1}, i_{2}\right)-z\left(i_{1}\right)\right)\right\|_{q}>\left(\lambda^{q}+\lambda^{q}\right)^{1 / q}=\lambda 2^{1 / q} .
$$

Continuing in this way, we can indeed choose i_{3}, \ldots, i_{m} in such a way that

$$
\left\|z\left(i_{1}, \ldots, i_{j}\right)\right\|_{q} \geq \lambda j^{1 / q}
$$

However, for $j=m$ this yields

$$
\lambda m^{1 / q} \leq K m^{1 / p}
$$

contradicting our initial choice of m.
Remark. The proof we have just given actually establishes the following quantitative result: if Y is a quotient of a subspace of $\ell_{p} \oplus \ell_{q}$ then the Banach-Mazur distance $d\left(Y,\left(\bigoplus_{j=1}^{m} \ell_{q}\right)_{p}\right)$ is at least $m^{|1 / q-1 / p|}$.

We can also obtain some asymptotic results. First we recall the relevant definitions

$$
\operatorname{cof}(X)=\{Y \subseteq X: Y \text { is of finite co-dimension in } X\}
$$

Definition. [MMT] Let $\left(e_{i}\right)_{1}^{n}$ be a normalized monotone basis. $\left(e_{i}\right) \in\{X\}_{n}$, the $n^{\text {th }}$ asymptotic structure of X, if the following holds;

$$
\begin{aligned}
\forall \varepsilon>0 & \forall X_{1} \in \operatorname{cof}(X) \exists x_{1} \in S_{X_{1}} \\
& \forall X_{2} \in \operatorname{cof}(X) \exists x_{2} \in S_{X_{2}} \\
& \cdots \\
\forall & \\
\text { with } & d_{b}\left(\left(x_{i}\right)_{1}^{n},\left(e_{i}\right)_{1}^{n}\right)<1+\varepsilon
\end{aligned}
$$

The latter means that for some $A B<1+\varepsilon$ for all $\left(a_{i}\right)_{1}^{n} \subseteq \mathbb{R}$,

$$
A^{-1}\left\|\sum_{1}^{n} a_{i} e_{i}\right\| \leq\left\|\sum_{1}^{n} a_{i} x_{i}\right\| \leq B\left\|\sum_{1}^{n} a_{i} e_{i}\right\|
$$

i.e., $\left(x_{i}\right)_{1}^{n} \stackrel{1+\varepsilon}{\sim}\left(e_{i}\right)_{1}^{n} . d_{b}(\cdot)$ is the basis distance and is defined to be the minimum of such $A B$.

An alternate way of looking at this when X^{*} is separable is that $\{X\}_{n}$ is the smallest closed subset of $\left(\mathcal{M}_{n}, d_{b}(\cdot, \cdot)\right)$ satisfying: $\forall \varepsilon>0$ every weakly null tree (of length n) in S_{X} admits a branch $\left(x_{i}\right)_{1}^{n}$ with $d_{b}\left(\left(x_{i}\right)_{1}^{n},\{X\}_{n}\right)<1+\varepsilon$. Here \mathcal{M}_{n} is the set of normalized bases of length n. The metric on \mathcal{M}_{n} is actually $\log d_{b}(\cdot, \cdot)$ and \mathcal{M}_{n} is compact under this metric.

Definition. X is K-asymptotic ℓ_{p} if for all n and all $\left(e_{i}\right)_{1}^{n} \in\{X\}_{n},\left(e_{i}\right)_{1}^{n}$ is K-equivalent to the unit vector basis of ℓ_{p}^{n}.

The [KP], [JO1] results yield for $X \subseteq L_{p}, 2<p<\infty$

- X is asymptotic $\ell_{p} \Rightarrow X \hookrightarrow \ell_{p}\left(\right.$ since $\left.\ell_{2} \nrightarrow X\right)$
- X is asymptotic $\ell_{2} \Rightarrow X \hookrightarrow \ell_{2}\left(\right.$ since $\left.\ell_{p} \nrightarrow X\right)$.

Definition. X is asymptotically $\ell_{p} \oplus \ell_{2}$ if $\exists K \forall n \forall\left(e_{i}\right)_{1}^{n} \in\{X\}_{n} \exists\left(w_{i}\right)_{1}^{n}$ with

$$
\left\|\sum_{1}^{n} a_{i} e_{i}\right\| \stackrel{K}{\sim}\left(\sum_{1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \vee\left(\sum_{1}^{n} w_{i}^{2} a_{i}^{2}\right)^{1 / 2}
$$

This just says that for some K every weakly null tree of n-levels in S_{X} admits a branch K-equivalent to a normalized block basis of $\ell_{p} \oplus \ell_{2}$.

Proposition 24. Let $X \subseteq L_{p}, 2<p<\infty$. X is asymptotically $\ell_{p} \oplus \ell_{2}$ iff $X \hookrightarrow \ell_{p} \oplus \ell_{2}$.
This follows easily from our results by showing that $\left(\sum \ell_{2}\right)_{p}$ is not asymptotically $\ell_{p} \oplus \ell_{2}$.
Problem. Let $X \subseteq L_{p}, p>2$. Give an intrinsic characterization of when $X \hookrightarrow\left(\sum \ell_{2}\right)_{p}$.

In light of the [JO2] $\ell_{p} \oplus \ell_{2}$ quotient result (see paragraph 7.1 above) we ask the following. Problem 25. Let $X \subseteq L_{p}(2<p<\infty)$. If X is a quotient of $\left(\sum \ell_{2}\right)_{p}$ does X embed into $\left(\sum \ell_{2}\right)_{p}$?

Extensive study has been made of the \mathcal{L}_{p} spaces, i.e., the complemented subspaces of L_{p} which are not isomorphic to ℓ_{2} (see e.g., $[\mathrm{LP}]$ and $[\mathrm{LR}]$). In particular there are uncountably many such spaces $[\mathrm{BRS}]$ and even infinitely many which embed into $\left(\sum \ell_{2}\right)_{p}[\mathrm{~S} 1]$. Thus it seems that a deeper study of the index in $[\mathrm{BRS}]$ will be needed for further progress. However some things, which we now recall, are known.

Theorem 26. [P] If Y is complemented in ℓ_{p} then Y is isomorphic to ℓ_{p} (Proposition 10).
Theorem 27. [JZ] If Y is a \mathcal{L}_{p} subspace of ℓ_{p} then Y is isomorphic to ℓ_{p}.
Theorem 28. [EW] If Y is complemented in $\ell_{p} \oplus \ell_{2}$ then Y is isomorphic to ℓ_{p}, ℓ_{2} or $\ell_{p} \oplus \ell_{2}$.
Theorem 29. [O] If Y is complemented in $\left(\sum \ell_{2}\right)_{p}$ then Y is isomorphic to $\ell_{p}, \ell_{2}, \ell_{p} \oplus \ell_{2}$ or $\left(\sum \ell_{2}\right)_{p}$.

We recall that X_{p} is the \mathcal{L}_{p} discovered by H. Rosenthal [R]. For $p>2, X_{p}$ may be defined to be the subspace of $\ell_{p} \oplus \ell_{2}$ spanned by $\left(e_{i}+w_{i} f_{i}\right)$, where $\left(e_{i}\right)$ and $\left(f_{i}\right)$ are the unit vector bases of ℓ_{p} and ℓ_{2}, respectively, and where $w_{i} \rightarrow 0$ with $\sum w_{i}^{2 p / p-2}=\infty$. Since $\ell_{p} \oplus \ell_{2}$ embeds into X_{p}, the subspaces of X_{p} and of $\ell_{p} \oplus \ell_{2}$ are (up to isomorphism) the same. For $1<p<2$ the space X_{p} is defined to be the dual of $X_{p^{\prime}}$ where $1 / p+1 / p^{\prime}=1$. When restricted to $\mathcal{L}_{p^{\prime}}$-spaces, the results of this paper lead to a dichotomy valid for $1<p<\infty$.

Proposition 30. Let Y be a \mathcal{L}_{p}-space $(1<p<\infty)$. Either Y is isomorphic to a complemented subspace of X_{p} or Y has a complemented subspace isomorphic to $\left(\sum \ell_{2}\right)_{p}$.

Proof. For $p>2$ it is shown in [JO2] that a \mathcal{L}_{p}-space which embeds in $\ell_{p} \oplus \ell_{2}$ embeds complementedly in X_{p}. Combining this with the main theorem of the present paper gives what we want for $p>2$. When $1<p<2$, the space X_{p} is defined to be the dual of $X_{p^{\prime}}$ and so a simple duality argument extends the result to the full range $1<p<\infty$.

It remains a challenging problem to understand more deeply the structure of the $\mathcal{L}_{p^{-}}$ subspaces of X_{p} and $\ell_{p} \oplus \ell_{2}$.

Theorem 31. [JO2] If Y is a \mathcal{L}_{p} subspace of $\ell_{p} \oplus \ell_{2}$ (or X_{p}), $2<p<\infty$, and Y has an unconditional basis then Y is isomorphic to $\ell_{p}, \ell_{p} \oplus \ell_{2}$ or X_{p}.

It is known [JRZ] that every \mathcal{L}_{p} space has a basis but it remains open if it has an unconditional basis.

Theorem 32. [JO2] If Y is a \mathcal{L}_{p} subspace of $\ell_{p} \oplus \ell_{2}(1<p<2)$ with an unconditional basis then Y is isomorphic to ℓ_{p} or $\ell_{p} \oplus \ell_{2}$.

So the main open problem for small \mathcal{L}_{p} spaces is to overcome the unconditional basis requirement of 31 and 32 .

Problem 33. (a) Let X be a \mathcal{L}_{p} subspace of $\ell_{p} \oplus \ell_{2}(2<p<\infty)$. Is X isomorphic to ℓ_{p}, $\ell_{p} \oplus \ell_{2}$ or X_{p} ?
(b) Let X be a \mathcal{L}_{p} subspace of $\ell_{p} \oplus \ell_{2}(1<p<\infty)$. Is X isomorphic to ℓ_{p} or $\ell_{p} \oplus \ell_{2}$?

References

[Ald] D. Aldous, Subspaces of L ${ }^{1}$, via random measures, Trans. Amer. Math. Soc. 267 (2) (1981), 445-463.
[AO] D. Alspach and E. Odell, L_{p} spaces, Handbook of the geometry of Banach spaces, Vol.I, 123-159, North-Holland, Amsterdam, 2001.
[AK] F. Albiac and N.J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006.
[BRS] J. Bourgain, H.P. Rosenthal, and G. Schechtman, An ordinal L ${ }^{p}$-index for Banach spaces, with application to complemented subspaces of L^{p}, Ann. of Math. 114 (2) (1981), 193-228.
[Bu1] D.L. Burkholder, Martingales and singular integrals in Banach spaces, Handbook of the geometry of Banach spaces, Vl.I, 233-269, North-Holland, Amsterdam, 2001.
[Bu2] D.L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19-42.
[BDG] D. L. Burkholder, B.J. Davis, and R.F. Gundy, Integral inequalities for convex functions of operators on martingales, Proc. of the 6 -th Berkeley Symp. on Math. Stat. and Probl. Vol. 2 (1972), 223-240.
[D] J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Mathematics, SpringerVerlag, 1984.
[EW] I.S. Edelstein and P. Wojtaszczyk, On projections and unconditional bases in direct sums of Banach spaces, Studia Math. 56 (1976), no. 3, 263-276.
[FHHSPZ] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucia, J. Pelant, and V. Zizler, Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics, Springer-Verlag, New York, 2001, x+451pp.
[GLR] Y. Gordon, D. R. Lewis and J. R. Retherford, Banach ideals of operators with applications, J. Functional Analysis 14 (1973), 85-129.
[HOS] R. Haydon, E. Odell, and Th. Schlumprecht, Small subspaces of L_{p}, preprint.
[Jo] W.B. Johnson, On quotients of L_{p} which are quotients of ℓ_{p}, Compositio Math. 34 (1977), 69-89.
[JMS] W.B. Johnson, B. Maurey, and G. Schechtman, Weakly null sequences in L_{1}, J. Amer. Math. Soc. 20 (2007), 25-36.
[JMST] W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 19 (217) (1979), v+298.
[JO1] W.B. Johnson and E. Odell, Subspaces of L_{p} which embed into ℓ_{p}, Compositio Math. 28 (1974), 37-49.
[JO2] W.B. Johnson and E. Odell, Subspaces and quotients of $\ell_{p} \oplus \ell_{2}$ and X_{p}, Acta Math. 147 (1981), 117-147.
[JRZ] W.B. Johnson, H.P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506.
[JZ] W.B. Johnson and M. Zippin, On subspaces of quotients of $\left(\sum G_{n}\right)_{\ell_{p}}$ and $\left(\sum G_{n}\right)_{c_{0}}$, Israel J. Math. 13 (1972), 311-316.
[KP] M.I. Kadets and A. Pełczyński, Bases lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Math. 21 (1961/1962), 161-176.
[KW] N.J. Kalton and D. Werner, Property (M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178.
[KM] J.L. Krivine and B. Maurey, Espaces de Banach stables, Israel J. Math. 39 (4) (1981), 273-295.
[LP] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p} spaces and their applications, Studia Math. 29 (1968), 275-321.
[LR] J. Lindenstrauss and H.P. Rosenthal, The \mathcal{L}_{p} spaces, Israel J. Math. 7 (1969), 325-349.
[LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer-Verlag, New York, 1977.
[LT2] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269.
[Ma] D.A. Martin, Borel determinancy, Annals of Math. 102 (1975), 363-371.
[MMT] B. Maurey, V.D. Milman, and N. Tomzczak-Jaegermann, Asymptotic infinite dimensional theory of Banach spaces, Oper. Theory: Adv. Appl. 77 (1994), 149-175.
[O] E. Odell, On complemented subspaces of $\left(\sum \ell_{2}\right)_{\ell_{p}}$, Israel J. Math. 23 (3-4) (1976), 353-367.
[OS] E. Odell and Th. Schlumprecht, Trees and branches in Banach spaces, Trans. A.M.S. 354 (2002), 4085-4108.
[P] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
[PR] A. Pełczyński and H. Rosenthal, Localization techniques in L^{p} spaces, Studia Math. 52 (1974/75), 263-289.
[R] H.P. Rosenthal, On the subspaces of $L^{p}(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303.
[S1] G. Schechtman, Examples of \mathcal{L}_{p} spaces $(1<p \neq 2<\infty)$, Israel J. Math. 22 (1975), 138-147.
[S2] G. Schechtman, A remark on unconditional basic sequences in $L_{p}(1<p<\infty)$, Israel J. Math. 19 (1974), 220-224.

