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Abstract

Neural networks present big popularity and success in many fields. The large train-
ing time process problem is a very important task nowadays. In this paper, a new
approach to get over this issue based on reducing dataset size is proposed. Two
algorithms covering two different shape notions are shown and experimental results
are given.
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1 Introduction and background

Reducing time in the training process in Machine Learning algorithms is a
vivid area nowadays. It is on the basis of many current tools as the use of
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Contrastive Divergence in Restricted Boltzmann Machines or even in the mo-
tivation for the use of Convolutional Neural Networks [6]. Many of the efforts
have the aim of reducing the dimensionality of the data, as the classic Prin-
cipal Component Analysis method [7]. In this paper, a different approach is
proposed. The first key idea is that close point data provide similar infor-
mation in the training process and therefore, training time can be reduced
by removing some of such similar data without losing accuracy. In order to
achieve such size reduction, the dataset is embedded in a metric space and
a new pooling strategy based on proximity graphs density is proposed. The
second key in this paper is based on the α-shape of the point cloud [1]. We
show that such subset of points has vital information for training a neural net.
In this paper, the Hausdorff distance is considered to measure the distance be-
tween sets in Rn with the Euclidean metric and a fully connected feedforward
multilayer perceptron is used as the Machine Learning tool.

Let G be an undirected graph, V (G) the set of vertices and E(G) the
set of edges 5 . Let X ⊂ Rn be a point cloud, ε ∈ R and (X, d) a metric
space. An ε-distance proximity graph G(X, ε) is the graph whose vertices are
V (G) = X and edges E(G) = {(x, y)|x, y ∈ X , d(x, y) ≤ ε}. Let x ∈ X be
a sample point. x is called α-extreme if there exists an open ball of radius
1
α

, B 1
α
, such that x lies on the boundary and B 1

α
contains all the points of

X. Finding such α-extreme uses Delaunay triangulations [3], but a detailed
description goes beyond the scope of this paper. Let X, Y ⊂ Rn two non-
emtpy point clouds endowed with the same metric. Hausdorff distance is
defined by dH(X, Y ) = max{supx∈Xinfy∈Y d(x, y), supy∈Y infx∈Xd(x, y)}.

A neural network (NN) [5] is a massively parallel distributed processor
made up of simple processing units that has a natural propensity for storing
experiential knowledge and making it available for use. NNs can be described
as hierarchical directed weighted graphs which nodes are called neurons. These
neurons are distributed in layers. NNs receive an input which is processed
across neurons by functions predefined, called activation functions, giving a
numerical output. When NNs are just forward oriented and nodes between
layers are fully connected, they are called fully connected feedforward NNs 6 .
A neural network learning algorithm modifies NN parameters in order to op-
timize a cost function. Stochastic gradient descent is a NN learning algorithm
that performs a parameter update following the opposite direction of the gra-
dient.

5 The reader is assumed to be familiar with graph theory.
6 For a further reading about neural networks [4].



(a) Cloud of the dataset (b) NN output (c) NN classification

Fig. 1. Neural Networks as a surface fitting problem

2 Stating the problem

Given a dataset X ⊂ Rn × {0, . . . , k} with 0, . . . , k the classification labels,
after training a neural network with X, Rn is splited in k regions according
to the classification of the points. In such way, a manifold frontier of the pre-
diction of a neural network is obtained as a process of local search, based on
minimizing a given cost function (two dimension example in Fig. 1). Training
such neural nets usually takes a long time, due mainly to the large amount of
points of the dataset. In this paper, we wonder about the possibility of reduc-
ing the number of points of the dataset without losing accuracy. The chosen
subset of significant points is called a representative subset of the dataset.
The underlying idea on the selection of representative dataset is that close
points provide similar information to the learning process and, in some sense,
such information is redundant and therefore, some points of the dataset can
be removed. This way, the remaining points keep the same information and
the obtained neural nets are comparable as classification tools.

3 Algorithms for computing representative datasets

Two algorithms for obtaining representative datasets are proposed.

Proximity Graph Based Algorithm (PGA) reduces the dataset size
using proximity as a criterion for deleting points. Given a point cloud dataset
X ⊂ Rn (e.g. Fig. 2a). A distance d ∈ R is a hyperparameter used to con-
struct a proximity graph G(X, d) which summarizes information about density
and neighborhood of X. In order to find clusters, a community detection al-
gorithm is applied to G(X, d), encapsulating agglomeration notion in a set of
communities (e.g. Fig. 2b). Finally, site percolation is performed, following
any strategy as random sampling in each community or any stochastic process
as deletion of high degree nodes. The result of the algorithm is a simplified



(a) Original dataset (b) Set of communities (c) Simplified dataset

Fig. 2. Application of the proximity graph algorithm

(a) Original dataset
(3.000 points)

(b) PGA dataset (1497
points)

(c) α-extremes dataset
(867 points)

Fig. 3. Original dataset and representative datasets

version of X keeping its shape, as we see in Fig. 2c. In order to avoid getting
an imbalanced dataset, the algorithm is applied for each class. The complexity
of the algorithm depends on the different choices of community algorithm and
sampling method.

Algorithm 1 Proximity graph representative dataset (PGA)

Input: Point cloud dataset X ⊂ Rn × {1 . . . k} and d ∈ R
Output: A point cloud X̂ ⊂ X.

for i = 1 to k do

Gi(Xi, d) where X ⊃ Xi ⊂ Rn × {i}
ci = communityDetection(Gi)

X̂i = sampling(ci)

X̂ =
⋃k
i=1 X̂i



The second approach is based on the concept of α-shape. In order to
capture the intuitive notion of shape, we propose α-extreme representative
dataset as a sufficient dataset for a neural network. An efficient algorithm to
obtain α-shapes was firstly introduced in [3]. These α-shapes can be obtained
with a O(n · log n) algorithm with O(n) space in two dimensions and with

O(n| k−1
2

|) space in k dimensions. To compute α-extremes, firstly Delaunay
triangulation is determined and after that, α-extremes are easily obtained.

Algorithm 2 α-extreme representative dataset

Input: Point cloud dataset X ⊂ Rn × {1 . . . k}
Output: A point cloud X̂ ⊂ X.

do Compute α-shapes (e.g. alphahull R package)

X̂ = α-extremes

4 Experiments

In this section, some experimental results are presented using proximity graph
based algorithm and α-extremes subset. A fully connected feedforward neural
network was used. It has 100 neurons in the unique hidden layer, hyperbolic
tangent activation function and softmax output activation function. It was
trained with stochastic gradient descent with mini batch size 50, 100 epoch
iterations and momentum parameter 0.9. This neural network was trained
with three different datasets: an original dataset, a simplified version of the
original (which is output of the PGA) and the α-extreme dataset. Fig. 3 shows
these datasets. Hausdorff distance between the original dataset and graph
based algorithm output dataset is 0.3227921 and, Hausdorff distance between
the original dataset and α-extremes dataset is 0.6030393. Furthermore, mean
square error is 0.16 for each neural network predicting over the original dataset.
Accuracy predicting, i.e. percentage of well classified points, over the original
dataset is, for the three neural networks, on the range (95− 96%).

5 Conclusions and Future Work

Reducing dataset size can be a nice approach in order to understand NNs
stability and functionality. We have shown two representative datasets styles
that cover different shape notions. Furthermore, we also show that NNs can
do nice predictions using simplified datasets. Future work would consist on:
(1) formalizing that representative datasets can be a good strategy to achieve
optimization and accuracy; (2) the extension to higher dimensions, e.g., image



(a) Original pred. (b) PGAD dataset (c) α-extremes dataset

Fig. 4. Neural network predictions

classification problems (it could be done using the notion of α-complex which
extends the one of α-shape to higher dimension [2]).
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