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Abstract

We prove that for pairwise co-prime numbers k1,..., kg > 2 there does not exist
any infinite set of positive integers A such that the representation function r4(n) =
#{(ay,...,aq) € AY: kyay + ...+ kgaq = n} becomes constant for n large enough.
This result is a particular case of our main theorem, which poses a further step
towards answering a question of Sarkozy and Sés and widely extends a previous
result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math.
Society 2009).
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1 Introduction

Let A C Ny be an infinite set of positive integers and kq,..., ks € N. We are
interested in studying the behaviour of the representation function

ra(n) =ran; ki, ... ky) = #{(a1,...,aq) € A*: kay + ...+ kqag = n}.

More specifically, Sarkozy and Sés [5, Problem 7.1.] asked for which values of
ki, ..., kq one can find an infinite set A such that the function r4(n; k1, . .., kq)
becomes constant for n large enough. For the base case, it is clear that
ra4(n;1,1) is odd whenever n = 2a for some a € A and even otherwise, so that
the representation function cannot become constant. For k > 2, Moser [3]
constructed a set A such that r4(n;1,k) = 1 for all n € Ny. The study of
bivariate linear forms was completely settled by Cilleruelo and the first au-
thor [1] by showing that the only cases in which r4(n; ki, k) may become
constant are those considered by Moser.

The multivariate case is less well studied. If ged(ky, ..., kq) > 1, then one
trivially observes that r4(n; k1, ..., kq) cannot become constant. The only
non-trivial case studied so far was the following: for m > 1 dividing d, Rué [4]
showed that if in the d-tuple of coefficients (k1, .. ., kq) each element is repeated
m times, then there cannot exists an infinite set A such that r4(n; ky, ..., kq)
becomes constant for n large enough.

Here we provide a step beyond this result and show that whenever the set
of coefficients is pairwise co-prime, then there does not exists any infinite set
A for which r(n; k1, ..., kq) is constant for n large enough. This is a particular
case of our main theorem, which covers a wide extension of this situation:

Theorem 1.1 Let ky,...,kq > 2 be given for which there exist pairwise co-
prime integers qi, ..., q¢m > 2 and b(i,j) € {0,1}, such that for each i there
exists at least one j such that b;; = 1. Let k; = qi’(i’l) . --q%i’m) for all 1 <
i <d. Then, for every infinite set A C Ng ra(n;ky,...,kq) is not a constant
function for n large enough.

Our method starts with some ideas introduced in [1] dealing with generat-
ing functions and cyclotomic polyomials. The main new idea in this paper is
to use an inductive argument in order to be able to show that a certain mul-
tivariate recurrence relation is not possible to be satisfied unless some initial
condition is trivial.



2 Tools

The language in which we will approach this problem goes back to [2]. Let
fa(z) = > ,c4 2" denote the generating function associated with A and ob-
serve that f4 defines an analytic function in the complex disc |z| < 1. By a
simple argument over the generating functions, it is easy to verify that the
existence of a set A for which r4(n; k1, ..., ks) becomes constant would imply
that P
fa(*) - fa(zM) = 1 Ezl

for some polynomial P with positive integer coefficients satisfying P(1) #
0. To simplify notation, we will generally consider the d-th power of this
equations, that is for F|(z) = f4(z) we have

P(z)
(1—z2)¢
Observe that F'(z) also defines an analytic function in the complex disk |z| < 1.

(1 F(h)-o () =

Let us define the cyclotomic polynomial of order n as

©,(2) = [ (= =€) € 2]

£€Pn

where ¢, = {€ € C: ¢ = 1, k = 0mod n} denotes the set of primitive roots
of order n € N. Note that ®,(z) € Z[z], that is it has integer coefficients.
Cyclotomic polynomials have the property of being irreducible over Z[z] and
therefore it follows that for any polynomial P(z) € Z[z] and n € N there exists
a unique integer s, € Ny such that

(2) Po(z) = P(2) @, (2)
is a polynomial in Z[z| satisfying P, (§) # 0 for all £ € ¢,.

This factoring out of the roots is not guaranteed to hold for arbitrary
functions F, that is it is possible that for a given n € N there does not exist
any r, € R satisfying

lir% F(z)®,™(z) ¢ {0, £o0}

z—r
for all £ € ¢,,. One can easily verify however, that if such a number does exist,
it is uniquely defined. Now let ¢1,..., ¢, be fixed co-prime integers. Given
some j = (J1,...,Jm) € NJ* we will use the following short-hand notation

; (2) == @qilmq%n(z), ¢J(z) = Qi g (2), 87 7= Syn g ANAT] =T

m



3 Proof Outline

The main strategy of the proof is to show that for a hypothetical function
F(z) = f4(z) satisfying Equation (1) the exponents rj would have to exist
for all j € Ni* — at least with respect to some appropriate limit — and fulfil
certain relations between them. The goal will be to find a contradiction in
these relations, negating the possibility of such a function and therefore such
a set A existing in the first place.

We establish the existence and relations of the values r; for any kq, ..., ks €
N and later derive a contradiction from these relations in the specific case
stated in Theorem 1.1. For any a,b € Ny, j = (j1,...,Jm) € Nj" and b =
(by,...,bn) € N, we will use the notation

acb=max{a—0,0} and job=(5160b,...,5m O bn).

Furthermore, whenever we write some limit lim, ,, F'(2), where £ is a unit
root, we are referring to lim,,; F'(z€) where 0 < z < 1 as F will always be
analytic in the disc |z| < 1.

Proposition 3.1 Let ky,..., kg € N and q1,...,¢n > 2 pairwise co-prime
integers for which there exist b(i, j) € Ng such that k; = qlf(i’l) e q%i’m) for all
1 <i <d. Furthermore, let P € Z|z] be a polynomial satisfying P(1) # 0 and
F :C — C a function analytic in the disc |z| < 1 such that

Pi(z)

F(Zf) . F(ohe) = —2L

Q () F(EM) = =

Then for all 3 € N' there exist integers 75 € Ny such that

(4) lim F(2)®. 7 (2) ¢ {0, 400}
z—E J

for any & € gbj. Writing b; = (b(i,1),...,b(i,m)) for 1 < i < m, these
exponents satisfy the relations

(5) ro=—1 and rjop +...+7jp, =ds; foralljeNg \ {0}

and we have r; = —1modd for all i € Ng'.

We will now use this proposition to prove Theorem 1.1 by contradiction.
We start by introducing some necessary notation and definitions. We write
c; = (c(i,1),...,c(i,m)) and for any 1 < ¢ < m we use the notation

Se={1<i<d:c(i,f) =0} and S;={1,...,d}\ S,



Definition 3.2 For m > 1, we define an m-structure to be any set of values
{vj € Q}jeNOm for which there exist ¢i,...,cq € NJ* and {uj € Z}jeNgL\{o} SO
that the values satisfy the relation

ot Ve, = Uy forallj e Ni* \ {0}.

Uj oCy
Additionally, we define the following:

(i) We say that an m-structure is reqular if we have that the corresponding
vectors c1,...,¢q € {0,1}™\ {0} for all 1 < i < d as well as Sy, # () for

all 1 </ <m.
(ii)) We say that an m-structure is homogeneous outside t = (t1,...,t,) €
m

ov if the corresponding vectors {uj € Z}j€N6n\{0} satisfy uj =0 for all
JENPN\[0,t1] x ... x [0,t,].

By finding an appropriate substructure that reduces the value of m, one
can now inductively prove the following statement.

Lemma 3.3 A regular m-structure that is homogeneous outside t = (ty, ..., t,,) €
o satisfies v; = 0 for all 1€ Ni* \ [0,41] x ... x [0,1,,].

Using this result, we can proof our main statement.

Proof. [Proof of Theorem 1.1] We write F\(z) = fa(2)¢. Recall that the
existence of a set A for which r4(n; k1, . . ., kq) is a constant function for n large
enough would imply the existence of some polynomial P(z) € Z[z| satisfying

P(1) # 0 such that
Pi(z2)
(1—2)%
Using Proposition 3.1 we see that if a such a function F'(z) were to exist, then
the values {rj}j_ym together with by,... b, and {sj would define
0

P(e)- o F(M) =

Fevg (o)
an m-structure. By the requirements of the theorem we have b; € {0, 1} and
since kq,...,kq > 2 we have b; # 0. We may also assume that S, # ) for all
1 < ¢ < d as otherwise there exists some ¢’ such that ¢ | k; for all 1 < <d,
in which case the representation function clearly cannot become constant, so
that this m-structure would be regular. It would also be homogeneous outside
some appropriate t € N as P(z) is a polynomial and hence 55 = 0 only for
finitely many j € Ng'. Finally, since r; = —1mod d for all i € Ng', this would
contradict the statement of Lemma 3.3, proving Theorem 1.1. O



4 Concluding Remarks

We have shown that under very general conditions for the coefficients ky, . .., kq
the representation function r4(n;kq,...,ks) cannot be constant for n suffi-
ciently large. However, there are cases that our method does not cover. This
includes those cases where at least one of the k; is equal to 1. The first case
that we are not able to study is the representation function r4(n;1,1,2).

On the other side, let us point out that Moser’s construction [3] can be
trivially generalized to the case where k; = k'~! for some integer value k > 2.
In view of our results and this construction, we state the following conjecture:

Conjecture 4.1 There exists some infinite set of positive integers A such that
ra(n; ki, ..., kq) is constant for n large enough if and only if, up to permutation
of the indices, (ky, ..., k) = (1,k, k% ... k%1), for some k > 2.
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