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Abstract

We prove that for pairwise co-prime numbers k1, . . . , kd ≥ 2 there does not exist
any infinite set of positive integers A such that the representation function rA(n) =
#{(a1, . . . , ad) ∈ Ad : k1a1 + . . . + kdad = n} becomes constant for n large enough.
This result is a particular case of our main theorem, which poses a further step
towards answering a question of Sárközy and Sós and widely extends a previous
result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math.
Society 2009).
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1 Introduction

Let A ⊆ N0 be an infinite set of positive integers and k1, . . . , kd ∈ N. We are
interested in studying the behaviour of the representation function

rA(n) = rA(n; k1, . . . , kd) = #{(a1, . . . , ad) ∈ Ad : k1a1 + . . .+ kdad = n}.

More specifically, Sárközy and Sós [5, Problem 7.1.] asked for which values of
k1, . . . , kd one can find an infinite set A such that the function rA(n; k1, . . . , kd)
becomes constant for n large enough. For the base case, it is clear that
rA(n; 1, 1) is odd whenever n = 2a for some a ∈ A and even otherwise, so that
the representation function cannot become constant. For k ≥ 2, Moser [3]
constructed a set A such that rA(n; 1, k) = 1 for all n ∈ N0. The study of
bivariate linear forms was completely settled by Cilleruelo and the first au-
thor [1] by showing that the only cases in which rA(n; k1, k2) may become
constant are those considered by Moser.

The multivariate case is less well studied. If gcd(k1, . . . , kd) > 1, then one
trivially observes that rA(n; k1, . . . , kd) cannot become constant. The only
non-trivial case studied so far was the following: for m > 1 dividing d, Rué [4]
showed that if in the d-tuple of coefficients (k1, . . . , kd) each element is repeated
m times, then there cannot exists an infinite set A such that rA(n; k1, . . . , kd)
becomes constant for n large enough.

Here we provide a step beyond this result and show that whenever the set
of coefficients is pairwise co-prime, then there does not exists any infinite set
A for which r(n; k1, . . . , kd) is constant for n large enough. This is a particular
case of our main theorem, which covers a wide extension of this situation:

Theorem 1.1 Let k1, . . . , kd ≥ 2 be given for which there exist pairwise co-
prime integers q1, . . . , qm ≥ 2 and b(i, j) ∈ {0, 1}, such that for each i there

exists at least one j such that bi,j = 1. Let ki = q
b(i,1)
1 · · · qb(i,m)

m for all 1 ≤
i ≤ d. Then, for every infinite set A ⊆ N0 rA(n; k1, . . . , kd) is not a constant
function for n large enough.

Our method starts with some ideas introduced in [1] dealing with generat-
ing functions and cyclotomic polyomials. The main new idea in this paper is
to use an inductive argument in order to be able to show that a certain mul-
tivariate recurrence relation is not possible to be satisfied unless some initial
condition is trivial.



2 Tools

The language in which we will approach this problem goes back to [2]. Let
fA(z) =

∑
a∈A z

a denote the generating function associated with A and ob-
serve that fA defines an analytic function in the complex disc |z| < 1. By a
simple argument over the generating functions, it is easy to verify that the
existence of a set A for which rA(n; k1, . . . , kd) becomes constant would imply
that

fA(zk1) · · · fA(zkd) =
P (z)

1− z
for some polynomial P with positive integer coefficients satisfying P (1) 6=
0. To simplify notation, we will generally consider the d-th power of this
equations, that is for F (z) = fdA(z) we have

F (zk1) · · ·F (zkd) =
P d(z)

(1− z)d
.(1)

Observe that F (z) also defines an analytic function in the complex disk |z| < 1.

Let us define the cyclotomic polynomial of order n as

Φn(z) =
∏
ξ∈φn

(z − ξ) ∈ Z[z]

where φn = {ξ ∈ C : ξk = 1, k ≡ 0 modn} denotes the set of primitive roots
of order n ∈ N. Note that Φn(z) ∈ Z[z], that is it has integer coefficients.
Cyclotomic polynomials have the property of being irreducible over Z[z] and
therefore it follows that for any polynomial P (z) ∈ Z[z] and n ∈ N there exists
a unique integer sn ∈ N0 such that

Pn(z) := P (z) Φ−snn (z)(2)

is a polynomial in Z[z] satisfying Pn(ξ) 6= 0 for all ξ ∈ φn.

This factoring out of the roots is not guaranteed to hold for arbitrary
functions F , that is it is possible that for a given n ∈ N there does not exist
any rn ∈ R satisfying

lim
z→ξ

F (z) Φ−rnn (z) /∈ {0,±∞}

for all ξ ∈ φn. One can easily verify however, that if such a number does exist,
it is uniquely defined. Now let q1, . . . , qm be fixed co-prime integers. Given
some j = (j1, . . . , jm) ∈ Nm

0 we will use the following short-hand notation

Φj(z) := Φ
q
j1
1 ···q

jm
m

(z), φj(z) := φ
q
j1
1 ···q

jm
m

(z), sj := s
q
j1
1 ···q

jm
m

and rj := r
q
j1
1 ···q

jm
m
.



3 Proof Outline

The main strategy of the proof is to show that for a hypothetical function
F (z) = fdA(z) satisfying Equation (1) the exponents rj would have to exist

for all j ∈ Nm
0 – at least with respect to some appropriate limit – and fulfil

certain relations between them. The goal will be to find a contradiction in
these relations, negating the possibility of such a function and therefore such
a set A existing in the first place.

We establish the existence and relations of the values rj for any k1, . . . , kd ∈
N and later derive a contradiction from these relations in the specific case
stated in Theorem 1.1. For any a, b ∈ N0, j = (j1, . . . , jm) ∈ Nm

0 and b =
(b1, . . . , bm) ∈ Nm

0 , we will use the notation

a	 b = max{a− b, 0} and j	 b = (j1 	 b1, . . . , jm 	 bm).

Furthermore, whenever we write some limit limz→ξ F (z), where ξ is a unit
root, we are referring to limz→1 F (z ξ) where 0 ≤ z < 1 as F will always be
analytic in the disc |z| < 1.

Proposition 3.1 Let k1, . . . , kd ∈ N and q1, . . . , qm ≥ 2 pairwise co-prime
integers for which there exist b(i, j) ∈ N0 such that ki = q

b(i,1)
1 · · · qb(i,m)

m for all
1 ≤ i ≤ d. Furthermore, let P ∈ Z[z] be a polynomial satisfying P (1) 6= 0 and
F : C→ C a function analytic in the disc |z| < 1 such that

F (zk1) · · ·F (zkd) =
P d(z)

(1− z)d
.(3)

Then for all j ∈ Nm
0 there exist integers rj ∈ N0 such that

lim
z→ξ

F (z) Φ
−rj
j

(z) /∈ {0,±∞}(4)

for any ξ ∈ φj. Writing bi = (b(i, 1), . . . , b(i,m)) for 1 ≤ i ≤ m, these

exponents satisfy the relations

r0 = −1 and rj	b1
+ . . .+ rj	bd

= dsj for all j ∈ Nm
0 \ {0}(5)

and we have ri ≡ −1 mod d for all i ∈ Nm
0 .

We will now use this proposition to prove Theorem 1.1 by contradiction.
We start by introducing some necessary notation and definitions. We write
ci = (c(i, 1), . . . , c(i,m)) and for any 1 ≤ ` ≤ m we use the notation

S` = {1 ≤ i ≤ d : c(i, `) = 0} and S ′` = {1, . . . , d} \ S`.



Definition 3.2 For m ≥ 1, we define an m-structure to be any set of values
{vj ∈ Q}j∈Nm

0
for which there exist c1, . . . , cd ∈ Nm

0 and {uj ∈ Z}j∈Nm
0 \{0}

so

that the values satisfy the relation

vj	c1
+ . . .+ vj	cd

= uj for all j ∈ Nm
0 \ {0}.

Additionally, we define the following:

(i) We say that an m-structure is regular if we have that the corresponding
vectors c1, . . . , cd ∈ {0, 1}m \ {0} for all 1 ≤ i ≤ d as well as S` 6= ∅ for
all 1 ≤ ` ≤ m.

(ii) We say that an m-structure is homogeneous outside t = (t1, . . . , tm) ∈
Nm

0 if the corresponding vectors {uj ∈ Z}j∈Nm
0 \{0}

satisfy uj = 0 for all

j ∈ Nm
0 \ [0, t1]× . . .× [0, tm].

By finding an appropriate substructure that reduces the value of m, one
can now inductively prove the following statement.

Lemma 3.3 A regular m-structure that is homogeneous outside t = (t1, . . . , tm) ∈
Nm

0 satisfies vi = 0 for all i ∈ Nm
0 \ [0, t1]× . . .× [0, tm].

Using this result, we can proof our main statement.

Proof. [Proof of Theorem 1.1] We write F (z) = fA(z)d. Recall that the
existence of a setA for which rA(n; k1, . . . , kd) is a constant function for n large
enough would imply the existence of some polynomial P (z) ∈ Z[z] satisfying
P (1) 6= 0 such that

F (zk1) · · ·F (zkd) =
P d(z)

(1− z)d
.

Using Proposition 3.1 we see that if a such a function F (z) were to exist, then
the values {ri}i∈Nm

0
together with b1, . . . ,bm and {sj}j∈Nm

0 \{0}
would define

an m-structure. By the requirements of the theorem we have bi ∈ {0, 1}m and
since k1, . . . , kd ≥ 2 we have bi 6= 0. We may also assume that S` 6= ∅ for all
1 ≤ ` ≤ d as otherwise there exists some `′ such that q`′ | ki for all 1 ≤ i ≤ d,
in which case the representation function clearly cannot become constant, so
that this m-structure would be regular. It would also be homogeneous outside
some appropriate t ∈ Nm

0 as P (z) is a polynomial and hence sj 6= 0 only for

finitely many j ∈ Nm
0 . Finally, since ri ≡ −1 mod d for all i ∈ Nm

0 , this would
contradict the statement of Lemma 3.3, proving Theorem 1.1. 2



4 Concluding Remarks

We have shown that under very general conditions for the coefficients k1, . . . , kd
the representation function rA(n; k1, . . . , kd) cannot be constant for n suffi-
ciently large. However, there are cases that our method does not cover. This
includes those cases where at least one of the ki is equal to 1. The first case
that we are not able to study is the representation function rA(n; 1, 1, 2).

On the other side, let us point out that Moser’s construction [3] can be
trivially generalized to the case where ki = ki−1 for some integer value k ≥ 2.
In view of our results and this construction, we state the following conjecture:

Conjecture 4.1 There exists some infinite set of positive integers A such that
rA(n; k1, . . . , kd) is constant for n large enough if and only if, up to permutation
of the indices, (k1, . . . , kd) = (1, k, k2, . . . , kd−1), for some k ≥ 2.
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