On a problem of Sárközy and Sós for multivariate linear forms

Juanjo Ruéa ${ }^{\text {a,1,2 }}$ and Christoph Spiegel ${ }^{\text {a, } 1,3}$
${ }^{\text {a }}$ Universitat Politècnica de Catalunya, Dept. of Mathematics, Barcelona, Spain, and Barcelona Graduate School of Mathematics, Barcelona, Spain

Abstract

We prove that for pairwise co-prime numbers $k_{1}, \ldots, k_{d} \geq 2$ there does not exist any infinite set of positive integers \mathcal{A} such that the representation function $r_{\mathcal{A}}(n)=$ $\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\ldots+k_{d} a_{d}=n\right\}$ becomes constant for n large enough. This result is a particular case of our main theorem, which poses a further step towards answering a question of Sárközy and Sós and widely extends a previous result of Cilleruelo and Rué for bivariate linear forms (Bull. of the London Math. Society 2009).

Keywords: Additive combinatorics, representation functions, additive basis

[^0]
1 Introduction

Let $\mathcal{A} \subseteq \mathbb{N}_{0}$ be an infinite set of positive integers and $k_{1}, \ldots, k_{d} \in \mathbb{N}$. We are interested in studying the behaviour of the representation function

$$
r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\ldots+k_{d} a_{d}=n\right\} .
$$

More specifically, Sárközy and Sós [5, Problem 7.1.] asked for which values of k_{1}, \ldots, k_{d} one can find an infinite set \mathcal{A} such that the function $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ becomes constant for n large enough. For the base case, it is clear that $r_{\mathcal{A}}(n ; 1,1)$ is odd whenever $n=2 a$ for some $a \in \mathcal{A}$ and even otherwise, so that the representation function cannot become constant. For $k \geq 2$, Moser [3] constructed a set \mathcal{A} such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \in \mathbb{N}_{0}$. The study of bivariate linear forms was completely settled by Cilleruelo and the first author [1] by showing that the only cases in which $r_{\mathcal{A}}\left(n ; k_{1}, k_{2}\right)$ may become constant are those considered by Moser.

The multivariate case is less well studied. If $\operatorname{gcd}\left(k_{1}, \ldots, k_{d}\right)>1$, then one trivially observes that $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ cannot become constant. The only non-trivial case studied so far was the following: for $m>1$ dividing d, Rué [4] showed that if in the d-tuple of coefficients $\left(k_{1}, \ldots, k_{d}\right)$ each element is repeated m times, then there cannot exists an infinite set \mathcal{A} such that $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ becomes constant for n large enough.

Here we provide a step beyond this result and show that whenever the set of coefficients is pairwise co-prime, then there does not exists any infinite set \mathcal{A} for which $r\left(n ; k_{1}, \ldots, k_{d}\right)$ is constant for n large enough. This is a particular case of our main theorem, which covers a wide extension of this situation:

Theorem 1.1 Let $k_{1}, \ldots, k_{d} \geq 2$ be given for which there exist pairwise coprime integers $q_{1}, \ldots, q_{m} \geq 2$ and $b(i, j) \in\{0,1\}$, such that for each i there exists at least one j such that $b_{i, j}=1$. Let $k_{i}=q_{1}^{b(i, 1)} \cdots q_{m}^{b(i, m)}$ for all $1 \leq$ $i \leq d$. Then, for every infinite set $\mathcal{A} \subseteq \mathbb{N}_{0} r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ is not a constant function for n large enough.

Our method starts with some ideas introduced in [1] dealing with generating functions and cyclotomic polyomials. The main new idea in this paper is to use an inductive argument in order to be able to show that a certain multivariate recurrence relation is not possible to be satisfied unless some initial condition is trivial.

2 Tools

The language in which we will approach this problem goes back to [2]. Let $f_{\mathcal{A}}(z)=\sum_{a \in \mathcal{A}} z^{a}$ denote the generating function associated with \mathcal{A} and observe that $f_{\mathcal{A}}$ defines an analytic function in the complex disc $|z|<1$. By a simple argument over the generating functions, it is easy to verify that the existence of a set \mathcal{A} for which $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ becomes constant would imply that

$$
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z}
$$

for some polynomial P with positive integer coefficients satisfying $P(1) \neq$ 0 . To simplify notation, we will generally consider the d-th power of this equations, that is for $F(z)=f_{\mathcal{A}}^{d}(z)$ we have

$$
\begin{equation*}
F\left(z^{k_{1}}\right) \cdots F\left(z^{k_{d}}\right)=\frac{P^{d}(z)}{(1-z)^{d}} . \tag{1}
\end{equation*}
$$

Observe that $F(z)$ also defines an analytic function in the complex disk $|z|<1$.
Let us define the cyclotomic polynomial of order n as

$$
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \in \mathbb{Z}[z]
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1, k \equiv 0 \bmod n\right\}$ denotes the set of primitive roots of order $n \in \mathbb{N}$. Note that $\Phi_{n}(z) \in \mathbb{Z}[z]$, that is it has integer coefficients. Cyclotomic polynomials have the property of being irreducible over $\mathbb{Z}[z]$ and therefore it follows that for any polynomial $P(z) \in \mathbb{Z}[z]$ and $n \in \mathbb{N}$ there exists a unique integer $s_{n} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
P_{n}(z):=P(z) \Phi_{n}^{-s_{n}}(z) \tag{2}
\end{equation*}
$$

is a polynomial in $\mathbb{Z}[z]$ satisfying $P_{n}(\xi) \neq 0$ for all $\xi \in \phi_{n}$.
This factoring out of the roots is not guaranteed to hold for arbitrary functions F, that is it is possible that for a given $n \in \mathbb{N}$ there does not exist any $r_{n} \in \mathbb{R}$ satisfying

$$
\lim _{z \rightarrow \xi} F(z) \Phi_{n}^{-r_{n}}(z) \notin\{0, \pm \infty\}
$$

for all $\xi \in \phi_{n}$. One can easily verify however, that if such a number does exist, it is uniquely defined. Now let q_{1}, \ldots, q_{m} be fixed co-prime integers. Given some $\mathbf{j}=\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{N}_{0}^{m}$ we will use the following short-hand notation

$$
\Phi_{\mathbf{j}}(z):=\Phi_{q_{1}^{j_{1} \ldots q_{m}^{j_{m}}}}(z), \phi_{\mathbf{j}}(z):=\phi_{q_{1}^{j_{1} \ldots q_{m}^{j_{m}}}}(z), s_{\mathbf{j}}:=s_{q_{1}^{j_{1} \ldots q_{m}^{j_{m}}}} \text { and } r_{\mathbf{j}}:=r_{q_{1}^{j_{1} \ldots q_{m}^{j j_{m}}} .}
$$

3 Proof Outline

The main strategy of the proof is to show that for a hypothetical function $F(z)=f_{\mathcal{A}}^{d}(z)$ satisfying Equation (1) the exponents $r_{\mathbf{j}}$ would have to exist for all $\mathbf{j} \in \mathbb{N}_{0}^{m}$ - at least with respect to some appropriate limit - and fulfil certain relations between them. The goal will be to find a contradiction in these relations, negating the possibility of such a function and therefore such a set \mathcal{A} existing in the first place.

We establish the existence and relations of the values $r_{\mathbf{j}}$ for any $k_{1}, \ldots, k_{d} \in$ \mathbb{N} and later derive a contradiction from these relations in the specific case stated in Theorem 1.1. For any $a, b \in \mathbb{N}_{0}, \mathbf{j}=\left(j_{1}, \ldots, j_{m}\right) \in \mathbb{N}_{0}^{m}$ and $\mathbf{b}=$ $\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{N}_{0}^{m}$, we will use the notation

$$
a \ominus b=\max \{a-b, 0\} \quad \text { and } \quad \mathbf{j} \ominus \mathbf{b}=\left(j_{1} \ominus b_{1}, \ldots, j_{m} \ominus b_{m}\right) .
$$

Furthermore, whenever we write some $\operatorname{limit}^{\lim } z_{z \rightarrow \xi} F(z)$, where ξ is a unit root, we are referring to $\lim _{z \rightarrow 1} F(z \xi)$ where $0 \leq z<1$ as F will always be analytic in the disc $|z|<1$.
Proposition 3.1 Let $k_{1}, \ldots, k_{d} \in \mathbb{N}$ and $q_{1}, \ldots, q_{m} \geq 2$ pairwise co-prime integers for which there exist $b(i, j) \in \mathbb{N}_{0}$ such that $k_{i}=q_{1}^{b(i, 1)} \cdots q_{m}^{b(i, m)}$ for all $1 \leq i \leq d$. Furthermore, let $P \in \mathbb{Z}[z]$ be a polynomial satisfying $P(1) \neq 0$ and $F: \mathbb{C} \rightarrow \mathbb{C}$ a function analytic in the disc $|z|<1$ such that

$$
\begin{equation*}
F\left(z^{k_{1}}\right) \cdots F\left(z^{k_{d}}\right)=\frac{P^{d}(z)}{(1-z)^{d}} \tag{3}
\end{equation*}
$$

Then for all $\boldsymbol{j} \in \mathbb{N}_{0}^{m}$ there exist integers $r_{\boldsymbol{j}} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
\lim _{z \rightarrow \xi} F(z) \Phi_{\boldsymbol{j}}^{-r} \boldsymbol{j}_{(z) \notin\{0, \pm \infty\}} \tag{4}
\end{equation*}
$$

for any $\xi \in \phi_{\boldsymbol{j}}$. Writing $\boldsymbol{b}_{i}=(b(i, 1), \ldots, b(i, m))$ for $1 \leq i \leq m$, these exponents satisfy the relations

$$
\begin{equation*}
r_{\mathbf{0}}=-1 \quad \text { and } \quad r_{\boldsymbol{j} \ominus \boldsymbol{b}_{1}}+\ldots+r_{\boldsymbol{j}} \boldsymbol{b}_{d}=d s_{\boldsymbol{j}} \quad \text { for all } \boldsymbol{j} \in \mathbb{N}_{0}^{m} \backslash\{\mathbf{0}\} \tag{5}
\end{equation*}
$$

and we have $r_{i} \equiv-1 \bmod d$ for all $\boldsymbol{i} \in \mathbb{N}_{0}^{m}$.

We will now use this proposition to prove Theorem 1.1 by contradiction. We start by introducing some necessary notation and definitions. We write $\mathbf{c}_{i}=(c(i, 1), \ldots, c(i, m))$ and for any $1 \leq \ell \leq m$ we use the notation

$$
S_{\ell}=\{1 \leq i \leq d: c(i, \ell)=0\} \quad \text { and } \quad S_{\ell}^{\prime}=\{1, \ldots, d\} \backslash S_{\ell} .
$$

Definition 3.2 For $m \geq 1$, we define an m-structure to be any set of values $\left\{v_{\mathbf{j}} \in \mathbb{Q}\right\}_{\mathbf{j} \in \mathbb{N}_{0}^{m}}$ for which there exist $\mathbf{c}_{1}, \ldots, \mathbf{c}_{d} \in \mathbb{N}_{0}^{m}$ and $\left\{u_{\mathbf{j}} \in \mathbb{Z}\right\}_{\mathbf{j} \in \mathbb{N}_{0}^{m} \backslash\{\mathbf{0}\}}$ so that the values satisfy the relation

$$
v_{\mathbf{j} \ominus \mathbf{c}_{1}}+\ldots+v_{\mathbf{j} \notin \mathbf{c}_{d}}=u_{\mathbf{j}} \quad \text { for all } \mathbf{j} \in \mathbb{N}_{0}^{m} \backslash\{\mathbf{0}\} .
$$

Additionally, we define the following:
(i) We say that an m-structure is regular if we have that the corresponding vectors $\mathbf{c}_{1}, \ldots, \mathbf{c}_{d} \in\{0,1\}^{m} \backslash\{\mathbf{0}\}$ for all $1 \leq i \leq d$ as well as $S_{\ell} \neq \emptyset$ for all $1 \leq \ell \leq m$.
(ii) We say that an m-structure is homogeneous outside $\boldsymbol{t}=\left(t_{1}, \ldots, t_{m}\right) \in$ \mathbb{N}_{0}^{m} if the corresponding vectors $\left\{u_{\mathbf{j}} \in \mathbb{Z}\right\}_{\mathbf{j} \in \mathbb{N}_{0}^{m} \backslash\{\mathbf{0}\}}$ satisfy $u_{\mathbf{j}}=0$ for all $\mathbf{j} \in \mathbb{N}_{0}^{m} \backslash\left[0, t_{1}\right] \times \ldots \times\left[0, t_{m}\right]$.

By finding an appropriate substructure that reduces the value of m, one can now inductively prove the following statement.

Lemma 3.3 A regular m-structure that is homogeneous outside $\boldsymbol{t}=\left(t_{1}, \ldots, t_{m}\right) \in$ \mathbb{N}_{0}^{m} satisfies $v_{\boldsymbol{i}}=0$ for all $\boldsymbol{i} \in \mathbb{N}_{0}^{m} \backslash\left[0, t_{1}\right] \times \ldots \times\left[0, t_{m}\right]$.

Using this result, we can proof our main statement.
Proof. [Proof of Theorem 1.1] We write $F(z)=f_{\mathcal{A}}(z)^{d}$. Recall that the existence of a set \mathcal{A} for which $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ is a constant function for n large enough would imply the existence of some polynomial $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$ such that

$$
F\left(z^{k_{1}}\right) \cdots F\left(z^{k_{d}}\right)=\frac{P^{d}(z)}{(1-z)^{d}}
$$

Using Proposition 3.1 we see that if a such a function $F(z)$ were to exist, then the values $\left\{r_{\mathbf{i}}\right\}_{\mathbf{i} \in \mathbb{N}_{0}^{m}}$ together with $\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}$ and $\left\{s_{\mathbf{j}}\right\}_{\mathbf{j} \in \mathbb{N}_{0}^{m} \backslash\{\mathbf{0}\}}$ would define an m-structure. By the requirements of the theorem we have $\mathbf{b}_{i} \in\{0,1\}^{m}$ and since $k_{1}, \ldots, k_{d} \geq 2$ we have $\mathbf{b}_{i} \neq \mathbf{0}$. We may also assume that $S_{\ell} \neq \emptyset$ for all $1 \leq \ell \leq d$ as otherwise there exists some ℓ^{\prime} such that $q_{\ell^{\prime}} \mid k_{i}$ for all $1 \leq i \leq d$, in which case the representation function clearly cannot become constant, so that this m-structure would be regular. It would also be homogeneous outside some appropriate $\mathbf{t} \in \mathbb{N}_{0}^{m}$ as $P(z)$ is a polynomial and hence $s_{\mathbf{j}} \neq 0$ only for finitely many $\mathbf{j} \in \mathbb{N}_{0}^{m}$. Finally, since $r_{\mathbf{i}} \equiv-1 \bmod d$ for all $\mathbf{i} \in \mathbb{N}_{0}^{m}$, this would contradict the statement of Lemma 3.3, proving Theorem 1.1.

4 Concluding Remarks

We have shown that under very general conditions for the coefficients k_{1}, \ldots, k_{d} the representation function $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ cannot be constant for n sufficiently large. However, there are cases that our method does not cover. This includes those cases where at least one of the k_{i} is equal to 1 . The first case that we are not able to study is the representation function $r_{\mathcal{A}}(n ; 1,1,2)$.

On the other side, let us point out that Moser's construction [3] can be trivially generalized to the case where $k_{i}=k^{i-1}$ for some integer value $k \geq 2$. In view of our results and this construction, we state the following conjecture:

Conjecture 4.1 There exists some infinite set of positive integers \mathcal{A} such that $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ is constant for n large enough if and only if, up to permutation of the indices, $\left(k_{1}, \ldots, k_{d}\right)=\left(1, k, k^{2}, \ldots, k^{d-1}\right)$, for some $k \geq 2$.

References

[1] J. Cilleruelo and J. Rué. On a question of Sárközy and Sós for bilinear forms. Bulletin of the London Mathematical Society, 41(2):274-280, 2009.
[2] G. Dirac. Note on a problem in additive number theory. Journal of the London Mathematical Society, 1(4):312-313, 1951.
[3] L. Moser. An application of generating series. Mathematics Magazine, 35(1):37-38, 1962.
[4] J. Rué. On polynomial representation functions for multilinear forms. European Journal of Combinatorics, 34(8):1429-1435, 2011.
[5] A. Sárközy and V. Sós. On additive representation functions. In The mathematics of Paul Erdős I, pages 129-150. Springer, 1997.

[^0]: ${ }^{1}$ Supported by the Spanish Ministerio de Economía y Competitividad projects MTM2014-54745-P, MTM2017-82166-P and the María de Maetzu research grant MDM-2014-0445 (BGSMath). C. S. is also suppported by an FPI grant under the project projects MTM2014-54745-P.
 ${ }_{2}$ Email:juan.jose.rue@upc.edu
 ${ }^{3}$ Email:christoph.spiegel@upc.edu

