1 Introduction

A group K \textit{virtually algebraically fibers} if there is a finite index subgroup K' admitting a surjective homomorphism $K' \to \mathbb{Z}$ with finitely generated kernel. This notion arises from topology: a 3-manifold M is virtually a surface bundle over a circle precisely when the fundamental group of M virtually algebraically fibers (see the result of Stallings [10]). A \textit{Right-Angled Coxeter group} (RACG) K is a group given by a presentation of the form

$$\langle x_1, x_2, \ldots, x_n \mid x_i^2, [x_i, x_j]^{\sigma_{ij}} : 1 \leq i < j \leq n \rangle$$

where $\sigma_{ij} \in \{0, 1\}$ for each $1 \leq i < j \leq n$. One can encode this information with a graph Γ_K whose vertices are the generators x_1, \ldots, x_n and $x_i \sim x_j$ if
and only if $\sigma_{ij} = 1$. Conversely given a graph G on n vertices, we will denote the corresponding RACG by $K(G)$.

Random Coxeter groups have been of heightened recent interest, see for instance Charney and Farber [4], Davis and Kahle [5], and Behrstock, Falgas-Ravry, Hagen, and Susse [1].

Recently, Jankiewicz, Norin, and Wise [8] developed a framework to show virtual fibering of a RACG using Betsvina-Brady Morse theory [3] and ultimately translated the virtual fibering problem for K into a combinatorial game on the graph Γ_K. The method was successful on many special cases and also allowed them to construct examples where Betsvina-Brady cannot be applied to find a virtual algebraic fibering.

A natural question to consider is whether this approach is successful for a ‘generic’ RACG, i.e., given a probability measure μ_n on the set of RACG’s of rank at most n, is it true that a.a.s. as $n \to \infty$, a group sampled from μ_n virtually algebraically fibers. This question is also considered in [8], specifically they consider sampling Γ_K from the Erdős-Rényi random graph model $G(n, p)$ and they prove the following result:

Theorem 1.1 (Jankiewicz-Norin-Wise) Assume that
\[
\frac{(2\log n)^{\frac{1}{2}} + \omega(n)}{n^2} \leq p < 1 - \omega(n^{-2}),
\]
and let G be sampled from $G(n, p)$. Then, asymptotically almost surely, the associated Right-Angled Coxeter group $K(G)$ virtually algebraically fibers.

In this paper we extend this result to the smallest possible range of p, in fact we prove a hitting time type result. Namely we show that as soon as Γ_K has minimum degree 2 then a.a.s. K virtually algebraically fibers.

Theorem 1.2 Let $G_0, G_1, \ldots, G_{\binom{n}{2}}$ denote the random graph graph process on n vertices where $G_{i+1} = G_i \cup \{e_i\}$ and e_i is picked uniformly at random from the non-edges of G_i. Let $T = \min\{t : \delta(G_t) = 2\}$, then a.a.s. the random graph process is such that $K(G_m)$ virtually algebraically fibers if and only if $T \leq m < \binom{n}{2}$. In particular for any p satisfying
\[
\frac{\log n + \log \log n + \omega(n)}{n} \leq p < 1 - \omega(n^{-2})
\]
and $G \ G(n, p)$, the random Right-Angled Coxeter group $K(G)$ virtually algebraically fibers a.a.s.
2 The combinatorial game

In this section we follow the definitions in [8] to present the combinatorial game introduced in [8] used to construct virtual algebraic fiberings of Right-Angled Coxeter groups.

Definition 2.1 Let $G = (V,E)$ be a graph. We say that a subset $S \subseteq V$ is a legal state if both S and $V \setminus S$ are non-empty connected subsets of V, i.e., the corresponding induced graphs are connected and non-empty.

Definition 2.2 For each $v \in V$, a move at v is a set $M_v \subseteq V$ satisfying the following:
- $v \in M_v$.
- $N(v) \cap M_v = \emptyset$.

Let $\mathcal{M} = \{M_v : v \in V\}$ denote a set of moves.

We will identify subsets of V as elements of \mathbb{Z}_2^V in the obvious way. Thus each state and each move correspond to elements of \mathbb{Z}_2^V and we will think of moves acting on states via group multiplication (or addition in this case).

Definition 2.3 For a graph G, a state $S \subseteq V(G)$, and a set of moves $\mathcal{M} = \{M_v : v \in V\}$, the triple (G,S,\mathcal{M}) is a legal system if for any element $g \in \langle \mathcal{M} \rangle$, $g(S)$ is a legal state of G.

Theorem 2.4 ([8]) Let (G,S,\mathcal{M}) be a legal system, then the RACG $K(G)$ must virtually algebraically fiber.

To elucidate the notion of a legal system, let us look at some toy examples (see Figure 2) and ask whether each of these graphs contains a legal system.

Example 2.5 Let $G = (V,E)$ be a graph with three vertices $V = \{v,u_1,u_2\}$ and two edges $E = \{\{v,u_1\},\{v,u_2\}\}$. We show that G has a legal system. Our initial legal state will be $S = \{u_1\}$. For our set of moves we choose
\[M_v = \{v\} \] (note that this is the only possible choice for the move at \(v \)), \[M_{u_1} = M_{u_2} = \{u_1, u_2\} \]. Then the group generated by the moves of the graph, written as a collection of sets, is \(\langle \mathcal{M} \rangle = \{\{v\}, \{u_1, u_2\}, \{v, u_1, u_2\}, \emptyset\} \). Hence, for any element \(g \in \langle \mathcal{M} \rangle \), \(g(S) \) is either a set of the form \(\{u_i\} \) or \(\{v, u_i\} \), for \(i = 1, 2 \), and in any case a legal state. Thus, \((G, S, \mathcal{M}) \) is a legal system.

The graph in Example 2.5 is unique in the sense that it is the only graph with a vertex of degree 1 on at least 3 vertices which contains a legal system.

Next, we look at an example of a graph without a legal system. We proceed by exhaustion.

Example 2.6 Let \(G \) be the bowtie graph on 4 vertices. Assume by contradiction that \((G, S, \mathcal{M}) \) is a legal system. Since \(v \) is connected to all other vertices in the graph, we must have \(M_v = \{v\} \). For the same reason, \(v \) cannot belong to any other move apart from \(M_v \). Hence, we can assume without loss of generality that \(v \notin S \). Since \(S \) is a connected subset of \(V \), we can again assume without loss of generality that \(S = \{u_1\} \) or \(S = \{u_1, u_2\} \).

In the latter case, \(M_{w_i} = \{u_1, u_2, w_i\} \) for \(i = 1, 2 \), because by the definition of a move, it must be the case that \(\{w_i\} \subseteq M_{w_i} \subseteq \{w_i, u_1, u_2\} \), and if \(u_1 \) or \(u_2 \) would not belong to \(M_{w_i} \), then \(M_{w_i}S \) would not be a legal state. But then the set \(\{w_1, w_2\} \in \langle \mathcal{M} \rangle \), and \(\{w_1, w_2\}S = \{w_1, w_2, u_1, u_2\} \) is not a legal state. In the former case, from similar consideration, it must be the case that \(M_{w_i} = \{w_i, u_1\} \) for \(i = 1, 2 \), but then again \(\{w_1, w_2\} \in \langle \mathcal{M} \rangle \), and \(\{w_1, w_2\}S = \{w_1, w_2, u_1\} \) is not a legal state.

3 **Quick note on method.**

The first ingredient of the proof is to pick the colour classes of vertices as the moves and to choose the starting set \(S \) uniformly at random (independently of the graph). This observation allows us already get close to the threshold but not all the way: for instance an obvious obstruction is that at the target density there will be bounded vertices of degree at most \(C \) with some probability bounded away from 0 and thus with some probability bounded away from 0 these will be isolated in \(S \).

The second ingredient then is to show that one can modify the original random selection of \(S \) and the moves to accommodate for the obstructions.

Finally, in order to prove a hitting time result, we show that any graph that deterministically satisfies certain pseudorandom properties must accept a legal system. The task then is to show that at the hitting time \(T \), \(G_T \) satisfies said pseudorandom properties with high probability.
References

