Iterated Sumsets and Olson’s Generalization of the Erdős-Ginzburg-Ziv Theorem

David J. Grynkiewicz

Department of Mathematical Sciences
University of Memphis
Memphis, TN 38152, USA

Abstract
Let $G \cong \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_r\mathbb{Z}$ be a finite abelian group with $m_1 | \ldots | m_r = \exp(G)$. The Kemperman Structure Theorem characterizes all subsets $A, B \subseteq G$ satisfying $|A + B| < |A| + |B|$ and has been extended to cover the case when $|A + B| \leq |A| + |B|$. Utilizing these results, we provide a precise structural description of all finite subsets $A \subseteq G$ with $|nA| \leq (|A| + 1)n - 3$ when $n \geq 3$ (also when G is infinite), in which case many of the pathological possibilities from the case $n = 2$ vanish, particularly for large $n \geq \exp(G) - 1$. The structural description is combined with other arguments to generalize a subsequence sum result of Olson asserting that a sequence S of terms from G having length $|S| \geq 2|G| - 1$ must either have every element of G representable as a sum of $|G|$-terms from S or else have all but $|G/H| - 2$ of its terms lying in a common H-coset for some $H \leq G$. We show that the much weaker hypothesis $|S| \geq |G| + \exp(G)$ suffices to obtain a nearly identical conclusion, where for the case H is trivial we must allow all but $|G/H| - 1$ terms of S to be from the same H-coset. The bound on $|S|$ is improved for several classes of groups G, yielding optimal lower bounds for $|S|$.

Keywords: zero-sum, sumset, subsequence sum, subsum, Partition Theorem, Knörrer’s Theorem, Kemperman Structure Theorem, n-fold sumset, iterated sumset, Olson, complete sequence, Erdős-Ginzburg-Ziv Theorem
1 Extended Abstract

Let \(G = \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_r\mathbb{Z} \) be a finite abelian group with \(m_1 \mid \ldots \mid m_r = \exp(G) \). Given subsets \(A, B \subseteq G \), we define their sumset

\[A + B = \{ a + b : a \in A, b \in B \}. \]

Let \(S \) be a sequence of terms from \(G \), let \(n \geq 0 \) be an integer, and let \(X \subseteq G \) be a subset. Then

- \(|S| \) denotes the length of \(S \),
- \(h(S) \) denotes the maximum multiplicity of a term in \(S \), and
- \(\Sigma_n(S) \) denotes all elements \(g \in G \) which can be expressed as the sum of an \(n \)-term subsequence of \(S \).

A classical result in Combinatorial Number Theory, helping spawn the study of zero-sum sequences, is the Erdős-Ginzburg-Ziv Theorem [1] [3] [8].

Theorem 1.1 (Erdős-Ginzburg-Ziv Theorem) Let \(G \) be a finite abelian group and let \(S \) be a sequence of terms from \(G \) of length \(|S| \geq 2|G| - 1 \). Then

\[0 \in \Sigma_{|G|}(S). \]

When \(G = \mathbb{Z}/n\mathbb{Z} \) is cyclic, a sequence consisting of entirely of 0’s and 1’s has a \(|G|\)-term zero-sum if and only if there is a \(|G|\)-term subsequence which is monochromatic (consisting entirely of 0’s or entirely of 1’s). In this way, the Erdős-Ginzburg-Ziv Theorem can be viewed as an algebraic generalization of the Pigeonhole Principle. Naturally, a sequence \(S \) having only one distinct term can be arbitrarily long and yet \(\Sigma_{|G|}(S) = \{0\} \), so it is not possible to replace 0 with an arbitrary group element \(g \in G \). More generally, if all terms from \(S \) come from a coset \(\alpha + H \) of a proper subgroup \(H \leq G \), then \(\Sigma_{|G|}(S) = H \), and so only elements from \(H \) can be represented as subsequence sums. Nonetheless, an old result of Olson [9], generalizing the case for cyclic groups of prime order completed by Mann [7], shows this to be the only restriction to extending the Erdős-Ginzburg-Ziv Theorem from sequences with sum 0 to those with arbitrary sum \(g \in G \).

Theorem 1.2 [9] Let \(G \) be a finite abelian group and let \(S \) be a sequence of terms from \(G \) of length \(|S| \geq 2|G| - 1 \). Suppose, for every \(H < G \) and \(\alpha \in G \), there are at least \(|G/H| - 1\) terms of \(S \) lying outside the coset \(\alpha + H \). Then \(\Sigma_{|G|}(S) = G \).

1 Email: diambri@hotmail.com
The bound $2|G| - 1$ was later improved to $|G| + D(G) - 1$ by Gao [2], where $D(G) \leq |G|$ is the Davenport constant, which is the minimal integer ℓ such that any sequence of terms from G with length ℓ must contain a nontrivial zero-sum subsequence. This was further improved to $|G| + d^*(G)$ [5], where $d^*(G) = \sum_{i=1}^{r}(m_i - 1)$. Neither of these bounds is tight in general, only being tight for a limited class of particular groups G.

We observe that the hypothesis that S have at least $|G/H| - 1$ terms lying outside any coset $\alpha + H$ reduces, in the case H is trivial, to the statement that the maximum multiplicity of S is at most $h(S) \leq |S| - |G| + 1$. By strengthening this hypothesis by one, so instead assuming $h(S) \leq |S| - |G|$, we are able to obtain optimal values for how long $|S|$ must be to represent all elements of G.

Theorem 1.3 Let G be a finite abelian group, let $n \geq 1$, and let S be a sequence of terms from G with $|S| = |G| + n$ and $h(S) \leq |S| - |G|$. Suppose, for every $H < G$ and $\alpha \in G$, there are at least $|G/H| - 1$ terms of S lying outside the coset $\alpha + H$. Then $\Sigma_{|G|}(S) = G$ whenever

1. $n \geq \exp(G)$, or
2. $n \geq \exp(G) - 1$ and $G \cong H \oplus C_{\exp(G)}$ with $|H|$ or $\exp(G)$ prime, or
3. $n \geq \frac{|G|}{p} - 1$ and G is cyclic, where p is the smallest prime divisor of $|G|$, or
4. $n \geq 1$ and either $\exp(G) \leq 3$, or $|G| < 12$, or $\exp(G) = 4$ with $|G| = 16$.

The Kemperman Structure Theorem characterizes all subsets $A, B \subseteq G$ satisfying $|A + B| < |A| + |B|$ [6] [3] and has been extended to cover the case when $|A + B| \leq |A| + |B|$ [4]. It is one of the few results giving a precise inverse result for sumsets in an arbitrary abelian group. As a main step for proving Theorem 1.3, we provide a precise structural description of all finite subsets $A \subseteq G$ with $|nA| \leq (|A| + 1)n - 3$ when $n \geq 3$ (also when G is infinite), where

$$nA = \underbrace{A + \ldots + A}_n$$

denotes the n-fold iterated sumset.

For the descriptions below, we say X is H-periodic if $H + X = X$, where $H \leq G$. This means X is a union of H-cosets. A set X is aperiodic if it is not H-periodic for any nontrivial subgroup $H \leq G$. Equivalently, the stabilizer group

$$H(X) = \{g \in G : g + X = X\} \leq G$$
is trivial. We say that $X = X_1 \cup X_0$ is an H-coset decomposition if X_1 and X_0 are each subsets of distinct H-cosets. We say $X = X_0 \cup \ldots \cup X_r$ is an H-coset progression decomposition if each A_i is contained in an H-coset with the sequence of H-cosets A_0, A_1, \ldots, A_r, forming an arithmetic progression modulo H. We say that $X = X_1 \cup X_0$ is an H-quasi-periodic decomposition if X_1 is H-periodic and X_0 is a non-empty subset of an H-coset.

In the case $|A| = 3$, there are numerous additional possibilities, with the structure given according to the following result.

Theorem 1.4 Let G be an abelian group, let $A \subseteq G$ be a subset with $\langle A - A \rangle = G$ and $|A| = 3$, and let $n \geq 3$ be an integer. Suppose

$$|nA| < \min\{|G|, (|A| + 1)n - 3\} = \min\{|G|, 4n - 3\}.$$

Then nA is aperiodic and one of the following holds.

(i) There is an arithmetic progression $P \subseteq G$ such that $A \subseteq P$ and $3 \leq |P| \leq 4$, in which case $|nA| = 2n + 1$, $|nA| = 3n$ or $|nA| = 3n - 1 = |G| - 1$.

(ii) There is an H-coset decomposition $A = A_1 \cup A_0$ with $\langle A_1 - A_1 \rangle = H \leq G$ a subgroup such that $2 \leq |H| \leq 3$, in which case $|nA| = 2n + 1$, $|nA| = 3n$ or $|nA| = 3n - 1 = |G| - 1$.

(iii) There is an H-coset decomposition $A = A_1 \cup A_0$ with $\langle A_0 - A_0 \rangle = H \leq G$ a subgroup such that either $|H| = 4$ and $|nA| = 4n - 5 = |G| - 1$, or else $|H| = |G/H| = 5$ and $|nA| = 4n - 4 = |G| - 1 = 24$.

(iv) $G \cong C_2 \oplus C_{\exp(G)}$ with $4 \mid \exp(G)$ and there is an H-coset decomposition $A = \{x, z\} \cup \{y\}$ with $\langle x - z \rangle = H$ such that $|G/H| = 2$, $2(y + z) = 4x$ and $|nA| = 4n - 5 = |G| - 1$.

(v) There is an arithmetic progression $P \subseteq G$ with $A \subseteq P$ such that either $|P| = 5$ and $|nA| = 4n - 5 = |G| - 1$ or $|nA| = 4n - 4 = |G| - 1$, or else $|P| = 6$, $|G| = 21$ and $|nA| = 4n - 4 = |G| - 1 = 20$.

(vi) G is cyclic, $8 \mid |G|$, $|nA| = 4n - 5 = |G| - 1$ and $A = \{0, 1, \frac{m}{2} - 1\}$ up to affine transformation.

The general description is then the following.

Theorem 1.5 Let G be a nontrivial abelian group, let $A \subseteq G$ be a finite subset with $\langle A - A \rangle = G$, and let $n \geq 3$ be an integer. Suppose nA is aperiodic and

$$|nA| < (|A| + 1)n - 3.$$

If $|A| = 3$, then A is given by one of the possibilities listed in Theorem 1.4. Otherwise, one of the following must hold.
There is an arithmetic progression \(P \subseteq G \) such that \(A \subseteq P \) and \(|P| \leq |A| + 1\), in which case \(|nA| = (|A| - 1)n + 1\), \(|nA| = |A|n\), \(|nA| = |A|n + 1\) or \(|nA| = |A|n - 1 = |G| - 1\).

(ii) There exist subgroups \(K_1, K_2, K \leq G \), with \(K_1 \cong K_2 \cong \mathbb{Z}/2\mathbb{Z} \) and \(K = K_1 \oplus K_2 \), and \(K\)-coset progression decomposition \(A = A_1 \cup \ldots \cup A_r \) such that \(A_1 \) is a \(K_1\)-coset, \(A_r \) is a \(K_2\)-coset, and all other \(A_i \) are \(K\)-cosets, in which case \(|nA| = |A|n\) or \(|nA| = |A|n - 1 = |G| - 1\).

(iii) There is an \(H\)-coset progression decomposition \(A = A_0 \cup A_1 \cup \ldots \cup A_r \) with \(H < G \) a finite, nontrivial, proper subgroup, \(r \geq 1 \) and \(\sum_{i=1}^{r} |A_i| = r|H| - \epsilon \) with \(\epsilon \in \{0, 1\} \). Moreover, \(nA_0 \) is an aperiodic subset with \(|nA_0| < \min\{|K|, (|A_0| + 1 - \epsilon)n - 3\}\) or \(|A_0| = 1\), where \(K = \langle A_0 - A_0 \rangle \leq H \), and one of the following also holds.

(a) \(nA = (nA \setminus nA_0) \cup nA_0 \) is an \(H\)-quasi-periodic decomposition and \(|nA| - |A|n = |nA_0| - |A_0|n + cn\).

(b) \(|H| = 2\), \(|A_0| = |A_r| = 1\) and \(r \geq 2\), in which case \(|nA| = |A|n\) or \(|nA| = |A|n - 1 = |G| - 1\).

(c) \(|A_0| = 1\) and \(|A_1| = |H| - 1\), in which case \(|nA| = |A|n\) or \(|nA| = |A|n - 1 = |G| - 1\).

While the above structural description is quite involved, it simplifies greatly by imposing some mild restrictions. For instance, when \(|A| > |G|/n\), we obtain the following as a corollary.

Corollary 1.6 Let \(G \) be a finite abelian group, let \(A \subseteq G \) be a nonempty subset with \(\langle A - A \rangle = G \), let \(n \geq 1 \) be an integer, let \(K = H(nA) \) and suppose \(n|A| > |G|\).

1. If \(n \geq \exp(G) \), then \(nA = G \).

2. If \(n = \exp(G) - 1 \) and \(nA \neq G \), then \(\exp(G) \) is composite, \(G = H_0 \oplus H_1 \oplus \ldots \oplus H_r \) with \(K < H_0 \) proper, \(r \geq 1 \) and \(H_i = \langle x_i \rangle \cong C_{\exp(G)} \) for all \(i \in [1, r] \) (thus \(G \) is non-cyclic),

\[
z + A + K = \bigcup_{j=0}^{r} (K + \sum_{i=0}^{j-1} H_i + \sum_{i=j+1}^{r} x_i) \quad \text{for some} \ z \in G,
\]

then

\[
|A|n \leq |G| + (\exp(G) - 1)|K| \leq \frac{p^{\exp(G)+\exp(G) - p - 1}|G|}{\exp(G)}, \quad \text{where} \ p \ \text{is the smallest prime divisor of} \ \exp(H_0), \ \text{and} \ |nA| = |G| - |H_0| + |K|.
\]
References

