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Two topics in computational algebra:.

e Solving zero—dimensional systems of multivariate polynomial
equations in the projective space P(W) = P(K"1+1) or affine space
V = K". We will consider only questions about the multiset of the
solutions.

e Determining the forms on W (resp. polynomial functions on V)
that decompose totally:as product of linear forms (resp. as
product of polynomials of degree 1).

These two topics are connected by duality.
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Both problems led first—rank mathematicians (Jacobi, Schldfli, Cayley,
Brill) of the XIXth century to compute dsym polynomials.



Homogenous setting

Let W = K"T1 with coordinate functions Xg, X1, ..., X;.
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The rows of A represent n points in P(W)
(ajo a1t 1 ag)
or n hyperplanes in P(W¥*)
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Non—homogeneous setting

In W = K"*+1 with coordinate functions Xy, X1, ..., Xr,

let A ~ K" be the affine space Xg =1 in P(W).
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The rows of A represent n points in A

(a’ila A;2, " 7a'iT)

or n affine hyperplanes of A (or the corresponding affine functions):

14 aj1t1 +---+a;tr =0



Diagonally symmetric polynomials (non—homogeneous setting)

DSym” (K) = k[A]®n

— polynomials in the entries of A invariants under row permutations.
This is the affine coordinate ring of: the symmetric product A™ /Gy,
which parametrizes:

e Mmultisets of n points of A.

e totally decomposable polynomials F'(t1,...,t,), of degree < n with
constant term 1.

@)
Coordinate free—presentation: 7%, ( . SNV> where V is the
N=0

underlying vector space of A.

(T M= symmetric tensors, a subspace of @"M

S"M= symmetric power, a quotient of ®"M )



Remarkable families of elements of DSyn7,

In DSym;], there exist
e monomial functions (symmetrizations of monomials).
e power sums po With o € N”

e clementary polynomials e, With o € N, 1 < |a|] < n. They are
defined by their generating function

Yeat® = | (1 4+ ajits + - + ajtr)
i=1



Homogeneous diagonally symmetric polynomials

HDSym" (K) C k[A]S" = DSymi;TH(K)

diagonally symmetric polynomials f with the homogeneity property:
multiplying a row of A with X\ transforms f into \ .

This is the homogeneous coordinate ring of the symmetric product
P(W)"/&,, which parametrizes:

e multisets of n points of P(W).

e multisets of n hyperplanes of P(W) = totally decomposable
hypersurfaces of degree n.

©.@)
Coordinate free—presentation: & T&m (SNW)
N=0



Remarkable elements of HDSym/]

HDSym;, is spanned by the monomial functions that are homogeneous.
Its degree 1 component is spanned by the Fundamental polynomials
= the homogeneous elementary symmetric polynomials

= the e for a € N"T1 and |a| = n.

Their generating series:

n
Yeat® := |] (aioto + aijnts + - - - + ajrtr)
i=1



Homogeneous vs. nonhomogeneous

HDSym' C DSym’ 1

but more relevant is the deshomogenization map:

HDSym, — DSym]

a;0o > 1

which corresponds to the restriction of functions on P(W)"/&,, to its
affine chart A"/Gy,.

It fulfills:

eC\{0,0é]_,"',Oér = CARTTITIS 14



O—dimensional systems of equations: univariate case

The univariate case: F(X) = X" + a1 X" 1 4+ ...+ a, Knowing about
symmetric functions helps in understanding the roots of P(X) and
related objects, e.q.:

e Matrix of power sums: [p;4;l; j=0,...n—1- Assume K = C.

— Its rank= # distinct complex root.

— Its signature= #£ distinct real roots.

e T he global residue
1 Xn—l—k‘
2ir ) F(X)

dX — hk—l—l

(complete sum).



O—dimensional systems of equations: univariate case

e Relations between roots and coefficients:

— all symmetric polynomial of the roots are polynomials in the

coefficients
— the coefficients are symmetric polynomials of the roots

(a), = *ey).
— A particular example: Newton identities that relate coefficients

and power sums:

XF(X s
o=ty
F(X) X

e Resultants: Res(P(X),Q(X)) expresses in several ways in the
symmetric functions of the roots of P and symmetric functions of
the roots of Q)

How much does this generalize in the multivariate setting 7



dsym polynomials of the roots from the coefficients

Two classes of systems where the dsym—polynomial of the roots are
polynomial or rational functions of the coefficients:

e Grobner bases with prescribed leading terms: fix a term order <
and monomials X1, X% . X% and consider all systems
f1=fo=---= fi, =0 such that LT(f;) = X%.

e Zero—dimensional complete intersections (ZDCI) without zero at
infinity:
h=fh=—=Mm=0
(as many equations as unknowns and no common zero for the

leading homogeneous parts) in P (or some weighted projective
space).



Grbbner bases with prescribed leading term

Grobner bases with prescribed leading terms: fix a term order < and
monomials X%, X* . . X% and consider all systems
fi1 = f>=---= fi, = 0 such that LT(f;) = X%,

The generating function of the elementary diagonally symmetric
polynomials

Yeat® = ] (1 +ajit1 + - 4 aptr)
1=1

appears as the determinant of

k[ X1, Xo,..., Xpl/{f1, fo, . s fK) — K[X1, Xo,. ., X3 /(f1, fo, -\ &)
g — g-(1+ Xqt1 +--- Xoty)

whose matrix in a monomial basis has entries polynomial in the
coefficients of the system.

— the e, are polynomials in the coefficients of the system.



ZDCI without zero at infinity

There is a "“Poisson formula'’:

Res(fl)an .. 7f’n/7f)/ ReS(hl,hQ, x 7hn)N — f(a’l)f(aQ) e f(af"“)

where h; is the leading homogeneous component of f;.

For f =14 Xq1t1 +--- + X,tr, we recover again that the generating
function of the elementary functions:

1] (X4 aits + -+ aptr) =) eat®
i=1

das

Res(f1, fo,. -y fn, 1+ Xqt1 + -+ Xptr )/Res(hy, ho, ..., hp)Y

— the e, are rational functions in the coefficients of the system.



From elementary polynomials to all dsym—polynomials

In the above situations, the e, are polynomial or rational functions of
the coefficients.

In characteristic big enough (charK > n or 0), all dsym—polynomials
are polynomials in the eq, then all dsym—polynomials are polynomial or
rational functions of the coefficients.

In small characteristic, the result still holds: use, instead of the
generating function of the e, the generating function of the monomial

functions:

al o
Z mlayas® - ap™] UagUas - Uan,
aiRas=-=an

. ( > X)
[ X=a;
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Intersection of the two classes

( . dl
A system that is at the same time Grébner 1= X}Zz + -
basis and ZDCI with no zero at infinity has {Jo=2X"+
the shape (for some <): :

a different approach (multidimensional residues, Tsikh, Aizenberg,
Kytmanov) led to a generating series for the power sums:

pa =ai +a5+---+ay
They are obtained as coefficients in an expansion in Laurent series of:

X1 Xo--- Xp |0
122 n|OF| _ S p_0;_|_
ffa-fn ldxl Sin X




Near formulas were already written in 1835 !

C.G. Jacobi, Theoremata nova algebraica circa systema duarum
aequationum inter duas variabiles propositarum, Crelle Journal, 1835



Resultants from dsym polynomials

Schlifli, Uber die Resultante
eines Systemes mehrerer
algebraischen Gleichungen,
1854

Schlafli proposed to use dsym polynomials to express multivariate
resultants Res(F1, Fo,..., Fr, F,41) in the coefficients of the forms Fj:

Res(Fy, Fo, ..., Fr, Frqyq) = eF.11(a1)Frqp1(az) -+ Fr.y1(an) where the q;
are the roots of Fy =Fpr =.-- = F, = 0.



Cayley (1857)

Cayley applied Schlafli’'s idea

for the system
C(Xg,X1,X2)=0
Q(X07X17X2) =0
L(Xg,X1,X2)=0

(cubic, quadratic, linear

ternary forms).

Cayley, On the symmetric functions of the roots of certain systems of
two equations, Phil. Trans. Royal Soc. London, 1857.

Detailed account of it in Rota, Stein: A problem of Cayley from 1857
and how he could have solved it, LAA, 2005.



Cayley’s computations

1. express Res(C,Q,L) as a dsym polynomial in the roots of
C =L =0.

Res(C, L, Q) = ¢Q(a1)Q(a2)Q(a3)

There appear homogeneous monomial functions of degree 2.

2. express the homogeneous monomial functions of degree 2 in term
of those of degree 1 (the Fundamental Polynomials eaq,aq,a5)-
Cayly needs the hypothesis that a1, ao, a3 are on a same line.

3. Compute the Fundamental functions eaq,aq,0, IN the coefficients of
C and L. Let EF be an indeterminate linear form:

E = Xotg + Xq1t1 + Xoto
then Res(C, L, F) is easily computed:
Res(C,L,E) = eRes(L,E,C) = oC(b)

where b is the unique solution of L = F = 0.



Cayley’s question

About step 2: express the homogeneous monomial functions of degree
2 as polynomials in those of degree 1 (the ey)

What about the monomial functions of higher degrees 7

Rota—Stein’s paper: the monomial functions of degrees > 3 are also
polynomial functions of the e, provided that a1, ao, a3z are on a same
line.

Foulkes—Howe conjecture (part of it): in HDSym],, the e, generate the
components of degree d > n.

Foulkes—Howe conjecture is true for n =3 (E.B.)



Another computational algebra problem: decomposable forms

Setting: ground field K algebraically closed.

Question 1: 1Is F(tg,t1,...,t,) totally decomposable (= a product of
linear forms) ?

Answer: factor ' (computer algebraists know how to ask the
computer an “absolute factorization™).

Question 2: Let Fy(tg,...,tr) be a form depending on parameters u.
For which values of « is F, totallyt decomposable 7

Raised in Singer, Ulmer: Linear differential equations and products of
linear forms, J. symb. comp., 1997



Brill’s covariant

Brill, Uber die Zerfa&llung einer Terndrform
in Linearfactoren, Math. Ann., 1897

Gordan, Das Zerfallen der Curven in gerade
Linien, Math. Ann., 1894

Brill produced a system of equations that defines set—theoretically the
subvariety of totally decomposable forms.

Accounts in Gel'fand, Kapranov, Zelevinsky: Discriminants, resultants
and multidimensional determinants, 1994 and Rota, Stein: a formal
theory of resultants, 2001.



Brill’s covariant

Consider the forms F'(tg,t1,...,tr) Of degree n.

Brill's covariant is a (huge) polynomial B(F,x) depending on the
coefficients of F' and 3n new independant variables with the property
that:

B(F,z) = 0 < F' is totally decomposable
Decompose: B(F,z) = >, Ca(F)x®
Then the system of “Bril’s equations’
Co(F) =0 Vo

defines set—theoretically the subvariety of decomposable forms in S™W'.



Brill’s covariant

Brill's covariant is huge !
Ex: Ulmer—Singer could not use it for quartic forms in 4 variables.
Brill got interested in an alternative solution: dsym polynomials.

Indeed, the equations of the subvariety of totally decomposable forms
of degree n in r 4+ 1 variables

are exactly

the algebraic relations between the Fundamental functions



Boring computations ... ask a graduate student

Brill’s student for this task: Friedrich Junker.

He wrote papers of increasing size about dsym polynomials (with
many tables of change of basis and many relations between dsym
polynomials)

Die Relationen, welche zwischen den elementaren symmetrische
Functionen bestehen, Math. Ann., 1890.

Uber symmetrische Functionen von mehreren Reihen von
Veranderlichen, Math. Ann., 1893.

Die symmetrischen Functionen und die Relationen zwischen der
Elementarfunctionen derselben, Math. Ann., 1894.

Die symmetrischen Functionen der semeinschaftlichen variabelnpaaree
terndrer Formen, 1897 (50 p. theory + 50 p. tables)



To be continued . ..

Thursday: “Foulkes’ Conjecture and Diagonally symmetric
polynomials”



