Foulkes' conjecture Diagonally symmetric polynomials

Conference on Diagonally symmetric polynomials and applications

CIEM, Castro-Urdiales, October 18, 2007

Emmanuel Briand.

Universidad de Sevilla

Foulkes' plethysm conjecture

Foulkes: concomitants of the quintic and the sextic up to degree four in the coefficients of the ground form, 1950

 h_k : complete sums; $f \circ g$: plethysm of symmetric functions.

```
h_3 \circ h_2 - h_2 \circ h_3 = s_{222}

h_4 \circ h_2 - h_2 \circ h_4 = s_{422} + s_{2222}

h_4 \circ h_3 - h_3 \circ h_4 = s_{732} + s_{6222} + s_{5421}

:
```

Foulkes' (open) plethysm conjecture:

```
For all N \ge n the following holds:  \begin{tabular}{ll} ``h_N & \circ & h_n & - & h_n & \circ & h_N \\ \hline (FOULKES(N,n)) & & & \\ \end{tabular}
```

Foulkes' plethysm conjecture and representations of \mathfrak{S}_K

```
\mathfrak{S}_K, K=N	imes n. h_N\circ h_n=\text{Frobenius of }\mathbb{C}P(n^N) \\ h_n\circ h_N=\text{Frobenius of }\mathbb{C}P(N^n) \\ \text{``}h_N\circ h_n-h_n\circ h_N \text{ is Schur positive'' } \textit{(FOULKES}(N,n)) \\ \text{means:}
```

 $\mathbb{C}P(N^n)$ can be embedded in $\mathbb{C}P(n^N)$.

characters of the general linear group

$$V=\mathbb{C}^d$$

$$h_N(x_1,\ldots,x_d)=\text{character of }S^NV$$

$$=\text{trace of }Diag(x_1,\ldots,x_d)\text{ in the rep. }S^NV\text{ of }GL(V).$$

$$(h_N\circ h_n-h_n\circ h_N)(x_1,\ldots,x_d)=\text{character of }S^N(S^nV)-S^n(S^NV)$$
 An equivariant embedding
$$S^n(S^NV)\hookrightarrow S^N(S^nV)$$
 or equivariant surjection
$$S^N(S^nV)\to S^N(S^NV)$$

$$(\text{for }V=\mathbb{C}^K\text{ or for all }V)\text{ would prove }FOULKES(N,n).$$

Symmetric powers and spaces of symmetric tensors

 $S^NV = Symmetric power of V = a quotient of <math>\otimes^N V$

Ex: $V = \mathbb{C}^2 = \mathbb{C}x_1 \oplus \mathbb{C}x_2$ then S^2V has basis x_1^2 , x_1x_2 , x_2^2 (which reperesent the classes: $[x_1 \otimes x_1]$, $[x_1 \otimes x_2]$, $[x_2 \otimes x_2]$ modulo $x_1 \otimes x_2 \equiv x_2 \otimes x_1$).

 $T_{\text{sym}}^{N}V = symmetric\ tensors = a\ \text{subspace}\ \text{of}\ \otimes^{N}V$

Ex: T_{sym}^2V has basis $x_1\otimes x_1$, $x_1\otimes x_2+x_2\otimes x_1$, $x_2\otimes x_2$.

 $T_{\text{sym}}^N V \simeq S^N V$ as GL(V)—modules.

A graded algebra

$$V = W^* = \text{dual of } W.$$

homogenous polynomial functions of degree N over $\mathbb{P}(W)$... space S^NV . over $\mathbb{P}(W)^n$... space $\otimes^n S^NV$. over $\mathbb{P}(W)^n/\mathfrak{S}_n$... space $T^n_{\text{sym}}S^NV$.

Homogeneous coordinate ring of the "symmetric product" $\mathbb{P}(W)^n/\mathfrak{S}_n$:

$$\mathcal{A}_n(V) := \bigoplus_{N=0}^{\infty} T_{\mathsf{sym}}^n \left(S^N V \right)$$

Example in $A_2(V)$: product of elements $f_1, f_2, g_1, g_2 \in V$, (i.e. of degree 1):

$$(f_1 \otimes f_2 + f_2 \otimes f_1)(g_1 \otimes g_2 + g_2 \otimes g_1) = f_1g_1 \otimes f_2g_2 + f_1g_2 \otimes f_2g_1 + f_2g_1 \otimes f_1g_2 + f_2g_2 \otimes f_1g_1$$

Howe's ("Foulkes-Howe") conjecture

Howe: (gl_n, gl_m) -duality and symmetric plethysm, 1987

$$T_{\text{sym}}^n V \hookrightarrow \mathcal{A}_n(V) = \bigoplus_{N=0}^{\infty} T_{\text{sym}}^n \left(S^N V \right)$$
 (piece of degree 1).

Universal property of the symmetric algebra:

Universal property of the symmetric algebra:
$$\pi^*: \bigoplus_{N=0}^{\infty} S^N\left(T_{\text{sym}}^nV\right) \longrightarrow \mathcal{A}_n = \bigoplus_{N=0}^{\infty} T_{\text{sym}}^n\left(S^NV\right) \text{ equivariant map of graded algebras.}$$

It would be nice that the following assertions were true;

Precisely: For
$$n \ge N$$
: For $n \ge N$: For $N \ge n$: FHsurj $(N, n) \Rightarrow$ FOULKES (n, N)

Some remarks

Remember:
$$\pi^*: \bigoplus_{N=0}^{\infty} S^N\left(T_{\operatorname{Sym}}^n V\right) \longrightarrow \mathcal{A}_n = \bigoplus_{N=0}^{\infty} T_{\operatorname{Sym}}^n\left(S^N V\right)$$

FHinj(N,n): "for all V, π_N^* is injective" FHsurj(N,n): "for all V, π_N^* is surjective"

The remarks are:

- $FHinj(N, n) \Rightarrow FHinj(N 1, n)$ (kernel in degree N 1 would imply kernel in degree N).
- FHinj(n,n) = FHsurj(n,n). (linear map between spaces of the same dimension). "FH(n)".

Some results

- Brion (1997): for N >> n, FHsurj(N, n) is true. (explicit lower bound on N depending on n and r).
- mysterious J.H.: *FH*(3) is true,
- E.B. *FHsurj*(N, 3) is true for all relevant N ($N \ge 3$).
- E.B. (2002), J. Jacob (2004): FH(4) is true.

mysterious J.H. proved FH(3) in 1899

Wrong

Müller, Neunhöffer: Some computations regarding Foulkes' conjecture, 2005:

FH(5) is wrong.

Is the problem still interesting?

The geometry behind π^*

Set $V = W^*$.

• The product map (n linear forms \rightarrow forms of degree n):

$$\pi: V^n/\mathfrak{S}_n \longrightarrow S^nV$$

$$f_1, f_2, \dots, f_n \longrightarrow f_1f_2 \cdots f_n$$

Image of π : subvariety of totally decomposable forms.

• The union map $(n \text{ hyperplanes} \rightarrow \text{hypersurfaces of degree } n)$:

$$\mathbb{P}\pi: (\mathbb{P}V)^n/\mathfrak{S}_n \longrightarrow \mathbb{P}(S^nV)$$

Image of $\mathbb{P}\pi$: subvariety of unions of hyperplanes.

 $\mathbb{P}\pi$ is an embedding (still injective but not an embedding in most modular cases).

 π^* : $\mathcal{A}_n \longleftarrow \bigoplus_{N=0}^{\infty} S^N T^n_{\text{sym}} V$ is the associated map of graded algebras.

FHinj is still interesting

$$\pi: V^{n}/\mathfrak{S}_{n} \longrightarrow S^{n}V$$

$$\mathbb{P}\pi: (\mathbb{P}V)^{n}/\mathfrak{S}_{n} \longrightarrow \mathbb{P}(S^{n}V)$$

$$\pi^{*}: \mathcal{A}_{n} \longleftarrow \bigoplus_{N=0}^{\infty} S^{N}T_{\text{sym}}^{n}V$$

 $\ker \pi^*$ ideal of the equations of the variaties of totally decomposable forms and totally decomposable hypersurfaces.

 $im\pi^* = \dots$ see later

FHinj(N,n) = no polynomial of degree N vanishes on the subvariety of totally decomposable forms of degree n.

Ex: FH(2) = no polynomial of degree ≤ 2 vanishes on the subvariety of factorizable quadratic forms.

Ex: FH(3) = no polynomial of degree ≤ 3 vanishes on the subvariety of products of three linear forms.

mysterious J.H. proved FH(3) in 1899

Jacques Hadamard, Sur les conditions de decomposition des formes, Bulletin de la SMF, 1899
Elementary geometric arguments.

$$A_n(V) = \bigoplus_{N=0}^{\infty} T_{\text{sym}}^n S^N V$$
 in coordinates

Ex: V with basis x_1 , x_2 , then S^2V has basis: x_1^2, x_1x_2, x_2^2

Then
$$T^2_{\text{sym}}S^2V$$
 has basis: $\begin{array}{ccc} x_1^2\otimes x_1^2, & x_1^2\otimes x_2^2+x_2^2\otimes x_1^2, \\ x_2^2\otimes x_2^2, & x_1^2\otimes x_1x_2+x_1x_2\otimes x_1^2, \\ x_1x_2\otimes x_1x_2, & x_2^2\otimes x_1x_2+x_1x_2\otimes x_2^2. \end{array}$

Write
$$x_j(a_i)$$
 or a_{ij} for x_j in position i , e.g. $x_1^2 \otimes x_1 x_2 = x_1(a_1)^2 x_1(a_2) x_2(a_2) = a_{11}^2 a_{21} a_{22}$

$$x_1^2 \otimes x_1 x_2 + x_1 x_2 \otimes x_1^2 = a_{11}^2 a_{21} a_{22} + a_{21}^2 a_{11} a_{12}$$

$$= a_1^{20} a_2^{11} + a_2^{20} a_1^{11}$$

$$= m \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$

Homogeneous monomial function of degree 2: |(20)| = |(11)| = 2.

$$m_{(20)(01)} = a_1^{20} a_2^{01} + a_2^{20} a_1^{01}$$

 $(m_{(20)(01)})_{|a_1=\lambda a_1} = \lambda^2 a_1^{20} a_2^{01} + \lambda a_2^{20} a_1^{01}$. Not homogeneous.

π and π^* in coordinates

The homogeneous monomial functions of degree 1 are the "Fundamental" (= homogeneous elementary) functions: $e_{\alpha_1,...,\alpha_d}$ with $|\alpha| = n$.

```
Ex: n = 2, dim V = 2,
In A_2:
x_1 \otimes x_1 = e_{20} (2 ocurrences of x_1, 0 of x_2)
x_2 \otimes x_2 = e_{02}
x_1 \otimes x_2 + x_2 \otimes x_1 = e_{11}
```

In $\overset{\sim}{\bigoplus} S^N T^n_{\mathsf{sym}} V$ (algebra of polynomials), the same objects should be

considered as independent variables: $x_1 \otimes x_1 = Y_{20}$

$$x_2 \otimes x_2 = Y_{02}$$

 $x_1 \otimes x_2 + x_2 \otimes x_1 = Y_{11}$

Then π^* : $Y_{\alpha} \mapsto e_{\alpha}$.

$ker \pi^*$ and $im\pi^*$ in coordinates

 $\ker \pi^*$ = algebraic relations between the Fundamental functions e_{α} .

 $im\pi^* = e$ -decomposable dsym polynomials = polynomials in the Fundamental functions e_{α} .

FHinj(N,n) = no relation up to degree N.

 $FHsurj(N,n) = all homogeneous dsym (\S_n) polynomials of degree <math>N$ are "e-decomposable".

For which $N \ge n$ are FHsurj(N, n) true? (see Schläfli+Cayley's approach to compute resultants).

Junker's Tools: (i) Polarization

Remember: the variables are $a_{ij} = x_j(a_i)$ and \mathfrak{S}_n permutes the a_i .

The \mathfrak{S}_n -invariant polarization from k to j:

$$P[jk] = \sum_{i=1}^{n} x_j \frac{\partial}{dx_k}$$
 transforms dsym polynomials into dsym polynomials.

Ex:

$$P[21](a_{11}a_{12}) = P[11](x_1(a_1)x_1(a_2))$$

$$= x_2(a_1)x_1(a_2) + x_1(a_1)x_2(a_2)$$

$$= a_{12}a_{21} + a_{11}a_{22}$$

i.e.
$$P[21]e_2(a_1, a_2) = e_{11}(a_1, a_2)$$
.

Ex: the identity between symmetric polynomials $p_2 = e_1^2 - 2e_2$ becomes, after applying P[21]:

$$2 p_{11} = 2 e_{10} e_{01} - 2 e_{11}$$

Junker's Tools: (ii) Contraction

Remember: the variables are $a_{ij} = x_j(a_i)$, \S_n permutes the a_i .

Contraction C[kj] = Replace x_j with x_k .

More general tool: replace x_j with $x_1^{\alpha_1} x_2^{\alpha_2} \cdots$

Ex: the decomposition of the permanent:

$$e_{111} = p_{111} - p_{110} p_{001} - p_{101} p_{010} - p_{011} p_{100} + 2 p_{100} p_{010} p_{001}$$

provides, after evaluation at $x_1 = x_1^4$, $x_2 = x_1^2$, $x_3 = x_1$, the decomposition of the (ordinary) monomial function:

$$m_{421} = p_{4+2+1} - p_{4+2} p_1 - p_{4+1} p_2 - p_{2+1} p_4 + 2 p_4 p_2 p_1$$

= $p_7 - p_6 p_1 - p_5 p_2 - p_4 p_3 + 2 p_4 p_2 p_1$

Checking FHsurj(N, n): first reduction

 $FHsurj(N,n) = all monomial functions of degree N in <math>HDSym_n^d$ (all d) are e-decomposable.

• Any such monomial function is obtained by contraction from a multilinear homogeneous monomial function $m_{\star(N,n)}$.

$$\text{Ex:} \quad m_{\star(3,2)} = m \begin{bmatrix} \frac{1}{1} & 0 \\ \frac{1}{1} & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{Ex:} \quad m_{\star(2,3)} = m \begin{bmatrix} \frac{1}{1} & 0 & 0 \\ \frac{1}{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

• Contraction sends fundamental functions to fundamental functions. Ex: $C[12]e_{11} = 2e_2$.

Thus:
$$m_{\star(N,n)}$$
 e-decomposable \Rightarrow FHsurj (N,n) .

Ex:
$$m \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} (e_{1100}e_{0011} - e_{1010}e_{0101} + e_{1001}e_{0110})$$
 is a certificate for $FH(2)$.

Checking FHsurj(N, n): the multilinear certificate

$$m_{\star(N,n)}$$
 e-decomposable \Rightarrow FHsurj (N,n) .

Ex:
$$m\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \frac{1}{2}(e_{1100}e_{0011} - e_{1010}e_{0101} + e_{1001}e_{0110})$$
 is a certificate for $FH(2)$.

Apply C[13] and C[24]:

$$m \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = e_{11}^2 - 2e_{20}e_{02}$$

(which is just an homogenization of $p_2 = e_1^2 - 2e_2$)

Decomposing $m_{\star(N,n)}$

$$m_{\star(N,n)} = \sum ?e_{\alpha_1} e_{\alpha_2} \cdots e_{\alpha_N}$$

By brute force: write the matrix M(N,n) whose columns give the decompositions of the multilinear products of e_{α} in the monomial basis. It is a matrix of the restriction of π^* (for $V = \mathbb{C}^{Nn}$) to the multilinear pieces.

M(N,n) full rank iff FHsurj(N,n) holds. (assume $N \geq n$)

Ex:
$$N = n = 2$$
, the matrix is $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

In the multilinear piece of $HDSym_4^2$,

Products of Fundamental functions: $e_{1100}e_{0011}$, $e_{1010}e_{0101}$, $e_{1001}e_{0110}$.

Monomial functions:
$$m\begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $m\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$, $m\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$.

The matrix M(N,n)

In the multilinear piece of $HDSym_n^{Nn}$,

```
Products of Fundamental \leftrightarrow P(n^N) (set partitions functions (ex: N=n= in N blocks of size n) 2, they are e_{1100}e_{0011}, e_{1010}e_{0101}, e_{1001}e_{0110})

Monomial functions (ex: \leftrightarrow P(N^n) (set partitions N=n=2, they are n=2, they are n=2, they are n=2, they are n=2, n=2,
```

Entries of the matrix: coeff of m_P in $e_Q=1$ if $P\wedge Q=\widehat{0}$, 0 else.

This is the Matrix of Black and List.

The second certificate

- FH(N,n) \Leftrightarrow $m_{\star(N,n)}$ is e-decomposable.
- The monomial function $m_{\star(N,n)} \in HDSym_n^{Nn}$ is obtained by polarisation from the monomial function $m_{(N\varepsilon_1)(N\varepsilon_2)\cdots(N\varepsilon_n)}$.
- polarisation preserves e-decomposability.

Ex: N = n = 2.

$$m_{(2\varepsilon_1)(2\varepsilon_2)} = m \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = e_{11}^2 - 2e_{20}e_{02}$$

Apply: P[31]P[42], it yields the multilinear certificate:

$$4 m_{\star(2,2)} = 4 m \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = 2 e_{0110} e_{1001} + 2 e_{1100} e_{0011} - 2 e_{2000} e_{0101}$$

$$FH(N,n) \Leftrightarrow m_{(N\varepsilon_1)(N\varepsilon_2)\cdots(N\varepsilon_n)}$$
 is e -decomposable.

A second symmetric group

In $HDSym_n^N$:

Remember the variables are $a_{ij}=x_j(a_i)$. The group \mathfrak{S}_n permutes the a_i , the dsym polynomials are its invariants. A second group \mathfrak{S}_N permutes the x_j , it acts on $HDSym_n^N$ and there permutes the e_α .

Ex.
$$\tau_{12} \cdot e_{3,6,9} = e_{6,3,9}$$

The monomial function $m_{(N\varepsilon_1)(N\varepsilon_2)\cdots(N\varepsilon_n)}$ is invariant. If it decomposes in fundamental functions, it should also admit a symmetric decomposition (average !).

 $m_{(N\varepsilon_1)(N\varepsilon_2)\cdots(N\varepsilon_n)}$ is e-decomposable iff it is a linear combination of symmetric symmetr

Doubly symmetric polynomials of degree N

Linear basis: orbit sums of monomial functions:

Ex
$$(n = N = 3)$$
:

$$\widetilde{m} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = m \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} + m \begin{bmatrix} 0 & 3 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} + m \begin{bmatrix} 0 & 0 & 3 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

The functions M are indexed with classes of $n \times n$ matrices with row sums N and column sums N, modulo $\mathfrak{S}_n \times \mathfrak{S}_N$.

Orbit sums of functions e:

Ex
$$(N = n = 3)$$
:

$$E\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = e_{300}e_{012}e_{021} + e_{030}e_{201}e_{102} + e_{003}e_{210}e_{120}$$

The functions E are indexed with classes of $n \times N$ matrices with row sums N and columns sums n, modulo $\mathfrak{S}_n \times \mathfrak{S}_N$.

Doubly symmetric certificate

 $FHsurj(N,n) \Leftrightarrow m_{(N\varepsilon_1)(N\varepsilon_2)\cdots(N\varepsilon_n)}$ is linear combination of functions E

Ex: FH(2)

$$m_{(2\varepsilon_1)(2\varepsilon_2)}e_{11}^2 - 2e_{20}e_{02} = E\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} - 2E\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

Ex: FH(3):

$$m \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} = E \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} - 3E \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} + 6E \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix} - 3E \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix} + 33E \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Obtaining the doubly symmetric certificate

In the degree N piece of $\mathbb{C}[\{x_j(a_i) | i=1,\ldots,n; j=1,\ldots,N\}]^{\mathfrak{S}_n \times \mathfrak{S}_N}$, consider the matrix T(N,n) whose columns represent the decomposition of the functions E in the symmetrizations M of monomial functions.

Ex:

$$T(2,2) = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$$

$$T(3,3) = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 3 & 3 \\ 0 & 1 & 2 & 5 & 6 \\ 1 & 9 & 6 & 18 & 12 \end{bmatrix}$$

T(4,4) has order 43, is invertible but not triangular.

Müller+Neunhoffer: T(5,5) is not invertible.

A theorem

FHsurj(N,3) is true for all $N \geq 3$.

cf. Cayley-Stein problem.

Proof: by induction on N.

$FHsurj(N,3) \Rightarrow FHsurj(N+1,3)$

All monomial function of degree N is e-decomposable $\Rightarrow m_{(3\varepsilon_1)(3\varepsilon_2)(3\varepsilon_3)}$ is linear combination of functions E.

$$M \begin{bmatrix} N+1 & 0 & 0 \\ 0 & N+1 & 0 \\ 0 & 0 & N+1 \end{bmatrix} = e_{1,1,1} M \begin{bmatrix} N & 0 & 0 \\ 0 & N & 0 \\ 0 & 0 & N \end{bmatrix} - M \begin{bmatrix} 0 & N & 1 \\ 0 & 1 & N \\ N+1 & 0 & 0 \end{bmatrix} - M \begin{bmatrix} N & 1 & 0 \\ 0 & N & 1 \\ 1 & 0 & N \end{bmatrix}.$$

$$\widetilde{m} \begin{bmatrix} 0 & N & 1 \\ 0 & 1 & N \\ N+1 & 0 & 0 \end{bmatrix} = e_{2,0,1} \widetilde{m} \begin{bmatrix} N-1 & 0 & 0 \\ 1 & N & 0 \\ 0 & 0 & N \end{bmatrix} - e_{1,0,2} \widetilde{m} \begin{bmatrix} N-1 & 0 & 1 \\ 1 & N & 0 \\ 0 & 0 & N-1 \end{bmatrix} + e_{0,0,3} \widetilde{m} \begin{bmatrix} N-1 & 0 & 2 \\ 1 & N & 0 \\ 0 & 0 & N-2 \end{bmatrix}.$$

$$3 \, \widetilde{m} \begin{bmatrix} N & 1 & 0 \\ 0 & N & 1 \\ 1 & 0 & N \end{bmatrix} = e_{2,1,0} \, \widetilde{m} \begin{bmatrix} N-1 & 0 & 0 \\ 0 & N & 0 \\ 1 & 0 & N \end{bmatrix} + 2 \, e_{2,0,1} \, \widetilde{m} \begin{bmatrix} N-1 & 0 & 0 \\ 0 & N & 1 \\ 1 & 0 & N-1 \end{bmatrix} - e_{1,0,2} \, \widetilde{m} \begin{bmatrix} N-1 & 0 & 1 \\ 0 & N & 1 \\ 1 & 0 & N-2 \end{bmatrix} + e_{0,1,2} \, \widetilde{m} \begin{bmatrix} N-1 & 0 & 2 \\ 0 & N & 0 \\ 1 & 0 & N-2 \end{bmatrix}.$$

