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Foulkes’ plethysm conjecture

Foulkes: concomitants of the quintic and the sextic up to degree four
in the coefficients of the ground form, 1950

hi: complete sums; fog: plethysm of symmetric functions.

h3z o ho — hp o h3
hgoho —hoohg
h40h3—h30h4

5222
$422 + 522922
s732 + 86222 + S5421

Foulkes’ (open) plethysm conjecture:
For all N > n the following holds:

“hyy o hp, — hn o hy IS Schur positive”
(FOULKES(N,n))




Foulkes’ plethysm conjecture and representations of Gy

GK,K:NXn.

Frobenius of CP(nV)
Frobenius of CP(N™)

hNOhn
hnOhN

“hpn o hp — hp o hy is Schur positive” (FOULKES(N,n))
means:

CP(N™) can be embedded in CP(nY).



characters of the general linear group

V=

hy(z1,...,25) = character of SNV

= trace of Diag(xz1,...,zg) in the rep. SNV of GL(V).

(hy © hn — hn o hy)(z1,...,zy) = character of SN(S™"V) — S7(SNV)
An equivariant embedding S*(SNV) — SN (S7V)

or

equivariant surjection SN (S"V) — S7(SNV)

(for V = C¥ or for all V) would prove FOULKES(N,n).



Symmetric powers and spaces of symmetric tensors

SNV = Symmetric power of V = a quotient of ¥V

Ex: V = C? = Cx1 ® Czp then S?V has basis 22, x125, x5 (which
reperesent the classes: [x1 ® 1], [x1 ® 5], [xo> ® 5] modulo
1 RTo =20 R x1).

TeymV = symmetric tensors = a subspace of @V

EX: TSQymV has basis r1 @ x1, 1 Qx> + 2o X x1, To R x>

ToymV ~ SNV as GL(V)—modules.



A graded algebra

V = W*= dual of W.

homogenous polynomial functions of degree N

over P(W) ... space SNV,
over P(W)" ... space @"SNV.
over P(W)"/&, ... space T&mSNV.

Homogeneous coordinate ring of the “symmetric product” P(W)"/G;:
oo
An(V) = @B TSm (SNV)
N=0
Example in A>(V): product of elements f1, fo,g91,9o2 € V, (i.e. of
degree 1):

([1®fo+fo®f1)91 Qg+ g2®g1) =
J191 ® f292 + 192 ® f291 + f291 @ f192 + f202 ® f191



Howe’s (“Foulkes—Howe’’) conjecture

Howe: (gln, glm)—duality and symmetric plethysm, 1987
0
TEMV — An(V) = @ Toym (SNV) (piece of degree 1).
N=0
Universal property of the symmetric algebra:

©.@) @)
™ @ sV (TS'”S,mV) — A= P T (SNV) equivariant map of
graded algebras.

It would be nice that the following assertions were true;

FHinj(N,n): “for all V, 7 is injective” for all N <n.

FHsurj(N,n): “for all V, «%; is surjective” for all N > n.
. > : inj

Precisely: Form =N FHinj(N,n) = FOULKES(n,N)

For N >n: FHsurj(N,n) = FOULKES(N,n)



Some remarks

o'e) 0@
Remember: «*: @ sV (Tg/mv) — A= D Teym (SNV>
N=0 N=0

FHinj(N,n): “for all V, « is injective” FHsurj(N,n): “for all V, w}; is
surjective”

The remarks are:

e FHIinj(N,n) = FHinj(N — 1,n) (kernel in degree N — 1 would imply
kernel in degree N).

e FHinj(n,n) = FHsurj(n,n). (linear map between spaces of the
same dimension). “FH(n)".



Some results

e Brion (1997): for N >>n, FHsurj(N,n) is true. (explicit lower
bound on N depending on n and r).

e mysterious J.H.: FH(3) is true,

e E.B. FHsurj(N,3) is true for all relevant N (N > 3).

e E.B. (2002), J. Jacob (2004): FH(4) is true.



mysterious J.H. proved FH(3) in 1899




Wrong

Miiller, Neunhoffer: Some computations regarding Foulkes’ conjecture,
2005:

FH(5) is wrong.

Is the problem still interesting 7



The geometry behind «*

Set V = W*.

e The product map (n linear forms — forms of degree n):
g VT /Gy — SV
fi, /2, sfn — fifo-[n

Image of w: subvariety of totally decomposable forms.

e The union map (n hyperplanes — hypersurfaces of degree n):
Pr: (PV)"/Gy — P(S™V)
Image of Px: subvariety of unions of hyperplanes.

P is an embedding (still injective but not an embedding in most
modular cases).

©.@)
. A, — @ SNng‘,mV is the associated map of graded algebras.
N=0



FHinj is still interesting

T V"G, — S™V

Pr: (PV)"/&, — P(S™V)

N=0

ker*= ideal of the equations of the variaties of totally decomposable
forms and totally decomposable hypersurfaces.

imr* = ...see later

FHinj(N,n) = no polynomial of degree N vanishes on the subvariety of
totally decomposable forms of degree n.

Ex: FH(2) = no polynomial of degree < 2 vanishes on the subvariety
of factorizable quadratic forms.

Ex: FH(3) = no polynomial of degree < 3 vanishes on the subvariety
of products of three linear forms.



mysterious J.H. proved FH(3) in 1899

Jacques Hadamard, Sur les
conditions de decomposition
des formes, Bulletin de Ia
SMF, 1899

Elementary geometric argu-
ments.




0. @)
An(V) = P TZmS"V in coordinates
N=0

Ex: V with basis z1, z3, then S?V has basis: 27, x5, 73

xi@xi, xi@x%-l-w%@w%,
Then T3,,S?V has basis: 25 ® 25, 5 @ 170 + T1T0 ® wi,
r122 @ 122, T5Q T1T2 + 122 ® x5.

Write x;(a;) or a;; for x; in position i, e.g.
2 _ 2 _ 92
r{ @ x12p = x1(ay)?r1(az)zo(ar) = agia21a22

QU% R r1xo + 170 Q :E% = aéajazlazz -+ a%lallalg
= 020411 4 4,204, 11
_ — 21
= maoo)(11) — ™ [o 1]
Homogeneous monomial function of degree 2: |(20)| = [(11)| = 2.

029491 + 420491
)\Qa%oagl -+ )\agoacl)l.

"M(20)(01)

( Not homogeneous.
m(QO)(Ol) |a,1:)\a1



= and 7* in coordinates

The homogeneous monomial functions of degree 1 are the
“Fundamental” (= homogeneous elementary) functions: €a,...,aq With

la| = n.

Ex: n=2, dmV = 2,

In As:

r1 ® x1 = eng (2 ocurrences of x1, 0 of z5)
T2 QT2 = €02

r1 Qa2 +x2QT] = €11

oo
In EB SNTS@mV (algebra of polynomials), the same objects should be

N=0
considered as independant variables: 1 ® r1 = Yo¢

T2 ® x2 = Yp2
1 @To+x2®@T1 = Y711



ker7* and imr* in coordinates

kerm* = algebraic relations between the Fundamental functions eq.

imr* = e—decomposable dsym polynomials = polynomials in the
Fundamental functions e,.

FHinj(N,n) = no relation up to degree N.

FHsurj(N,n) = all homogeneous dsym (§,) polynomials of degree N
are “e—decomposable”.

For which N > n are FHsurj(N,n) true ? (see Schlafli4+Cayley's
approach to compute resultants).



Junker’s Tools: (i) Polarization

Remember: the variables are a;; = x;(a;) and &, permutes the a;.

The Gp—invariant polarization from k to j:

mn
0 . . .
P[jk] = ) _ xj@ transforms dsym polynomials into dsym polynomials.
i=1

EXx:

P[21] (a11a12) P[11] (z1(a1)z1(a2))
ro(ay)xy(ag) + x1(ag)za(an)
aipaz1 + a11a22

i.e. P[21]ex(a1,a2) =ej1(ay,an).

Ex: the identity between symmetric polynomials p, = €3 — 2e5
becomes, after applying P[21]:

2p11 = 2e1p0e01 — 2€11



Junker’s Tools: (ii) Contraction

Remember: the variables are a;; = x;(a;), §» permutes the a;.
Contraction C[kj] = Replace z; with zy.
More general tool: replace z; with z{!z5? -

Ex: the decomposition of the permanent:

€111 = P111 —P110P001 — P101P010 — P011P100
+2p100P010 P01

provides, after evaluation at z7 = 27, 2o = 2%, 3 = x1, the
decomposition of the (ordinary) monomial function:

M421 = P4+42+41 — P442P1 — Pat1P2 — P241P4 + 2p4p2P1
= p7 —P6P1 — DP5P2 — P4DP3 T 2p4ap2p1



Checking FHsurj(N,n): first reduction

FHsurj(N,n) = all monomial functions of degree N in HDSym¢ (all d)
are e—decomposable.

e Any such monomial function is obtained by contraction from a
multilinear homogeneous monomial function m,(y ;-

"1 07 1 0 07
¥ 148
L0 1- L0 01

e Contraction sends fundamental functions to fundamental
functions. EX: 0[12]611 = 2eo.

Thus: | m,(y,) e-decomposable = FHsurj(N,n).

10
_ 1 : -
Ex: m |} 9| =5(e1100€0011 — €1010€0101 + €1001€0110) iS @ certificate
01
2



Checking FHsurj(N,n): the multilinear certificate

m,(Ny,) e€e-decomposable = FHsurj(N,n).

10
_ 1 : o
Ex: m [(1) (1)] = 5 (e1100€0011 — €1010€0101 + €1001€0110) iS @ certificate
0 1
for FH(2).

Apply C[13] and C[24]:
2

m [% 8} = e71 — 2¢€ep0€e02

(which is just an homogenization of py = e$ — 2e5)



Decomposing m,(y )

mMy(N,n) — 2.%eai€an - Eay

By brute force: write the matrix M (N,n) whose columns give the
decompositions of the multilinear products of e, in the monomial
basis. It is a matrix of the restriction of =* (for V = C&¥") to the
multilinear pieces.

M(N,n) full rank iff FHsurj(N,n) holds. (assume N > n)

Ex: N =n =2, the matrix is

=~ O
= O =
O

In the multilinear piece of HDSym3,

Products of Fundamental functions: e1100€0011, €1010€0101, €1001€0110-

al funct 181, [39] [3
Monomial functions: m il m|igl-m|g1l
01 01 10



The matrix M(N,n)

In the multilinear piece of HDSym>",

Products of Fundamental « P(n!) (set partitions
functions (ex: N = n = in N blocks of size n)
2, they are e1100€0011;

€1010€0101, €1001€0110 )

Monomial functions (ex: <+ P(N™) (set partitions

N = n = 2, they are in n blocks of size N)
10 59 59

migil»™m[ig|™m|o1]|)
01 01 10

Entries of the matrix: coeff of mp ineg = 1if PAQ =0, 0 else.

This is the Matrix of Black and List.




T he second certificate

e FH(N,n) < m, () IS e-decomposable.
e The monomial function m,y )y € HDSym;™ is obtained by
polarisation from the monomial function m . )(Ney). - (Ney)-

e polarisation preserves e—decomposability.

Ex: N=n=2.

— 0| — .2
M(2e1)(2e5) — ™M [o 2] = e71 — 2e20€02

Apply: P[31]P[42], it yields the multilinear certificate:

—R~ROO

] = 2€0110€1001 T 2€1100€0011 — 2 €2000€0101

@lell

4m*(272) =4m [

FH(N, n) S m(N€1)(N€2)---(N€n) IS e—decomposable.




A second symmetric group

In HDSym.):

Remember the variables are a;; = :r;j(ai). The group G, permutes the
a;, the dsym polynomials are its invariants. A second group Gy
permutes the z;, it acts on HDSymY and there permutes the e,.

EX: T12-€36,9 = €6,3,9-

The monomial function m(y.,)(Ne,).--(Ne,) 1S INvariant. If it
decomposes in fundamental functions, it should also admit a
symmetric decomposition (average !).

M(Nei)(Neo)-(Ney) 1S e-decomposable iffit is a linear combination of symn




Doubly symmetric polynomials of degree N

Linear basis: orbit sums of monomial functions:

Ex (n =N = 3):

300 300 030 003
m[OQl]=m[021]—|—m[201]—|—m[210]
012 012 102 120

The functions M are indexed with classes of n x n matrices with row
sums N and column sums N, modulo G, x Gy.

Orbit sums of functions e:
Ex (N =n = 3):

d

QoW
—NO
NRO

] = €300€012€021 T €030€201€102 + €003€210€120

The functions E are indexed with classes of n x N matrices with row
sums N and columns sums n, modulo G, x Gy.



Doubly symmetric certificate

FHsurj(N,n) <  mM(N:)(Neo)--(Ney) 1S lin€ar combination of functions E

Ex: FH(2)

M) (2e)€01 — 2¢20e02 = E |} | -2 E39].

Ex: FH(3):

m[ ]:

]—3E[88?]+6E[8%?]—3E[%%6]+33E[89
012 102 102 00

= = = £ =

1

= OOoOW
el s e\e)
e Vele)



Obtaining the doubly symmetric certificate

In the degree N piece of C[{z;(a;)|i=1,...,n;5=1,...,N}]®*Sn,
consider the matrix T'(N,n) whose columns represent the
decomposition of the functions E in the symmetrizations M of
monomial functions.

Ex:
> 1
T(2,2):10
000 0 1
000 1 3
7(3,3) =0 01 3 3
012 5 6
1 9 6 18 12

T(4,4) has order 43, is invertible but not triangular.

Miiller+Neunhoffer: T'(5,5) is not invertible.



A theorem

FHsurj(N,3) is true for all N > 3.
cf. Cayley—Stein problem.

Proof: by induction on N.



FHsurj(N,3) = FHsurj(N + 1,3)

All monomial function of degree N is e—decomposable =
M(3¢,)(325)(3e5) 1S liN€Ar combination of functions E.

N+1 0 0 N 0 N1 N 1
M[ 0 N+1 0 ]:elllM[of\)fo]—M[ 0 1N]—M[ONC1)].
0 0 N+1 " 0 0N N+10 0 10N

N[ O N 1]
m 0 1 N| =
N+1 0 O
N[N—lOO] N[N—lo 1 ]-I- N[N—lo 2 ]
e m 1 N O| —e m 1 N O e m 1 N O
2,0,1 O ON 1,0,2 O 0 N-1 0,0,3 O O N-=-2
371 (Y4 8] =eanom 5" § 8] +2e200m["9" § ]
m — e m O NO e m —
1 ON 2,1,0 1 O N 2,0,1 1 O N-1
N[N—lo 1 N[N—lo 1 ]—|- N[N—lo 2 ]
e m O N O — e m O N 1 e m O N O
1,1,1 1 O N-1 1,0,2 1 O N-=-2 0,1,2 1 O N-=-2






