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Abstract
We present two families of permutations representations. One

of them is a generalization of the conjugacy representation of

Sn while the other is an interpolation between natural

representations of Sn × Sn. We compute characters and

present combinatorial formulas of multiplicities of irreducible

representations in our representations.
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The regular representation

A group G acts on itself by left multiplication:

xg = gx.

The conjugacy representation:

A group G acts on itself by conjugacy:

xg = gxg−1.

Fact: Every irreducible representation ρ of G

appears in the regular representation dimρ times.

Theorem. (Frumkin, 1986): Every irreducible
representation of Sn appears in the conjugacy
representation at least once.
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Two permutations on GL(n,F)

Action α:

G = Sn × Sn, F = any field.

G acts on GLn(F) by:

(π, σ) •A = πAσ−1

Action β:

G = Sn = {(π, π) | π ∈ Sn} ⊂ Sn × Sn

G acts on GLn(F) by:

(π, π) ◦A = πAπ−1

For M ⊂ GLn(F) closed under the action α:
αM = permutation representation of Sn × Sn on
M .

βM = permutation representation of Sn on M .
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Examples of subsets closed under α

o(A) = number of nonzero entries in A.

η(A) ` o(A) = row sum vector.

θ(A) ` o(A) = column sum vector.

Example

A =




1 0 0 0

1 1 1 0

0 0 1 0

1 1 1 1




η(A) = (4, 3, 1, 1) ` 9

θ(A) = (3, 3, 2, 1) ` 9.
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Examples of subsets closed under α (Cotd.)

Un,k is the n× n matrix :

Upper left k × k block: upper triangular with the
upper triangle filled by ones.

Upper right k × (n− k) block is filled by ones.

Lower left (n− k)× k block: zero matrix.

Lower right (n− k)× (n− k) block: identity
matrix In−k.

Example:

U7,3 =




1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



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Remark The matrix Un,n−1 = Un,n is the upper
triangular matrix whose upper triangle is filled by
ones.

Example:

U7,7 =




1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1



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Examples of subsets closed under α (Cotd.)

Define
Hk

n = {πUn,kσ | π, σ ∈ Sn}

For A ∈ Hk
n:

η(A) = (n, n− 1, . . . , n− (k − 1), 1n−k)

θ(A) = ((k + 1)n−(k−1), k, k − 1, . . . , 2, 1).

Easy to proof that Hk
n consists of exactly those

matrices A whose η(A) and θ(A) are as above.

Remark

|Hk
n| = n!(n)k

where (n)k =
(
n
k

)
k!.
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Remark Hn−1
n = Hn

n

Hn
n = {πUn,nσ | π, σ ∈ Sn}

= {A ∈ GLn(Z2) |
η(A) = θ(A) = (n, n− 1, n− 2, . . . , 2, 1)}.

|Hn
n | = (n!)2 = |Sn × Sn|
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Theorem: The representation αHn
n

is isomorphic
to the regular representation of Sn × Sn.

Proof: Define a bijection Hn
n ←→ Sn × Sn by:

πUn,nσ 7→ (π, σ−1).

Since each row (column) of Un,n has a different
number of 1-s (from 1 to n), we have:
π1Un,nσ1 = π2Un,nσ2 ⇐⇒ π1 = π2 and σ1 = σ2.
So, ϕ is well-defined and bijective. Now:

(ω, τ)•(πUn,nσ) =

= ωπUn,nστ−1 ϕ7→ (ωπ, τσ−1)

= (ω, τ)(π, σ−1).

Thus ϕ is an isomorphism of Sn × Sn - modules
between Hn

n and the (left) regular representation
of Sn × Sn.
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A mapping from Hk
n to Sn:

Define t : Hk
n −→ Sk by

πUn,kσ 7→ πσ.

t is a surjection preserving the action α of
Sn × Sn and the action β of Sn. Thus, t gives rise
to an epimorphism between βHk

n
and the

conjugacy representation of Sn.

Theorem:

Every irreducible representation of Sn is a
constituent in βHk

n
.
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Characters of α and β:

For every M ⊂ GLn(F) closed under the action α:

χαM
(π, σ) = #{A ∈ M | πAσ−1 = A}

= #{A ∈ M | π = AσA−1}
Fact.

Two permutations π, σ are conjugate iff they are
similar as matrices.

Corollary.

For every finite set M ⊆ GLn(F) invariant under
the action α of Sn × Sn:

If π and σ are conjugate in Sn, then

χαM ((π, σ)) = χαM ((π, π)) =

= χβM
(π) = #{A ∈ M |πA = Aπ} .

If π is not conjugate to σ in Sn, then

χαM
((π, σ)) = 0 .
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Example:

Take M = Sn (embedded in GLn(F) as
permutation matrices). In this case βM is just the
conjugacy representation of Sn and a direct
calculation shows that for every π ∈ Sn:

χβM (π) = |Cπ| = n!
|C(π)| = χαM (π, π).

For every irreducible representation of Sn

corresponding to a partition λ ` n one has:

m(λ, βM ) =
1
n!

∑

π∈Sn

χλ(π)χβM
(π)

=
1
n!

∑

π∈Sn

χλ(π)
n!

|C(π)|

=
∑

C∈Ŝn

|C|χλ(C)
1
|C| =

∑

C∈Ŝn

χλ(C) .
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Also by direct calculation,

m
(
(λ, λ), αM

)
= 1,

and

m
(
(λ, µ), αM

)
= 0 when λ 6= µ.

This means that αM
∼= ⊕

λ`n Sλ ⊗ Sλ where Sλ

is the irreducible Sn- module corresponding to λ.
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Characters of α and β on Hk
n.

Theorem:

χβ
Hk

n
(π) = χα

Hk
n
(π, π) = |Cπ|(n− |supp(π)|)k

= χConj(π)(n− |supp(π)|)k.

where

χConj(π) = |Cπ| = conjugacy character of Sn

and
supp(π) = {i ∈ [1..n] | π(i) 6= i}.
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Proof: Denote t = |supp(π)|. Since the character
is a class function, we can assume that π is of the
following form:

π =


πt 0

0 In−t


 ,

where πt ∈ St has no fixed points.

We have to calculate the number of matrices
A ∈ Hk

n which commute with π. Recall that

Hk
n ={A | η(A) = (n, n− 1, . . . , n− (k − 1), 1n−k),

θ(A) = ((k + 1)n−k , k , (k − 1) , . . . , 2 , 1)}
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For every A ∈ Hk
n, denote by δ(A) the row sums

vector of A and by ε(A) the column sums vector
of A.

For example:

If

A =




1 0 0 0

1 1 1 0

0 0 1 0

1 1 1 1



∈ H2

4

then δ(A) = (1, 3, 1, 4) ² 9 and
ε(A) = (3, 2, 3, 1) ² 9.
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Note that every A ∈ Hk
n has k rows with

row sums ranging from n to n− k + 1,

these will be called ‘long rows’.

The other n− k rows are monomial.

Likely, A has k columns with column sums

ranging from 1 to k, these will be called

‘short columns’.

The other n− k columns have k + 1 ones
each.
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In πA only the first t rows of A are

permuted while in Aπ only the first

t columns of A arepermuted.

Note also that for every π ∈ Sn we
have: δ(Aπ) = δ(A) and
ε(πA) = ε(A).
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Since all the ‘long’ rows of A have

different row sums, if one of the first t

rows of A is ‘long’ then

δ(πA) 6= δ(A) = δ(Aπ)

and thus Aπ 6= πA.
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Hence, we can assume that all the

‘long’ rows in A are located after

the first t rows of A.

This implies that the first t rows of

A are monomial.

By similar arguments, the ‘short’
columns are located after the first t
columns.
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The upper right t× (n− t) block of
A is the zero matrix.

Indeed, if Ai,j = 1 for some 1 ≤ i ≤ t and
t + 1 ≤ j ≤ n then for each 1 ≤ i′ ≤ t with i′ 6= i

we have:
Ai′,j 6= 1 since A is invertible.

Now, in πA this 1 moves to another place while in
Aπ it is left in its original position.

We have now that the upper left t× t
block of A is a permutation matrix which
commutes with πt in St .
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By similar arguments, each row of the lower left
(n− t)× t block must be or completely filled by
1’s or completely filled by zeros while the lower
right (n− t)× (n− t) block is a matrix from Hk

n−t.

Ct
π denotes the centralizer subgroup of the

element π in St

Now calculate:

χβ
Hk

n
(π) = #{A ∈ Hk

n |πA = Aπ}
= |Ct

π||Hk
n−t| = |Ct

π|(n− t)!(n− t)k

= |Cπ|(n− t)k = (n− |supp(π)|)kχConj(π) .

22



The decomposition of β into irreducibles

Theorem:

Every irreducible representation of Sn is a
constituent in βHk

n
.

Proposition:
Let λ ` n.

m
(
λ, βHk

n

)
=

∑

C∈Ŝn

χλ(C)(n− |supp(C)|)k ,

where Ŝn denotes the set of conjugacy classes of
Sn.
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Asymptotic behavior of βHk
n

Theorem for conj. repr. of Sn

(Roichman, 97): m(λ) = multiplicity of the
irreducible representation Sλ in the conjugacy
representation of Sn. fλ = degree of Sλ.
Then for any 0 < ε < 1 there exist 0 < δ(ε) and
N(ε) such that, for any partition λ of n > N(ε)
with max{λ1

n ,
λ′1
n } ≤ δ(ε),

1− ε <
m(λ)
fλ

< 1 + ε.

Theorem for our repr. βHk
n
: Under the

conditions of the above Roichman’s theorem, for
any k ≤ n

1− ε <
m(λ, βHk

n
)

(n)kfλ
< 1 + ε.
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Proof: In Roichman’s work it is shown that
under the above conditions

|m(λ)− fλ| =
∣∣∣∣∣

∑

C∈Ŝn

χλ(C)− fλ

∣∣∣∣∣

=

∣∣∣∣∣
∑

C 6=id

χλ(C)

∣∣∣∣∣ ≤ εfλ,

which immediately implies the above Roichman’s
Theorem.
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In our case we have the trivial observation
(n− |supp(C)|)k ≤ (n)k which together with the
above gives us:

|m(λ, βHk
n
)− (n)kfλ| =

=

∣∣∣∣∣
∑

C∈Ŝn

χλ(C)(n− |supp(C)|)k − (n)kfλ

∣∣∣∣∣

=

∣∣∣∣∣
∑

C 6=id

χλ(C)(n− |supp(C)|)k

∣∣∣∣∣ 6

6 (n)k

∣∣∣∣∣
∑

C 6=id

χλ(C)

∣∣∣∣∣ ≤ (n)kεfλ,

and our claim is proved.
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Theorem for conj. character of Sn

(Adin, Frumkin, 86)

χ
(n)
R =regular character of Sn.

χ
(n)
Conj = conjugacy character of Sn.

lim
n→∞

‖χ(n)
R ‖

‖χ(n)
Conj‖

= lim
n→∞

〈χ(n)
R , χ

(n)
Conj〉

‖χ(n)
R ‖ · ‖χ(n)

Conj‖
= 1

where ‖ ‖ denotes the norm with respect to the
standard scalar product of characters.

Theorem for character of βHk
n

lim
n→∞

‖(n)kχ
(n)
R ‖

‖χβ
Hk

n
‖ = 1 ,

lim
n→∞

〈(n)kχ
(n)
R , χβ

Hk
n
〉

‖(n)kχ
(n)
R ‖ · ‖χβ

Hk
n
‖

= lim
n→∞

〈χ(n)
R , χβ

Hk
n
〉

‖χ(n)
R ‖ · ‖χβ

Hk
n
‖

= 1 ,

where k is bounded or tends to infinity remaining

less than n.
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The representations αM for M = Hk
n

αH0
n

∼= ⊕
λ`n Sλ ⊗ Sλ,

αHn
n
∼= ⊕

λ,ρ`n fλfρSλ ⊗ Sρ.

αHk
n

can be seen as a type of an interpolation
between these two representations.

Proposition:

For any n and any 0 ≤ k ≤ n,

m
(
(λ, µ), αHk

n

)
=

1

n!

∑
π∈Sn

χλ(π)χµ(π)(n−|supp(π)|)k.
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A combinatorial view of αHk
n

Definition: Define the following subset of Hk
n:

W k
n = {πkπn−kUn,kσkσn−k |

πk, σk ∈ Sk and πn−k, σn−k ∈ Sn−k}.

W k
n = orbit of the matrix Un,k under the action

α, restricted to the subgroup
(Sk × Sn−k)× (Sk × Sn−k).

ωn,k = permutation representation of
(Sk × Sn−k)× (Sk × Sn−k) on W k

n , corresponding
to the action α .

Proposition:

ωn,k
∼= Rk ⊗


 ⊕

ρ`n−k

Sρ ⊗ Sρ


 ,

where Rk is the regular representation of Sk×Sk.
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Proof:

Un,k =


 Uk,k 1k,n−k

0n−k,k In−k


 ,

πkπn−kUn,kσkσn−k =


πkUk,kσk 1k,n−k

0n−k,k πn−kσn−k


 ,

Thus, we can view the action α of
(Sk × Sn−k)× (Sk × Sn−k) on W k

n as composed
of two independent actions. One of them is the
action of Sk×Sk on Hk

k (the upper left block) and
is actually the regular representation of Sk × Sk,
while the second one is an action of Sn−k × Sn−k

on Sn−k (the lower right block) which gives rise
to the representation

⊕
ρ`n−k Sρ ⊗ Sρ.
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This implies the following:

Claim:

χωn,k
(πkπn−k, σkσn−k) =

=





0 πk 6= e or σk 6= e .

0 πn−k � σn−k ∈ Sn−k .

(k!)2|Cn−k
πn−k

| πk = σk = e and

πn−k ∼ σn−k ∈ Sn−k
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Theorem:

αHk
n

= ωn,k ↑Sn×Sn

(Sk×Sn−k)×(Sk×Sn−k) .

Proof: Write G = Sn × Sn and
H = (Sk × Sn−k)× (Sk × Sn−k) and identify
G/H with a prescribed set of left transversals of
H in G.

By the definition of W k
n we have H •W k

n = W k
n

and therefore, the space spanCW k
n is invariant the

•-action (which is exactly the action α) of H.
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We clearly have:

Hk
n = {g • Un,k | g ∈ Sn × Sn}

= {(σh) • Un,k | σ ∈ G/H, h ∈ H}
= {σ • (h • Un,k) | σ ∈ G/H, h ∈ H}
= {σ •W k

n | σ ∈ G/H}
=

⊎

σ∈G/H

σ •W k
n ,

where ] denotes disjoint union.

This implies that

αHk
n

=
⊕

σ∈G/H

σ • spanCW
k
n

= ωn,k ↑Sn×Sn

(Sk×Sn−k)×(Sk×Sn−k) ,

as claimed.
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Theorem:

m
(
(λ, µ) , αHk

n

)
= 〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉 ,

or, in other words,

αHk
n

=
⊕

λ,µ`n

〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉Sλ ⊗ Sµ.

The proof uses our above propositions and the
Frobenius reciprocity formula.
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The number 〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉 has a

combinatorial interpretation. It follows from the
branching rule that this is just the number of
ways to delete k boundary cells from the
diagrams corresponding to the partitions λ and µ

to get the same Young diagram of n− k cells.

In particular:

〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉 = 0 when |λ4 µ| > 2k and

it does not vanish otherwise.

Corollary:
m

(
(λ, µ) , αHk

n

)
= 0 when |λ4 µ| > 2k and

m
(
(λ, µ) , αHk

n

) 6= 0 when |λ4 µ| ≤ 2k.
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Use the fact that

βHk
n

= αHk
n
↓Sn×Sn

Sn

to obtain some asymptotic relations.

For λ, µ, ν ` n, denote

γλµν =
1
n!

∑

π∈Sn

χλ(π)χµ(π)χν(π).

Easy to see that

Sλ ↑Sn×Sn

Sn

∼=
⊕

µ,ν`n

γλµνSµ ⊗ Sν .
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Remark: The numbers γλµν appear in the
context of the Schur functions within the
following formula:

sλ(xy) =
∑
µ,ν

γλµνsµ(x)sν(y),

where x = (x1, x2, . . .), y = (y1, y2, . . .) and (xy)
means the set of variables xiyj and sλ, sµ and sν

are the Schur functions corresponding to λ, µ and
ν respectively..
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m
(
λ, βHk

n

)
= 〈χβ

Hk
n
, χλ〉 = 〈χα

Hk
n
↓Sn×Sn

Sn
, χλ〉

= 〈χα
Hk

n
, χλ ↑Sn×Sn

Sn
〉

=
∑

µ,ν`n

〈χµ ↓Sn

Sn−k
, χν ↓Sn

Sn−k
〉γλµν .
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Now, using the above asymptotic for m
(
λ, βHk

n

)

we get the following

Proposition:

For any 0 < ε < 1 there exist 0 < δ(ε) and N(ε)
such that, for any partition λ of n > N(ε) with
max{λ1

n ,
λ′1
n } ≤ δ(ε),

1− ε <

∑
µ,ν`n〈χµ ↓Sn

Sn−k
, χν ↓Sn

Sn−k
〉γλµν

(n)kfλ
< 1 + ε.
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Substituting in the above proposition k = 0 and
k = n, we get the following:

1− ε <

∑
µ`n γλµµ

fλ
< 1 + ε,

1− ε <

∑
µ,ν`n γλµνfµfν

n!fλ
< 1 + ε.

Remark:

The first statement follows from Theorem R1 and
the equality

∑

µ`n

γλµµ =
∑

C∈Ŝn

χλ(C)

which itself follows from the character
orthogonality relations.
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Final remark:

Other versions of this work are obtained by
considering the actions α and β on certain subsets
of the colored permutation groups.

41


