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Abstract

We present two families of permutations representations. One
of them is a generalization of the conjugacy representation of
S, while the other is an interpolation between natural
representations of S,, X S,,. We compute characters and
present combinatorial formulas of multiplicities of irreducible

representations in our representations.
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The regular representation
A group G acts on itself by left multiplication:
xd = gx.
The conjugacy representation:
A group G acts on itself by conjugacy:
1

x9 = qgrg .

Fact: Every irreducible representation p of G
appears in the regular representation dimp times.

Theorem. (Frumkin, 1986): Every irreducible

representation of S,, appears in the conjugacy

representation at least once.




Two permutations on GL(n, )
Action a:

G =25, xS,, F=any field.

G acts on GL,(F) by:

(m,0) @ A =mAc™*
Action (3:

G=S,={(r,m) | 7€ S} TS, xS,
G acts on GL,(F) by:

(m,m) o0 A =mAn"*

For M C GL,(F) closed under the action a:
oy = permutation representation of S,, X .S, on
M.

By = permutation representation of .S, on M.




Examples of subsets closed under o
0o(A) = number of nonzero entries in A.
n(A) - o(A) = row sum vector.

0(A) F o(A) = column sum vector.

Example

0
1
0
1

n(A) = (4,3,1,1) F 9
O(A) = (3,3,2,1) - 9.




Examples of subsets closed under a (Cotd.)
Un.k 1s the n X n matrix :

Upper left k£ x k block: upper triangular with the
upper triangle filled by ones.

Upper right k& x (n — k) block is filled by ones.

Lower left (n — k) x k block: zero matrix.

Lower right (n — k) x (n — k) block: identity

matrix I,,_ .

Example:




Remark The matrix U, ,—1 = U, 1s the upper

triangular matrix whose upper triangle is filled by

ones.

Example:




Examples of subsets closed under a (Cotd.)

Define
HY = {nU,ro | 7,0 € S,}

For A € H:

n(A) = (n,n—l,...,n—(k—l),l”_k)

0(A) = ((k+1)" ¢ Y kk—1,...,21).

Easy to proof that H” consists of exactly those

matrices A whose 17(A) and 6(A) are as above.

Remark

Hy| = nl(n)




Remark H? 1 = H"

H) ={nU, o | m,0€ 5,}
={A e GL,(Zs) |
n(A)=60(A)=n,n—1,n—2,...

[Hy| = (n1)* =[Sy x Sl




Theorem: The representation agn is isomorphic

to the regular representation of S,, X .S,,.
Proof: Define a bijection H! «—— S,, X S,, by:
TUp o — (m,071).

Since each row (column) of U, ,, has a different
number of 1-s (from 1 to n), we have:
7T1Un,n0'1 = 7T2Un,n0'2 <= ] = 719 and g1 = 09.

So, ¢ is well-defined and bijective. Now:

(w, T)e(nUp no) =

= wrlUp por ! 5 (wr, oY)

= (w,7)(m, 07 ).

Thus ¢ is an isomorphism of S,, X S,, - modules
between H' and the (left) regular representation

of S, X Sy. []




A mapping from H to S,,:
Define t : H* — S}, by

Uy k0 +— To.

t is a surjection preserving the action a of

S, x S, and the action 8 of S,,. Thus, t gives rise
to an epimorphism between O and the
conjugacy representation of 5,.

Theorem:

Every irreducible representation of 5, is a

constituent in By .
n
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Characters of o and j:

For every M C GL,(FF) closed under the action «:

Xay (T,0) =#{A e M | TAoc ! =
—H#H{AEM |1 =AcA™ '}

Fact.

Two permutations 7, o are conjugate iff they are

similar as matrices.
Corollary.

For every finite set M C G L, (F) invariant under
the action o of S,, X .S,,:

If 7 and o are conjugate in S,,, then

Xon ((M,0)) = Xan, (7,7)) =
= xgy (M) =#{A e M |nA = Ar}.

If 7 is not conjugate to o in §5,,, then

Xan ((7,0)) = 0.
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Example:

Take M = S,, (embedded in GL,(IF) as
permutation matrices). In this case [, is just the
conjugacy representation of S, and a direct

calculation shows that for every m € S,:

X (1) = Cx| = T = Xy ().

For every irreducible representation of S,

corresponding to a partition A = n one has:

m()‘v 61\4) ol (T‘-)XﬁM (7‘-)
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Also by direct calculation,

m(()\, A), cvM) =1,

m((\, i), ) =0 when X\ # p.

This means that oy, = P, S* @ S* where S

is the irreducible S,,- module corresponding to A.
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Characters of o and 3 on HF.

Theorem:

X8y (T) = Xy (1, 7) = |Cr| (0 — | supp(7) )1

n

= XConj (1) (1 — [supp(m)| ).

where

XcCon;j(m) = |Cx| = conjugacy character of S,

and
supp(m) = {i € [1.n] | 7(i) # i}.
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Proof: Denote t = |supp(m)|. Since the character
is a class function, we can assume that 7 is of the

following form:

Tt 0

0 In—t

m =

where m; € S; has no fixed points.

We have to calculate the number of matrices
A € HF which commute with 7. Recall that

Hf,f ={A|n( ):(n,n—l,...,n—(k—l),l”_k),
0(A) =(k+1D)" % k, (k=1),...,2,1)}
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For every A € H¥, denote by §(A) the row sums

vector of A and by €(A) the column sums vector

of A.

For example:

0
1
0
1

then 0(A 1,3,1,4) E 9 and
c(A) = (3,2,3,1) E 9.
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Note that every A € H” has k rows with
row sums ranging from n ton — k£ + 1,

these will be called ‘long rows’.
The other n — k rows are monomial.

Likely, A has k columns with column sums

ranging from 1 to £k, these will be called

‘short columns’.

The other n — k columns have k£ 4+ 1 ones
each.

17



In mA only the first ¢ rows of A are

permuted while in A7m only the first

t columns of A arepermuted.

Note also that for every w € §,, we
have: 0(Am) = d(A) and
e(mA) =e(A).
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Since all the ‘long’ rows of A have
different row sums, if one of the first ¢
rows of A is ‘long’ then

d(mA) # 6(A) = d(Am)
and thus An # 7 A.
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Hence, we can assume that all the

‘long” rows in A are located after

the first ¢ rows of A.
This implies that the first ¢ rows ot

A are monomial.

By similar arguments, the ‘short’
columns are located after the first ¢
columns.

20



The upper right ¢ x (n —t) block of
A is the zero matrix.

Indeed, if A; ; =1 for some 1 <+4¢ <? and

t +1 < j <nthen for each 1 < i <t with ¢’ # i
we have:

Ay ; # 1 since A is invertible.

Now, in mA this 1 moves to another place while in

Am it is left in its original position.

We have now that the upper lett ¢t x ¢
block of A is a permutation matrix which
commutes with m; in S, .
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By similar arguments, each row of the lower left
(n —t) x t block must be or completely filled by
1’s or completely filled by zeros while the lower
right (n —t) x (n —t) block is a matrix from H¥_,.

C! denotes the centralizer subgroup of the

element 7 in S;

Now calculate:

X8 (m) = #{A c H* |rA = Ar}
= |Crl[H} | = |CI(n — t)!(n — 1)
= |Cr|(n =)k = (n — [supp(m)|) kX Conj () -
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The decomposition of § into irreducibles

Theorem:

Every irreducible representation of 5, is a

constituent in Brw.

Proposition:
Let A Fn.

m(A,ﬂHﬁ) — Z XA (C)(n — [supp(C)|)k

A~

ces,

where S,, denotes the set of conjugacy classes of

Sh.
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Asymptotic behavior of g

Theorem for conj. repr. of 5,
(Roichman, 97): m(\) = multiplicity of the
irreducible representation S* in the conjugacy

representation of S,,. f* = degree of S*.
Then for any 0 < € < 1 there exist 0 < §(e) and
N (g) such that, for any partition A of n > N (e)

with max{2L %/1} < d(¢e),

m(\)
2

Theorem for our repr. Syr: Under the

1l —e< <1+e.

conditions of the above Roichman’s theorem, for

any k <n

(n)k fA <l+e

1l —e<
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Proof: In Roichman’s work it is shown that

under the above conditions

m(A) - f| =

which immediately implies the above Roichman’s
Theorem.
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In our case we have the trivial observation
(n — |supp(C)|)r < (n)r which together with the

above gives us:

m(X, Be) — () f?] =

(C)(n — [supp(C))x, — (n)x f

(C)(n — [supp(C)|)k| <

< (n)knga

and our claim is proved.
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Theorem for conj. character of 5,
(Adin, Frumkin, 86)

ng):regular character of S,.

xgﬁnj = conjugacy character of S,,.

(n) (n) (n)
lim HXR | — lim <XR 7XCOW>

P I (Y R P

where | || denotes the norm with respect to the

standard scalar product of characters.

Theorem for character of g«

[(mixil _

lim

S P

(n)

()X i

s XB s ) (XRr
lim ) ” = lim ) =1,
2= x| s | "= I x|

7XBH§;L>

where k is bounded or tends to infinity remaining

less than n.
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The representations a;; for M = H*

= @)\I—n SA & SA’
=@, [N R S

can be seen as a type of an interpolation
between these two representations.

Proposition:

For any n and any 0 < k < n,

m () as ) = S (@) (0 [supp(m) i

TES
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A combinatorial view of o«

Definition: Define the following subset of HF:

W = {mmn_1Un kOk0n_ |

Tk, Ok € S, and Tn—ksOn—k € Sn—k}

Wq,’f = orbit of the matrix U, , under the action

a, restricted to the subgroup

(Sk X Sn—k) X (Sk X Sn—k)

wn. = permutation representation of
(Sk X Sp_r) x (Sp. x S,,_1) on WP, corresponding
to the action « .

Proposition:

where Ry is the regular representation of Si x Sk.
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| -

LUk Lok i n—k
TeTn—kUn kOKOn—1 =

On—kk  Tn—kOn—k

Thus, we can view the action « of

(Sk X Sp_r) X (Sg X Sp_1) on WF as composed

of two independent actions. One of them is the
action of Sg x Sy on HY (the upper left block) and
is actually the regular representation of Si x Sy,
while the second one is an action of S,,_1 X S, _k
on S, _r (the lower right block) which gives rise
to the representation &, ; S” ® S”. ]
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This implies the following:

Claim:

Xwn, k (TeTh—ky Ok Op—k) =

/

0 T, # € or o # e.

<k">2‘C’n—k 7Tk — O'k = e and

Tn—k

Tn—k ~ On—k € Sn—k
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Theorem:

L Sin XSh
&Hﬁ T wn’k T(SkXSn_k)X(SkXSn—k) '

Proof: Write G = 5,, x 5,, and

H = (Sk x Sh—x) X (Sk X Sp—k) and identify

G /H with a prescribed set of left transversals of
H in G.

By the definition of W* we have H o W = WF
and therefore, the space spancWF is invariant the
e-action (which is exactly the action «) of H.
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We clearly have:

Hy ={g®Uni| g€ Snx S}
={(ch)eU,|oc e G/H,he H}
={ce(helU,)|oceG/H,he H}
—{ceW" |0 e G/H)}

-l sewt,

ceG/H
where W denotes disjoint union.

This implies that

e = @ o e spanc WP
ceG/H
— Wn,k T(Sk XSpn_k)X(SgXSn_k)

as claimed.
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Theorem:

m ((A7/’L) JOéHfj) — <X>\ lgz_k7XM ng_,) )

or, in other words,

amy = P o 15 oxu 1sn_,) Y @ s*.
A, ubEn

The proof uses our above propositions and the
Frobenius reciprocity formula.
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The number () lgz_k,xu lgz_l) has a

combinatorial interpretation. It follows from the
branching rule that this is just the number of
ways to delete £ boundary cells from the
diagrams corresponding to the partitions A and pu
to get the same Young diagram of n — k cells.

In particular:

O 12" xu 127 ) =0 when |[AA p| > 2k and

it does not vanish otherwise.

Corollary:
m (A p) ,or) =0 when |[XA p| > 2k and
m (A p),opr) 20 when |XA p| < 2k.
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Use the fact that

5Hk — gk lS XS

to obtain some asymptotic relations.

For A\, i, v = n, denote

Vapw = Z XA () X () X (7).

| TES,

Easy to see that

S)\ TS XSnF\J @ ’)/)\/LVSM@SV-

w,vEn
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Remark: The numbers v,,, appear in the
context of the Schur functions within the

following formula:

sx(wy) = Z WAMVSu(x)Su(y)a

where x = (z1,22,...), y = (y1,¥%2,...) and (zy)
means the set of variables x;y; and sy, s, and s,

are the Schur functions corresponding to A\, ;1 and
v respectively..
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m (X Brr) = (Xo 0 X0) = (Xag 152770

<XO¢H§ s X\ ngxsn>

Sn Sn
Z O b sxw L™ )V -
w,vkEn
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Now, using the above asymptotic for m ()\, 15} Hﬁ)
we get the following

Proposition:

For any 0 < € < 1 there exist 0 < §(¢) and N(e)
such that, for any partition A of n > N(g) with

max {21, 21} < §(e),

Z v n<X lsn 7XI/ \L‘Sn >7>\ v
| — ¢ < Vi TR P50k Snokl Y 1 4e

(n)r f?
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Substituting in the above proposition k¥ = 0 and

k = n, we get the following:

Z,ul—n Mpp
f)\

ZM,I/I_'I’L ’YAMVf’us

n!fA

1l —e<

<1l+4-¢,

1l —e< <1l+4e.
Remark:

The first statement follows from Theorem R1 and

the equality

Z%\uu — Z XA (C)

pn ceS,

which itself follows from the character

orthogonality relations.
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Final remark:

Other versions of this work are obtained by

considering the actions a and 3 on certain subsets

of the colored permutation groups.
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