Permutation representations on $(0,1)$ invertible matrices

Yona Cherniavsky

Bar-Ilan University Ramat-Gan, Israel
Eli Bagno
Einstein Institute of Mathematics, Jerusalem, Israel.

Abstract

We present two families of permutations representations. One of them is a generalization of the conjugacy representation of S_{n} while the other is an interpolation between natural representations of $S_{n} \times S_{n}$. We compute characters and present combinatorial formulas of multiplicities of irreducible representations in our representations.

The regular representation

A group G acts on itself by left multiplication: $x^{g}=g x$.

The conjugacy representation:

A group G acts on itself by conjugacy:
$x^{g}=g x g^{-1}$.
Fact: Every irreducible representation ρ of G appears in the regular representation $\operatorname{dim} \rho$ times. Theorem. (Frumkin, 1986): Every irreducible representation of S_{n} appears in the conjugacy representation at least once.

Two permutations on $G L(n, \mathbb{F})$
Action α :
$G=S_{n} \times S_{n}, \mathbb{F}=$ any field.
G acts on $G L_{n}(\mathbb{F})$ by:

$$
(\pi, \sigma) \bullet A=\pi A \sigma^{-1}
$$

Action β :
$G=S_{n}=\left\{(\pi, \pi) \mid \pi \in S_{n}\right\} \subset S_{n} \times S_{n}$
G acts on $G L_{n}(\mathbb{F})$ by:

$$
(\pi, \pi) \circ A=\pi A \pi^{-1}
$$

For $M \subset G L_{n}(\mathbb{F})$ closed under the action α : $\alpha_{M}=$ permutation representation of $S_{n} \times S_{n}$ on M.
$\beta_{M}=$ permutation representation of S_{n} on M.

Examples of subsets closed under α
$o(A)=$ number of nonzero entries in A.
$\eta(A) \vdash o(A)=$ row sum vector.
$\theta(A) \vdash o(A)=$ column sum vector.
Example

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \\
& \eta(A)=(4,3,1,1) \vdash 9 \\
& \theta(A)=(3,3,2,1) \vdash 9 .
\end{aligned}
$$

Examples of subsets closed under α (Cotd.)
$U_{n, k}$ is the $n \times n$ matrix :
Upper left $k \times k$ block: upper triangular with the upper triangle filled by ones.

Upper right $k \times(n-k)$ block is filled by ones.
Lower left $(n-k) \times k$ block: zero matrix.
Lower right $(n-k) \times(n-k)$ block: identity matrix I_{n-k}.

Example:

$$
U_{7,3}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Remark The matrix $U_{n, n-1}=U_{n, n}$ is the upper triangular matrix whose upper triangle is filled by ones.

Example:

$$
U_{7,7}=\left(\begin{array}{lllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Examples of subsets closed under α (Cotd.)
Define

$$
H_{n}^{k}=\left\{\pi U_{n, k} \sigma \mid \pi, \sigma \in S_{n}\right\}
$$

For $A \in H_{n}^{k}$:

$$
\begin{aligned}
\eta(A) & =\left(n, n-1, \ldots, n-(k-1), 1^{n-k}\right) \\
\theta(A) & =\left((k+1)^{n-(k-1)}, k, k-1, \ldots, 2,1\right)
\end{aligned}
$$

Easy to proof that H_{n}^{k} consists of exactly those matrices A whose $\eta(A)$ and $\theta(A)$ are as above.

Remark

$$
\left|H_{n}^{k}\right|=n!(n)_{k}
$$

where $(n)_{k}=\binom{n}{k} k!$.

Remark $H_{n}^{n-1}=H_{n}^{n}$

$$
\begin{aligned}
H_{n}^{n}= & \left\{\pi U_{n, n} \sigma \mid \pi, \sigma \in S_{n}\right\} \\
= & \left\{A \in G L_{n}\left(\mathbb{Z}_{2}\right) \mid\right. \\
& \eta(A)=\theta(A)=(n, n-1, n-2, \ldots, 2,1)\} \\
& \quad\left|H_{n}^{n}\right|=(n!)^{2}=\left|S_{n} \times S_{n}\right|
\end{aligned}
$$

Theorem: The representation $\alpha_{H_{n}^{n}}$ is isomorphic to the regular representation of $S_{n} \times S_{n}$.

Proof: Define a bijection $H_{n}^{n} \longleftrightarrow S_{n} \times S_{n}$ by:

$$
\pi U_{n, n} \sigma \mapsto\left(\pi, \sigma^{-1}\right)
$$

Since each row (column) of $U_{n, n}$ has a different number of 1-s (from 1 to n), we have:
$\pi_{1} U_{n, n} \sigma_{1}=\pi_{2} U_{n, n} \sigma_{2} \Longleftrightarrow \pi_{1}=\pi_{2}$ and $\sigma_{1}=\sigma_{2}$. So, φ is well-defined and bijective. Now:

$$
\begin{aligned}
&(\omega, \tau) \bullet\left(\pi U_{n, n} \sigma\right)= \\
&=\omega \pi U_{n, n} \sigma \tau^{-1} \stackrel{\varphi}{\mapsto}\left(\omega \pi, \tau \sigma^{-1}\right) \\
&=(\omega, \tau)\left(\pi, \sigma^{-1}\right)
\end{aligned}
$$

Thus φ is an isomorphism of $S_{n} \times S_{n}$ - modules between H_{n}^{n} and the (left) regular representation of $S_{n} \times S_{n}$.

A mapping from H_{n}^{k} to S_{n} :
Define $t: H_{n}^{k} \longrightarrow S_{k}$ by

$$
\pi U_{n, k} \sigma \mapsto \pi \sigma
$$

t is a surjection preserving the action α of $S_{n} \times S_{n}$ and the action β of S_{n}. Thus, t gives rise to an epimorphism between $\beta_{H_{n}^{k}}$ and the conjugacy representation of S_{n}.

Theorem:

Every irreducible representation of S_{n} is a constituent in $\beta_{H_{n}^{k}}$.

Characters of α and β :

For every $M \subset G L_{n}(\mathbb{F})$ closed under the action α :

$$
\begin{aligned}
\chi_{\alpha_{M}}(\pi, \sigma) & =\#\left\{A \in M \mid \pi A \sigma^{-1}=A\right\} \\
& =\#\left\{A \in M \mid \pi=A \sigma A^{-1}\right\}
\end{aligned}
$$

Fact.
Two permutations π, σ are conjugate iff they are similar as matrices.

Corollary.

For every finite set $M \subseteq G L_{n}(\mathbb{F})$ invariant under the action α of $S_{n} \times S_{n}$:

If π and σ are conjugate in S_{n}, then

$$
\begin{aligned}
\chi_{\alpha_{M}}((\pi, \sigma)) & =\chi_{\alpha_{M}}((\pi, \pi))= \\
& =\chi_{\beta_{M}}(\pi)=\#\{A \in M \mid \pi A=A \pi\} .
\end{aligned}
$$

If π is not conjugate to σ in S_{n}, then

$$
\chi_{\alpha_{M}}((\pi, \sigma))=0 .
$$

Example:

Take $M=S_{n}$ (embedded in $G L_{n}(\mathbb{F})$ as
permutation matrices). In this case β_{M} is just the conjugacy representation of S_{n} and a direct calculation shows that for every $\pi \in S_{n}$:

$$
\chi_{\beta_{M}}(\pi)=\left|C_{\pi}\right|=\frac{n!}{|C(\pi)|}=\chi_{\alpha_{M}}(\pi, \pi)
$$

For every irreducible representation of S_{n} corresponding to a partition $\lambda \vdash n$ one has:

$$
\begin{aligned}
m\left(\lambda, \beta_{M}\right) & =\frac{1}{n!} \sum_{\pi \in S_{n}} \chi_{\lambda}(\pi) \chi_{\beta_{M}}(\pi) \\
& =\frac{1}{n!} \sum_{\pi \in S_{n}} \chi_{\lambda}(\pi) \frac{n!}{|C(\pi)|} \\
& =\sum_{C \in \hat{S}_{n}}|C| \chi_{\lambda}(C) \frac{1}{|C|}=\sum_{C \in \hat{S}_{n}} \chi_{\lambda}(C)
\end{aligned}
$$

Also by direct calculation,

$$
m\left((\lambda, \lambda), \alpha_{M}\right)=1
$$

and

$$
m\left((\lambda, \mu), \alpha_{M}\right)=0 \quad \text { when } \lambda \neq \mu
$$

This means that $\alpha_{M} \cong \bigoplus_{\lambda \vdash n} S^{\lambda} \otimes S^{\lambda}$ where S^{λ} is the irreducible $S_{n^{-}}$module corresponding to λ.

Characters of α and β on H_{n}^{k}. Theorem:

$$
\begin{aligned}
\chi_{\beta_{H_{n}^{k}}}(\pi)=\chi_{\alpha_{H_{n}^{k}}}(\pi, \pi) & =\left|C_{\pi}\right|(n-|\operatorname{supp}(\pi)|)_{k} \\
& =\chi_{\operatorname{Conj}}(\pi)(n-|\operatorname{supp}(\pi)|)_{k} .
\end{aligned}
$$

where

$$
\chi_{C o n j}(\pi)=\left|C_{\pi}\right|=\text { conjugacy character of } S_{n}
$$

and

$$
\operatorname{supp}(\pi)=\{i \in[1 . . n] \mid \pi(i) \neq i\} .
$$

Proof: Denote $t=|\operatorname{supp}(\pi)|$. Since the character is a class function, we can assume that π is of the following form:

$$
\pi=\left(\begin{array}{cc}
\pi_{t} & 0 \\
0 & I_{n-t}
\end{array}\right)
$$

where $\pi_{t} \in S_{t}$ has no fixed points.
We have to calculate the number of matrices $A \in H_{n}^{k}$ which commute with π. Recall that

$$
\begin{aligned}
H_{n}^{k}= & \left\{A \mid \eta(A)=\left(n, n-1, \ldots, n-(k-1), 1^{n-k}\right),\right. \\
& \left.\theta(A)=\left((k+1)^{n-k}, k,(k-1), \ldots, 2,1\right)\right\}
\end{aligned}
$$

For every $A \in H_{n}^{k}$, denote by $\delta(A)$ the row sums vector of A and by $\varepsilon(A)$ the column sums vector of A.

For example:
If

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) \in H_{4}^{2}
$$

then $\delta(A)=(1,3,1,4) \vDash 9$ and
$\varepsilon(A)=(3,2,3,1) \vDash 9$.

Note that every $A \in H_{n}^{k}$ has k rows with row sums ranging from n to $n-k+1$, these will be called 'long rows'.

The other $n-k$ rows are monomial. Likely, A has k columns with column sums ranging from 1 to k, these will be called 'short columns'.

The other $n-k$ columns have $k+1$ ones each.

In πA only the first t rows of A are permuted while in $A \pi$ only the first t columns of A arepermuted.

Note also that for every $\pi \in S_{n}$ we have: $\delta(A \pi)=\delta(A)$ and $\varepsilon(\pi A)=\varepsilon(A)$.

Since all the 'long' rows of A have different row sums, if one of the first t rows of A is 'long' then

$$
\delta(\pi A) \neq \delta(A)=\delta(A \pi)
$$

and thus $A \pi \neq \pi A$.

Hence, we can assume that all the 'long' rows in A are located after the first t rows of A.

This implies that the first t rows of A are monomial.
By similar arguments, the 'short' columns are located after the first t columns.

The upper right $t \times(n-t)$ block of A is the zero matrix.

Indeed, if $A_{i, j}=1$ for some $1 \leq i \leq t$ and $t+1 \leq j \leq n$ then for each $1 \leq i^{\prime} \leq t$ with $i^{\prime} \neq i$ we have:
$A_{i^{\prime}, j} \neq 1$ since A is invertible.
Now, in πA this 1 moves to another place while in $A \pi$ it is left in its original position.
We have now that the upper left $t \times t$ block of A is a permutation matrix which commutes with π_{t} in S_{t}.

By similar arguments, each row of the lower left $(n-t) \times t$ block must be or completely filled by 1's or completely filled by zeros while the lower right $(n-t) \times(n-t)$ block is a matrix from H_{n-t}^{k}. C_{π}^{t} denotes the centralizer subgroup of the element π in S_{t}

Now calculate:

$$
\begin{aligned}
\chi_{\beta_{H_{n}^{k}}}(\pi) & =\#\left\{A \in H_{n}^{k} \mid \pi A=A \pi\right\} \\
& =\left|C_{\pi}^{t}\right|\left|H_{n-t}^{k}\right|=\left|C_{\pi}^{t}\right|(n-t)!(n-t)_{k} \\
& =\left|C_{\pi}\right|(n-t)_{k}=(n-|\operatorname{supp}(\pi)|)_{k} \chi_{\operatorname{Conj}}(\pi) .
\end{aligned}
$$

The decomposition of β into irreducibles

Theorem:

Every irreducible representation of S_{n} is a constituent in $\beta_{H_{n}^{k}}$.

Proposition:

Let $\lambda \vdash n$.

$$
m\left(\lambda, \beta_{H_{n}^{k}}\right)=\sum_{C \in \hat{S}_{n}} \chi_{\lambda}(C)(n-|\operatorname{supp}(C)|)_{k},
$$

where \hat{S}_{n} denotes the set of conjugacy classes of S_{n}.

Asymptotic behavior of $\beta_{H_{n}^{k}}$

Theorem for conj. repr. of S_{n}
(Roichman, 97): $m(\lambda)=$ multiplicity of the irreducible representation S^{λ} in the conjugacy representation of $S_{n} . f^{\lambda}=$ degree of S^{λ}.
Then for any $0<\varepsilon<1$ there exist $0<\delta(\varepsilon)$ and $N(\varepsilon)$ such that, for any partition λ of $n>N(\varepsilon)$ with $\max \left\{\frac{\lambda_{1}}{n}, \frac{\lambda_{1}^{\prime}}{n}\right\} \leq \delta(\varepsilon)$,

$$
1-\varepsilon<\frac{m(\lambda)}{f^{\lambda}}<1+\varepsilon
$$

Theorem for our repr. $\beta_{H_{n}^{k}}$: Under the conditions of the above Roichman's theorem, for any $k \leq n$

$$
1-\varepsilon<\frac{m\left(\lambda, \beta_{H_{n}^{k}}\right)}{(n)_{k} f^{\lambda}}<1+\varepsilon .
$$

Proof: In Roichman's work it is shown that under the above conditions

$$
\begin{aligned}
\left|m(\lambda)-f^{\lambda}\right| & =\left|\sum_{C \in \hat{S}_{n}} \chi_{\lambda}(C)-f^{\lambda}\right| \\
& =\left|\sum_{C \neq i d} \chi_{\lambda}(C)\right| \leq \varepsilon f^{\lambda},
\end{aligned}
$$

which immediately implies the above Roichman's Theorem.

In our case we have the trivial observation $(n-|\operatorname{supp}(C)|)_{k} \leq(n)_{k}$ which together with the above gives us:

$$
\begin{aligned}
& \left|m\left(\lambda, \beta_{H_{n}^{k}}\right)-(n)_{k} f^{\lambda}\right|= \\
& =\left|\sum_{C \in \hat{S}_{n}} \chi_{\lambda}(C)(n-|\operatorname{supp}(C)|)_{k}-(n)_{k} f^{\lambda}\right| \\
& =\left|\sum_{C \neq i d} \chi_{\lambda}(C)(n-|\operatorname{supp}(C)|)_{k}\right| \leqslant \\
& \leqslant(n)_{k}\left|\sum_{C \neq i d} \chi_{\lambda}(C)\right| \leq(n)_{k} \varepsilon f^{\lambda},
\end{aligned}
$$

and our claim is proved.

Theorem for conj. character of S_{n} (Adin, Frumkin, 86)
$\chi_{R}^{(n)}=$ regular character of S_{n}.
$\chi_{C o n j}^{(n)}=$ conjugacy character of S_{n}.

$$
\lim _{n \rightarrow \infty} \frac{\left\|\chi_{R}^{(n)}\right\|}{\left\|\chi_{C o n j}^{(n)}\right\|}=\lim _{n \rightarrow \infty} \frac{\left\langle\chi_{R}^{(n)}, \chi_{C o n j}^{(n)}\right\rangle}{\left\|\chi_{R}^{(n)}\right\| \cdot\left\|\chi_{C o n j}^{(n)}\right\|}=1
$$

where || || denotes the norm with respect to the standard scalar product of characters.

Theorem for character of $\beta_{H_{n}^{k}}$

$$
\lim _{n \rightarrow \infty} \frac{\left\|(n)_{k} \chi_{R}^{(n)}\right\|}{\left\|\chi_{\beta_{H_{n}^{k}}}\right\|}=1
$$

$\lim _{n \rightarrow \infty} \frac{\left\langle(n)_{k} \chi_{R}^{(n)}, \chi_{\beta_{H_{n}^{k}}}\right\rangle}{\left\|(n)_{k} \chi_{R}^{(n)}\right\| \cdot\left\|\chi_{\beta_{H_{n}^{k}}}\right\|}=\lim _{n \rightarrow \infty} \frac{\left\langle\chi_{R}^{(n)}, \chi_{\beta_{H_{n}^{k}}}\right\rangle}{\left\|\chi_{R}^{(n)}\right\| \cdot\left\|\chi_{\beta_{H_{n}^{k}}}\right\|}=1$,
where k is bounded or tends to infinity remaining less than n.

The representations α_{M} for $M=H_{n}^{k}$
$\alpha_{H_{n}^{0}} \cong \bigoplus_{\lambda \vdash n} S^{\lambda} \otimes S^{\lambda}$,
$\alpha_{H_{n}^{n}} \cong \bigoplus_{\lambda, \rho \vdash n} f^{\lambda} f^{\rho} S^{\lambda} \otimes S^{\rho}$.
$\alpha_{H_{n}^{k}}$ can be seen as a type of an interpolation between these two representations.

Proposition:

For any n and any $0 \leq k \leq n$,
$m\left((\lambda, \mu), \alpha_{H_{n}^{k}}\right)=\frac{1}{n!} \sum_{\pi \in S_{n}} \chi_{\lambda}(\pi) \chi_{\mu}(\pi)(n-|\operatorname{supp}(\pi)|)_{k}$.

A combinatorial view of $\alpha_{H_{n}^{k}}$

Definition: Define the following subset of H_{n}^{k} :

$$
\begin{aligned}
W_{n}^{k}=\{ & \pi_{k} \pi_{n-k} U_{n, k} \sigma_{k} \sigma_{n-k} \mid \\
& \left.\pi_{k}, \sigma_{k} \in S_{k} \text { and } \pi_{n-k}, \sigma_{n-k} \in S_{n-k}\right\} .
\end{aligned}
$$

$W_{n}^{k}=$ orbit of the matrix $U_{n, k}$ under the action α, restricted to the subgroup
$\left(S_{k} \times S_{n-k}\right) \times\left(S_{k} \times S_{n-k}\right)$.
$\omega_{n, k}=$ permutation representation of
$\left(S_{k} \times S_{n-k}\right) \times\left(S_{k} \times S_{n-k}\right)$ on W_{n}^{k}, corresponding to the action α.

Proposition:

$$
\omega_{n, k} \cong R_{k} \otimes\left(\bigoplus_{\rho \vdash n-k} S^{\rho} \otimes S^{\rho}\right)
$$

where R_{k} is the regular representation of $S_{k} \times S_{k}$.

Proof:

$$
\begin{gathered}
U_{n, k}=\left(\begin{array}{cc}
U_{k, k} & 1_{k, n-k} \\
0_{n-k, k} & I_{n-k}
\end{array}\right) \\
\pi_{k} \pi_{n-k} U_{n, k} \sigma_{k} \sigma_{n-k}=\left(\begin{array}{cc}
\pi_{k} U_{k, k} \sigma_{k} & 1_{k, n-k} \\
0_{n-k, k} & \pi_{n-k} \sigma_{n-k}
\end{array}\right)
\end{gathered}
$$

Thus, we can view the action α of $\left(S_{k} \times S_{n-k}\right) \times\left(S_{k} \times S_{n-k}\right)$ on W_{n}^{k} as composed of two independent actions. One of them is the action of $S_{k} \times S_{k}$ on H_{k}^{k} (the upper left block) and is actually the regular representation of $S_{k} \times S_{k}$, while the second one is an action of $S_{n-k} \times S_{n-k}$ on S_{n-k} (the lower right block) which gives rise to the representation $\bigoplus_{\rho \vdash n-k} S^{\rho} \otimes S^{\rho}$.

This implies the following:
Claim:
$\chi_{\omega_{n, k}}\left(\pi_{k} \pi_{n-k}, \sigma_{k} \sigma_{n-k}\right)=$

$$
= \begin{cases}0 & \pi_{k} \neq e \text { or } \sigma_{k} \neq e \\ 0 & \pi_{n-k} \nsim \sigma_{n-k} \in S_{n-k} \\ (k!)^{2}\left|C_{\pi_{n-k}}^{n-k}\right| & \pi_{k}=\sigma_{k}=e \text { and } \\ & \pi_{n-k} \sim \sigma_{n-k} \in S_{n-k}\end{cases}
$$

Theorem:

$$
\alpha_{H_{n}^{k}}=\omega_{n, k} \uparrow_{\left(S_{k} \times S_{n-k}\right) \times\left(S_{k} \times S_{n-k}\right)}^{S_{n} \times S_{n}}
$$

Proof: Write $G=S_{n} \times S_{n}$ and
$H=\left(S_{k} \times S_{n-k}\right) \times\left(S_{k} \times S_{n-k}\right)$ and identify
G / H with a prescribed set of left transversals of H in G.

By the definition of W_{n}^{k} we have $H \bullet W_{n}^{k}=W_{n}^{k}$ and therefore, the space $\operatorname{span}_{\mathbb{C}} W_{n}^{k}$ is invariant the - -action (which is exactly the action α) of H.

We clearly have:

$$
\begin{aligned}
H_{n}^{k} & =\left\{g \bullet U_{n, k} \mid g \in S_{n} \times S_{n}\right\} \\
& =\left\{(\sigma h) \bullet U_{n, k} \mid \sigma \in G / H, h \in H\right\} \\
& =\left\{\sigma \bullet\left(h \bullet U_{n, k}\right) \mid \sigma \in G / H, h \in H\right\} \\
& =\left\{\sigma \bullet W_{n}^{k} \mid \sigma \in G / H\right\} \\
& =\biguplus_{\sigma \in G / H} \sigma \bullet W_{n}^{k},
\end{aligned}
$$

where \uplus denotes disjoint union.
This implies that

$$
\begin{aligned}
\alpha_{H_{n}^{k}} & =\bigoplus_{\sigma \in G / H} \sigma \bullet \operatorname{span}_{\mathbb{C}} W_{n}^{k} \\
& =\omega_{n, k} \uparrow_{\left(S_{k} \times S_{n-k}\right) \times\left(S_{k} \times S_{n-k}\right)}^{S_{n} \times S_{n}}
\end{aligned}
$$

as claimed.

Theorem:

$$
m\left((\lambda, \mu), \alpha_{H_{n}^{k}}\right)=\left\langle\chi_{\lambda} \downarrow_{S_{n-k}}^{S_{n}}, \chi_{\mu} \downarrow_{S_{n-k}}^{S_{n}}\right\rangle,
$$

or, in other words,

$$
\alpha_{H_{n}^{k}}=\bigoplus_{\lambda, \mu \vdash n}\left\langle\chi_{\lambda} \downarrow_{S_{n-k}}^{S_{n}}, \chi_{\mu} \downarrow_{S_{n-k}}^{S_{n}}\right\rangle S^{\lambda} \otimes S^{\mu} .
$$

The proof uses our above propositions and the Frobenius reciprocity formula.

The number $\left\langle\chi_{\lambda} \downarrow_{S_{n-k}}^{S_{n}}, \chi_{\mu} \downarrow_{S_{n-k}}^{S_{n}}\right\rangle$ has a combinatorial interpretation. It follows from the branching rule that this is just the number of ways to delete k boundary cells from the diagrams corresponding to the partitions λ and μ to get the same Young diagram of $n-k$ cells.

In particular:

$\left\langle\chi_{\lambda} \downarrow_{S_{n-k}}^{S_{n}}, \chi_{\mu} \downarrow_{S_{n-k}}^{S_{n}}\right\rangle=0$ when $|\lambda \triangle \mu|>2 k$ and it does not vanish otherwise.

Corollary:

$m\left((\lambda, \mu), \alpha_{H_{n}^{k}}\right)=0$ when $|\lambda \triangle \mu|>2 k$ and $m\left((\lambda, \mu), \alpha_{H_{n}^{k}}\right) \neq 0$ when $|\lambda \triangle \mu| \leq 2 k$.

Use the fact that

$$
\beta_{H_{n}^{k}}=\alpha_{H_{n}^{k}} \downarrow_{S_{n}}^{S_{n} \times S_{n}}
$$

to obtain some asymptotic relations.
For $\lambda, \mu, \nu \vdash n$, denote

$$
\gamma_{\lambda \mu \nu}=\frac{1}{n!} \sum_{\pi \in S_{n}} \chi_{\lambda}(\pi) \chi_{\mu}(\pi) \chi_{\nu}(\pi)
$$

Easy to see that

$$
S^{\lambda} \uparrow_{S_{n}}^{S_{n} \times S_{n}} \cong \bigoplus_{\mu, \nu \vdash n} \gamma_{\lambda \mu \nu} S^{\mu} \otimes S^{\nu}
$$

Remark: The numbers $\gamma_{\lambda \mu \nu}$ appear in the context of the Schur functions within the following formula:

$$
s_{\lambda}(x y)=\sum_{\mu, \nu} \gamma_{\lambda \mu \nu} s_{\mu}(x) s_{\nu}(y)
$$

where $x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right)$ and $(x y)$ means the set of variables $x_{i} y_{j}$ and s_{λ}, s_{μ} and s_{ν} are the Schur functions corresponding to λ, μ and ν respectively..

$$
\begin{aligned}
m\left(\lambda, \beta_{H_{n}^{k}}\right) & =\left\langle\chi_{\beta_{H_{n}^{k}}}, \chi_{\lambda}\right\rangle=\left\langle\chi_{\alpha_{H_{n}^{k}}} \downarrow_{S_{n}}^{S_{n} \times S_{n}}, \chi_{\lambda}\right\rangle \\
& =\left\langle\chi_{\alpha_{H_{n}^{k}}}, \chi_{\lambda} \uparrow_{S_{n}}^{S_{n} \times S_{n}}\right\rangle \\
& =\sum_{\mu, \nu \vdash n}\left\langle\chi_{\mu} \downarrow_{S_{n-k}}^{S_{n}}, \chi_{\nu} \downarrow_{S_{n-k}}^{S_{n}}\right\rangle \gamma_{\lambda \mu \nu}
\end{aligned}
$$

Now, using the above asymptotic for $m\left(\lambda, \beta_{H_{n}^{k}}\right)$ we get the following

Proposition:

For any $0<\varepsilon<1$ there exist $0<\delta(\varepsilon)$ and $N(\varepsilon)$ such that, for any partition λ of $n>N(\varepsilon)$ with $\max \left\{\frac{\lambda_{1}}{n}, \frac{\lambda_{1}^{\prime}}{n}\right\} \leq \delta(\varepsilon)$,
$1-\varepsilon<\frac{\sum_{\mu, \nu \vdash n}\left\langle\chi_{\mu} \downarrow_{S_{n-k}}^{S_{n}}, \chi_{\nu} \downarrow_{S_{n-k}}^{S_{n}}\right\rangle \gamma_{\lambda \mu \nu}}{(n)_{k} f^{\lambda}}<1+\varepsilon$.

Substituting in the above proposition $k=0$ and $k=n$, we get the following:

$$
\begin{gathered}
1-\varepsilon<\frac{\sum_{\mu \vdash n} \gamma_{\lambda \mu \mu}}{f^{\lambda}}<1+\varepsilon, \\
1-\varepsilon<\frac{\sum_{\mu, \nu \vdash n} \gamma_{\lambda \mu \nu} f^{\mu} f^{\nu}}{n!f^{\lambda}}<1+\varepsilon .
\end{gathered}
$$

Remark:
The first statement follows from Theorem R1 and the equality

$$
\sum_{\mu \vdash n} \gamma_{\lambda \mu \mu}=\sum_{C \in \hat{S}_{n}} \chi_{\lambda}(C)
$$

which itself follows from the character orthogonality relations.

Final remark:
Other versions of this work are obtained by considering the actions α and β on certain subsets of the colored permutation groups.

