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set of all unordered λ-partitions of {1,2, . . . , n}.

Example:

H(4,3,3) 3
1 2 3 4
5 6 7
8 9 10

,
1 2 3 4
5 6 7
8 9 10

∈ H(4,3,3)′ .

Definition: We define the Wagner map ψλ : Hλ → Hλ′ by

{̄t}ψλ =
∑

g∈G{̄t}

{̄t}′g .
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5 6 7
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ψ(4,3,3)−→
∑

g∈G{t}

1 2 3 4
5 6 7
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g .

Independantly Siemon’s and Wagner (1986) and Stanley (2000)

conjectured the following:

Conjecture(SWS): Let λ ≥ λ′. Then the map ψλ is injective.

Coker (1993), Doran (1998), Dent (2000) and Pylyavskyy (2004)

have all proved that ψ(b2) is injective.

Theorem(CDDP): The map ψ(b2) is injective.



In 2004 Pylyavskyy was the first to show that ψλ may not be

injective by showing that H(6,2,2,1,1) has larger dimension than

H(6,2,2,1,1)′.
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Conjecture: The map ψλ has maximal rank.
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In 2006 Sivek showed that Pylyavskyy’s conjecture fails by show-

ing (using a computer program) that ψ(4,3,3) does not have max-

imal rank. He also proved the following:

Sivek’s Lemma: Let λ be obtained by adding a row to µ.

Suppose ψµ does not have maximal rank. Then ψλ does not

have maximal rank.

Example: The map ψ(4,3,3) does not have maximal rank. So

ψ(6,4,3,3) does not have maximal rank:

[(4,3,3)] =
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

, [(6,4,3,3)] =

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

.
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What can be saved from the SWS
conjecture?

Theorem 1.1: Let µ be a partition. Let λ be a partition ob-
tained by adding a ”good” column to the front of µ. Suppose
the Wagner map of µ is injective. Then the Wagner map of λ is
injective.

Example 1: (53) is injective if (33) is injective.

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦

→
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦

→
◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

.

Theorem 1.2: There exists an injective map H(ba) → H(ab)

when a ≤ 4 and b ≥ a.



Example 2: (5,3,3) is injective if (3,1,1) is injective.

◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

→
◦ ◦ ◦ ◦
◦ ◦
◦ ◦

→
◦ ◦ ◦
◦
◦

.
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Let Mλ denote the vector space whose basis is the set of ordered

λ-partitions.

1 2 3 4
5 6 7
8 9 10

6=
1 2 3 4
8 9 10
5 6 7

Definition: The twist group Sλ∗ of λ = (λ1, . . . , λr) is the set of

g ∈ Sr such that λi = λig.

Example: The twist group of (4,3,3) is S2 and the twist group

of (6,6,2,2,2) is S2 × S3.
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The twist group acts on Mλ by permuting rows in the natural
way:

1 2 3 4
5 6 7
8 9 10

(2,3)∗−→
1 2 3 4
8 9 10
5 6 7

.

Hence Hλ is isomorphic to the subspace of Mλ that is fixed by
this action.

Definition: The Wagner map ψλ : Mλ → Mλ′ is defined by
{t} 7→

∑
g∈G{t}{t}
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Compositions of Homomorphisms

Let ψ : Mλ →Mν be defined by {tλ} 7→
∑
g∈G{tλ}

{tν}g.

Consider the diagram:

Mλ φ−→ Mµ θ−→ Mν

{tλ} −→
∑

g∈G{tλ}
{tµ}g

{tµ} −→
∑

h∈G{tµ}
{tν}h

Lemma: Suppose every row of {tµ} is a subrow of {tλ} or {tν}.
Then ψ is a scalar multiple of φ ◦ θ.
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Example 1: The Wagner map ψλ : Mλ →Mλ′.

Mλ φ−→ Mλ1 θ−→ Mλ′

{t} −→
∑

g∈G{t}
{t}1g

{t}1 −→
∑

g∈G{t}1
{t}′g

1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

Lemma: The map ψλ is a scalar multiple of the composition
φ ◦ θ.

Lemma: Let µ be the partition obtained by removing the left
most column of λ. Then the map θ| is injective iff ψµ| is injective.



Example 2: The map φ : Mλ →Mλ1
.
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Theorem(Livingstone-Wagner 1965): The map εi : Mλ(i) →
Mλ(i+1)

is injective iff i > λi+1.
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1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
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Corollary: The map εi is injective if the hook hi,1 has arm at

least as long as its leg.

Example:

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• • • •

,
◦ ◦ ◦ ◦
• • • •
• ◦ ◦ ◦

,
• • • •
• ◦ ◦ ◦
• ◦ ◦ ◦



1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

→
1 2 3 4
5 6 7 8
9 10 11 12

Corollary: The map εi is injective if the hook hi,1 has arm at

least as long as its leg.

Example:

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
• • • •

,
◦ ◦ ◦ ◦
• • • •
• ◦ ◦ ◦

,
• • • •
• ◦ ◦ ◦
• ◦ ◦ ◦

Definition: The first column of [λ] is good if the arm of hi,1
is longer than the leg for all i.
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A reformulation of SWS

Definition: The node λi,j is removable if there is no node be-
low it or right of it. Let Ai denote the removable node in the
row of length λi.

Example:Let λ = (73,42,22)

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ • A1
◦ ◦ ◦ ◦
◦ ◦ ◦ • A2
◦ ◦
◦ • A3



Definition: For i < j define A(i, j) to be the unique hook whose

arm contains the removable node Ai and whose leg includes the

removable node Aj.



Definition: For i < j define A(i, j) to be the unique hook whose

arm contains the removable node Ai and whose leg includes the

removable node Aj.

A(1,2) =

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • •
◦ ◦ ◦ •
◦ ◦ ◦ •
◦ ◦
◦ ◦

A(1,3) =

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • • • • • •
◦ • ◦ ◦
◦ • ◦ ◦
◦ •
◦ •



Definition: For i < j define A(i, j) to be the unique hook whose
arm contains the removable node Ai and whose leg includes the
removable node Aj.

A(1,2) =

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ • • • •
◦ ◦ ◦ •
◦ ◦ ◦ •
◦ ◦
◦ ◦

A(1,3) =

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ • • • • • •
◦ • ◦ ◦
◦ • ◦ ◦
◦ •
◦ •

Definition: The hook A(i, j) is good if its arm is at least as long
as its leg. A partition is good if all A(i, j) are good. A partition
is bad if it is not good.
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Conjecture: The map ψλ| is injective iff λ is good.

Theorem 2.1: Suppose the Wagner map ψλ| is injective. Then

λ is good.

Theorem 2.2: Let λ be a partition with at most three parts.

Then the following are equivalent:

(i) There exists an injective map Hλ → Hλ′.

(ii) λ is good.

(iii) The Wagner map ψλ| is injective.
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Non-injective Wagner maps

Definition: Let Hλ denote the set of unordered λ-tabloids.

Definition: Let O(Hλ, Sν) denote the set of orbits of the Young
subgroup Sν on Hλ.

Definition: A generalized unordered partition of shape λ and
content ν is an unordered partition with ν1 copies of 1 and ν2
copies of 2 and so on. Let Hλ,ν denote the set of all generalized
unordered partitions of shape λ and content ν.

Example:

1 1 1 2
1 1 1
1 1 2

∈ H(4,3,3),(8,2)



Lemma: There exists a bijection O(Hλ, Sν) ↔ Hλ,ν.

Lemma: Suppose that there exists an injective map Hλ → Hλ′.

Then there exists an injective map Hλ,ν ↪→ Hλ′,ν for all partitions

ν.



Lemma: There exists a bijection O(Hλ, Sν) ↔ Hλ,ν.

Lemma: Suppose that there exists an injective map Hλ → Hλ′.

Then there exists an injective map Hλ,ν ↪→ Hλ′,ν for all partitions

ν.

Proposition: Let a− b < c. Then there exists no injective map

H(a,bc) → H(a,bc)′.



Example: The sets O(H4,3,3, S8,2) and O(H3,3,3,1, S8,2).

1 1 1 1
1 1 1
1 2 2

→
1 1 1 1
1 1 1
1 2 2

,

1 1 1 1
1 1 2
1 1 2

→
1 1 1 1
1 1 2
1 1 2

,

1 1 2 2
1 1 1
1 1 1

→
1 1 2 2
1 1 1
1 1 1

,

1 1 1 2
1 1 1
1 1 2

→
1 1 1 2
1 1 1
1 1 2

.



Proof of Theorem 2.1:
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Proof of Theorem 2.1:

[(12,11,9,73)] =

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ • • •
◦ ◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦ ◦ •

Recall Sivek’s Lemma:

Let λ be obtained by adding a row to µ. Suppose that ψµ| is not
injective. Then ψλ| is not injective.

Now µ = (9,73) is not injective by counting orbits as above so
λ = (12,11,9,73) is not injective and we are done.
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Four part partitions

Theorem 2.2 says that the Wagner map controls the existance

of an injective map Hλ → Hλ′ when λ has at most three parts...

Unfortinatly for four part partitions we have the following:

Proposition: Let a ≥ 2b and suppose λ = (a, b, b − 1, b − 1).

Then:

(i) The Wagner map of λ has a kernel, and

(ii) There exists an injective map Hλ → Hλ′.


