A Conjecture of Foulkes II

Castro Urdiales October 15 – 19, 2007

Tom McKay
UEA Norwich UK

Recap and history

We define H^{λ} to be the \mathbb{C} -vector space whose basis \mathcal{H}^{λ} is the set of all unordered λ -partitions of $\{1,2,\ldots,n\}$.

Recap and history

We define H^{λ} to be the \mathbb{C} -vector space whose basis \mathcal{H}^{λ} is the set of all unordered λ -partitions of $\{1, 2, \dots, n\}$.

Example:

Recap and history

We define H^{λ} to be the \mathbb{C} -vector space whose basis \mathcal{H}^{λ} is the set of all unordered λ -partitions of $\{1, 2, \dots, n\}$.

Example:

Definition: We define the Wagner map $\psi_{\lambda}: H^{\lambda} \to H^{\lambda'}$ by

$$\{\bar{t}\}\psi_{\lambda} = \sum_{g \in G_{\{\bar{t}\}}} \{\bar{t}\}'g \quad .$$

Example:

Example:

Independently Siemon's and Wagner (1986) and Stanley (2000) conjectured the following:

Conjecture(SWS): Let $\lambda \geq \lambda'$. Then the map ψ_{λ} is injective.

Example:

Independently Siemon's and Wagner (1986) and Stanley (2000) conjectured the following:

Conjecture(SWS): Let $\lambda \geq \lambda'$. Then the map ψ_{λ} is injective.

Coker (1993), Doran (1998), Dent (2000) and Pylyavskyy (2004) have all proved that $\psi_{(b^2)}$ is injective.

Theorem(CDDP): The map $\psi_{(b^2)}$ is injective.

In 2004 Pylyavskyy was the first to show that ψ_{λ} may not be injective by showing that $H^{(6,2,2,1,1)}$ has larger dimension than $H^{(6,2,2,1,1)'}$.

In 2004 Pylyavskyy was the first to show that ψ_{λ} may not be injective by showing that $H^{(6,2,2,1,1)}$ has larger dimension than $H^{(6,2,2,1,1)'}$.

He then reformulated the SWS conjecture to the following:

Conjecture: The map ψ_{λ} has maximal rank.

In 2006 Sivek showed that Pylyavskyy's conjecture fails by showing (using a computer program) that $\psi_{(4,3,3)}$ does not have maximal rank. He also proved the following:

In 2006 Sivek showed that Pylyavskyy's conjecture fails by showing (using a computer program) that $\psi_{(4,3,3)}$ does not have maximal rank. He also proved the following:

Sivek's Lemma: Let λ be obtained by adding a row to μ . Suppose ψ_{μ} does not have maximal rank. Then ψ_{λ} does not have maximal rank.

In 2006 Sivek showed that Pylyavskyy's conjecture fails by showing (using a computer program) that $\psi_{(4,3,3)}$ does not have maximal rank. He also proved the following:

Sivek's Lemma: Let λ be obtained by adding a row to μ . Suppose ψ_{μ} does not have maximal rank. Then ψ_{λ} does not have maximal rank.

Example: The map $\psi_{(4,3,3)}$ does not have maximal rank. So $\psi_{(6,4,3,3)}$ does not have maximal rank:

Theorem 1.1: Let μ be a partition. Let λ be a partition obtained by adding a "good" column to the front of μ . Suppose the Wagner map of μ is injective. Then the Wagner map of λ is injective.

Theorem 1.1: Let μ be a partition. Let λ be a partition obtained by adding a "good" column to the front of μ . Suppose the Wagner map of μ is injective. Then the Wagner map of λ is injective.

Example 1: (5^3) is injective if (3^3) is injective.

Theorem 1.1: Let μ be a partition. Let λ be a partition obtained by adding a "good" column to the front of μ . Suppose the Wagner map of μ is injective. Then the Wagner map of λ is injective.

Example 1: (5^3) is injective if (3^3) is injective.

Theorem 1.2: There exists an injective map $H^{(b^a)} \to H^{(a^b)}$ when $a \le 4$ and $b \ge a$.

Example 2: (5,3,3) is injective if (3,1,1) is injective.

Let M^{λ} denote the vector space whose basis is the set of **ordered** λ -partitions.

Let M^{λ} denote the vector space whose basis is the set of **ordered** λ -partitions.

Let M^{λ} denote the vector space whose basis is the set of **ordered** λ -partitions.

Definition: The twist group S_{λ^*} of $\lambda = (\lambda_1, \dots, \lambda_r)$ is the set of $g \in S_r$ such that $\lambda_i = \lambda_{ig}$.

Let M^{λ} denote the vector space whose basis is the set of **ordered** λ -partitions.

Definition: The twist group S_{λ^*} of $\lambda = (\lambda_1, \dots, \lambda_r)$ is the set of $g \in S_r$ such that $\lambda_i = \lambda_{ig}$.

Example: The twist group of (4,3,3) is S_2 and the twist group of (6,6,2,2,2) is $S_2 \times S_3$.

Hence H^{λ} is isomorphic to the subspace of M^{λ} that is fixed by this action.

Hence H^{λ} is isomorphic to the subspace of M^{λ} that is fixed by this action.

Definition: The Wagner map $\psi_{\lambda}: M^{\lambda} \to M^{\lambda'}$ is defined by $\{t\} \mapsto \sum_{g \in G_{\{t\}}} \{t\}'g$.

Hence H^{λ} is isomorphic to the subspace of M^{λ} that is fixed by this action.

Definition: The Wagner map $\psi_{\lambda}: M^{\lambda} \to M^{\lambda'}$ is defined by $\{t\} \mapsto \sum_{g \in G_{\{t\}}} \{t\}'g$.

$$\begin{array}{|c|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 \\ \hline 8 & 9 & 10 \\ \hline \end{array} \mapsto \sum_{g \in G_{\{t\}}} \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & g \\ 8 & 9 & 10 \\ \hline \end{cases} \quad g \quad .$$

Compositions of Homomorphisms

Let $\psi: M^{\lambda} \to M^{\nu}$ be defined by $\{t_{\lambda}\} \mapsto \sum_{g \in G_{\{t_{\lambda}\}}} \{t_{\nu}\}g$.

Compositions of Homomorphisms

Let $\psi: M^{\lambda} \to M^{\nu}$ be defined by $\{t_{\lambda}\} \mapsto \sum_{g \in G_{\{t_{\lambda}\}}} \{t_{\nu}\}g$.

Consider the diagram:

Compositions of Homomorphisms

Let $\psi: M^{\lambda} \to M^{\nu}$ be defined by $\{t_{\lambda}\} \mapsto \sum_{g \in G_{\{t_{\lambda}\}}} \{t_{\nu}\}g$.

Consider the diagram:

Lemma: Suppose every row of $\{t_{\mu}\}$ is a subrow of $\{t_{\lambda}\}$ or $\{t_{\nu}\}$. Then ψ is a scalar multiple of $\phi \circ \theta$.

Example 1: The Wagner map $\psi_{\lambda}: M^{\lambda} \to M^{\lambda'}$.

Example 1: The Wagner map $\psi_{\lambda}: M^{\lambda} \to M^{\lambda'}$.

Lemma: The map ψ_{λ} is a scalar multiple of the composition $\phi \circ \theta$.

Example 1: The Wagner map $\psi_{\lambda}: M^{\lambda} \to M^{\lambda'}$.

Lemma: The map ψ_{λ} is a scalar multiple of the composition $\phi \circ \theta$.

Lemma: Let μ be the partition obtained by removing the left most column of λ . Then the map θ is injective iff ψ_{μ} is injective.

Example 2: The map $\phi: M^{\lambda} \to M^{\lambda^1}$.

$$M^{\lambda} \xrightarrow{\epsilon_{0}} M^{\lambda^{(1)}} \xrightarrow{\epsilon_{1}} M^{\lambda^{(2)}} \xrightarrow{\epsilon_{2}} M^{\lambda^{1}}$$

$$\{t\} \longrightarrow \sum_{g_{0} \in G_{\{t\}}} \{t\}^{(1)} g_{0}$$

$$\{t\}^{(1)} \longrightarrow \sum_{g_{1} \in G_{\{t\}}} \{t\}^{(2)} g_{1}$$

$$\{t\}^{(2)} \qquad \rightarrow \qquad \sum_{g_2 \in G_{\{t\}}} \{t\}^1 g_2$$

Example 2: The map $\phi: M^{\lambda} \to M^{\lambda^1}$.

Theorem(Livingstone-Wagner 1965): The map $\epsilon_i: M^{\lambda^{(i)}} \to M^{\lambda^{(i+1)}}$ is injective iff $i > \lambda_{i+1}$.

1	2	3	4		1	2	3	4		1	2	3	4		1	2	3	4
5	6	7	8	\longrightarrow	5	6	7	8	\longrightarrow	5	6	7	8	\longrightarrow	5	6	7	8
9	10	11	12		9	10	11	12		9	10	11	12		9	10	11	12

Corollary: The map ϵ_i is injective if the hook $h_{i,1}$ has arm at least as long as its leg.

1	2	3	4		1	2	3	4		1	2	3	4		1	2	3	4
5	6	7	8	\longrightarrow	5	6	7	8	\longrightarrow	5	6	7	8	\longrightarrow	5	6	7	8
9	10	11	12		9	10	11	12		9	10	11	12		9	10	11	12

Corollary: The map ϵ_i is injective if the hook $h_{i,1}$ has arm at least as long as its leg.

Example:

1	2	3	4		1	2	3	4		1	2	3	4	1	2	3	4
5	6	7	8	\longrightarrow	5	6	7	8	\longrightarrow	5	6	7	8	_	_		_
9	10	11	12		9	10	11	12		9	10	11	12	9	10	11	12

Corollary: The map ϵ_i is injective if the hook $h_{i,1}$ has arm at least as long as its leg.

Example:

Definition: The first column of $[\lambda]$ is good if the arm of $h_{i,1}$ is longer than the leg for all i.

A reformulation of SWS

A reformulation of SWS

Definition: The node $\lambda_{i,j}$ is **removable** if there is no node below it or right of it. Let A_i denote the removable node in the row of length λ_i .

A reformulation of SWS

Definition: The node $\lambda_{i,j}$ is **removable** if there is no node below it or right of it. Let A_i denote the removable node in the row of length λ_i .

Example:Let $\lambda = (7^3, 4^2, 2^2)$

Definition: For i < j define A(i,j) to be the unique hook whose arm contains the removable node A_i and whose leg includes the removable node A_j .

Definition: For i < j define A(i,j) to be the unique hook whose arm contains the removable node A_i and whose leg includes the removable node A_j .

Definition: For i < j define A(i,j) to be the unique hook whose arm contains the removable node A_i and whose leg includes the removable node A_j .

Definition: The hook A(i,j) is good if its arm is at least as long as its leg. A partition is good if all A(i,j) are good. A partition is bad if it is not good.

Conjecture: The map $\psi_{\lambda}|$ is injective iff λ is good.

Conjecture: The map $\psi_{\lambda}|$ is injective iff λ is good.

Theorem 2.1: Suppose the Wagner map $\psi_{\lambda}|$ is injective. Then λ is good.

Conjecture: The map $\psi_{\lambda}|$ is injective iff λ is good.

Theorem 2.1: Suppose the Wagner map $\psi_{\lambda}|$ is injective. Then λ is good.

Theorem 2.2: Let λ be a partition with at most three parts. Then the following are equivalent:

- (i) There exists an injective map $H^{\lambda} \to H^{\lambda'}$.
- (ii) λ is good.
- (iii) The Wagner map ψ_{λ} is injective.

Definition: Let \mathcal{H}^{λ} denote the **set** of unordered λ -tabloids.

Definition: Let \mathcal{H}^{λ} denote the **set** of unordered λ -tabloids.

Definition: Let $\mathcal{O}(\mathcal{H}^{\lambda}, S_{\nu})$ denote the set of orbits of the Young subgroup S_{ν} on \mathcal{H}^{λ} .

Definition: Let \mathcal{H}^{λ} denote the **set** of unordered λ -tabloids.

Definition: Let $\mathcal{O}(\mathcal{H}^{\lambda}, S_{\nu})$ denote the set of orbits of the Young subgroup S_{ν} on \mathcal{H}^{λ} .

Definition: A generalized unordered partition of shape λ and content ν is an unordered partition with ν_1 copies of 1 and ν_2 copies of 2 and so on. Let $\mathcal{H}^{\lambda,\nu}$ denote the set of all generalized unordered partitions of shape λ and content ν .

Definition: Let \mathcal{H}^{λ} denote the **set** of unordered λ -tabloids.

Definition: Let $\mathcal{O}(\mathcal{H}^{\lambda}, S_{\nu})$ denote the set of orbits of the Young subgroup S_{ν} on \mathcal{H}^{λ} .

Definition: A generalized unordered partition of shape λ and content ν is an unordered partition with ν_1 copies of 1 and ν_2 copies of 2 and so on. Let $\mathcal{H}^{\lambda,\nu}$ denote the set of all generalized unordered partitions of shape λ and content ν .

Example:

Lemma: There exists a bijection $\mathcal{O}(\mathcal{H}^{\lambda}, S_{\nu}) \leftrightarrow \mathcal{H}^{\lambda, \nu}$.

Lemma: Suppose that there exists an injective map $H^{\lambda} \to H^{\lambda'}$. Then there exists an injective map $\mathcal{H}^{\lambda,\nu} \hookrightarrow \mathcal{H}^{\lambda',\nu}$ for all partitions ν .

Lemma: There exists a bijection $\mathcal{O}(\mathcal{H}^{\lambda}, S_{\nu}) \leftrightarrow \mathcal{H}^{\lambda, \nu}$.

Lemma: Suppose that there exists an injective map $H^{\lambda} \to H^{\lambda'}$. Then there exists an injective map $\mathcal{H}^{\lambda,\nu} \hookrightarrow \mathcal{H}^{\lambda',\nu}$ for all partitions ν .

Proposition: Let a - b < c. Then there exists no injective map $H^{(a,b^c)} \to H^{(a,b^c)'}$.

Example: The sets $\mathcal{O}(\mathcal{H}^{4,3,3}, S_{8,2})$ and $\mathcal{O}(\mathcal{H}^{3,3,3,1}, S_{8,2})$.

Proof of Theorem 2.1:

Proof of Theorem 2.1:

Recall Sivek's Lemma:

Let λ be obtained by adding a row to μ . Suppose that $\psi_{\mu}|$ is not injective. Then $\psi_{\lambda}|$ is not injective.

Proof of Theorem 2.1:

Recall Sivek's Lemma:

Let λ be obtained by adding a row to μ . Suppose that $\psi_{\mu}|$ is not injective. Then $\psi_{\lambda}|$ is not injective.

Now $\mu = (9,7^3)$ is not injective by counting orbits as above so $\lambda = (12,11,9,7^3)$ is not injective and we are done.

Four part partitions

Theorem 2.2 says that the Wagner map controls the existance of an injective map $H^{\lambda} \to H^{\lambda'}$ when λ has at most three parts...

Four part partitions

Theorem 2.2 says that the Wagner map controls the existance of an injective map $H^{\lambda} \to H^{\lambda'}$ when λ has at most three parts...

Unfortinatly for four part partitions we have the following:

Proposition: Let $a \ge 2b$ and suppose $\lambda = (a, b, b - 1, b - 1)$. Then:

- (i) The Wagner map of λ has a kernel, and
- (ii) There exists an injective map $H^{\lambda} \to H^{\lambda'}$.