On the Combinatorics of Diagonal Harmonics for Hook Shapes

Ron Adin

Bar-Ilan University

Jeff Remmel

UCSD

Yuval Roichman

Bar-Ilan University

A. Introduction

A1. The Garsia-Haiman Module \mathbf{H}_{μ}

Fix an ordering w_1, \ldots, w_n of the squares of a Young diagram $[\mu]$, and let

$$\Delta_{\mu}(x_1, \dots, x_n; y_1, \dots, y_n) :=$$

$$\det \left(x_i^{row(w_j)-1} y_i^{col(w_j)-1} \right)_{i,j}.$$

Let \mathbf{H}_{μ} be the vector space of polynomials spanned by all the partial derivatives of

$$\Delta_{\mu}(x_1,\ldots,x_n;y_1,\ldots,y_n).$$

Example.

Figure 1: Labelling of the cells of a partition.

Then

$$\Delta_{4,2,2}(x_1, \dots, x_8; y_1, \dots, y_8) =$$

$$\det \begin{pmatrix} 1 & y_1 & y_1^2 & y_1^3 & x_1 & x_1y_1 & x_1^2 & x_1^2y_1 \\ 1 & y_2 & y_2^2 & y_2^3 & x_2 & x_2y_2 & x_2^2 & x_2^2y_2 \\ \vdots & & & & \vdots \\ 1 & y_8 & y_8^2 & y_8^3 & x_8 & x_8y_8 & x_8^2 & x_8^2y_8 \end{pmatrix}$$

The n! Theorem

The symmetric group S_n acts on \mathbf{H}_{μ} by permuting variables.

Theorem [Haiman '01]

For every partition μ ,

$$\mathbf{H}_{\mu} \cong \mathbf{Q}[S_n]$$

as S_n -modules.

In particular,

 $\dim \mathbf{H}_{\mu} = n!$

A2. The Coinvariant Algebra of Type A

Denote $\bar{x} := x_1, \dots, x_n$.

The symmetric group S_n acts on $\mathbf{Q}[\bar{x}]$ by permuting variables.

Let $\Lambda[\bar{x}]^+$ the subalgebra of symmetric functions without a constant term;

 I_n^+ be the ideal generated by $\Lambda[\bar{x}]^+$.

Theorem [Chevalley '55]

$$\mathbf{Q}[\bar{x}]/I_n^+ \cong \mathbf{Q}[S_n]$$

as S_n -modules.

Note: $\mathbf{Q}[\bar{x}]/I_n^+ \cong \mathbf{H}_{(n)}$ as S_n bi-graded modules.

The Descent Basis

The descent set of a permutation $\pi \in S_n$ is

$$Des(\pi) := \{i : \pi(i) > \pi(i+1)\}.$$

The descent monomial of $\pi \in S_n$ is

$$a_{\pi} := \prod_{i \in \mathrm{Des}(\pi)} (x_{\pi(1)} \cdots x_{\pi(i)})$$

$$= \prod_{j=1}^{n-1} x_{\pi(j)}^{|\text{Des}(\pi) \cap \{j, \dots, n-1\}|}.$$

Theorem [Steinberg '75, Garsia-Stanton '84] The set

$$\{a_{\pi} : \pi \in S_n\}$$

forms a basis for the coinvariant algebra of type A.

Decomposition into Irreducibles

Let $SYT(\lambda) :=$ the set of all standard Young tableaux of shape λ .

i is a descent in a SYT T if i + 1 lies strictly above and weakly to the left of i.

Denote the set of all descents in T by Des(T).

The major index of T is

$$\operatorname{maj}(T) := \sum_{i \in \operatorname{Des}(T)} i.$$

Let $m_{\lambda}^{(k)}$:= the multiplicity of the irreducible S_n -representation S^{λ} in the k-th homogeneous component of the coinvariant algebra of type A.

Theorem [Lusztig and Stanley '79]

$$m_{\lambda}^{(k)} = \#\{T \in SYT(\lambda) : \operatorname{maj}(T) = k\}.$$

A3. An Alternative Description of \mathbf{H}_{μ}

Consider the inner product $\langle \ , \ \rangle$ on

$$\mathbf{Q}[\bar{x},\bar{y}] = \mathbf{Q}[x_1,\ldots,x_n,y_1,\ldots,y_n]$$

defined by:

for any $f, g \in \mathbf{Q}[\bar{x}, \bar{y}],$

 $\langle f, g \rangle$ is the constant term of

$$f(\partial_{x_1},\ldots,\partial_{x_n};\partial_{y_1},\ldots,\partial_{y_n})g.$$

Let J_{μ} be the S_n -module dual to \mathbf{H}_{μ} with respect to \langle , \rangle .

Let

$$\mathbf{H}'_{\mu} := \mathbf{Q}[\bar{x}, \bar{y}]/J_{\mu}.$$

B. Garsia-Haiman Modules of Hook Shape

B1. An Explicit Description of J_{μ}

Theorem. [Aval '00] For $\mu = (k, 1^{n-k})$ the ideal $J_{\mu} = \mathbf{H}_{\mu}^{\perp}$ is generated by

- (i) $\Lambda[\bar{x}]^+$ and $\Lambda[\bar{y}]^+$ (the symmetric functions in \bar{x} and \bar{y} without a constant term),
- (ii) the monomials

$$x_{i_1} \cdots x_{i_k}$$
 $(i_1 < \cdots < i_k),$ $y_{i_1} \cdots y_{i_{n-k+1}}$ $(i_1 < \cdots < i_{n-k+1}),$ and

(iii) the monomials

$$x_i y_i$$
 $(1 \le i \le n)$.

B2. Bases

The k^{th} Descent Basis

Definition. For every $1 \le k \le n$ and $\pi \in S_n$ define

$$d_i^{(k)}(\pi) := \begin{cases} |\text{Des}(\pi) \cap \{i, \dots, k-1\}|, & \text{if } 1 \le i < k; \\ 0, & \text{if } i = k; \\ |\text{Des}(\pi) \cap \{k, \dots, i-1\}|, & \text{if } k < i \le n. \end{cases}$$

and the k^{th} descent monomial

$$a_{\pi}^{(k)} :=$$

$$\prod_{i=1}^{k-1} x_{\pi(i)}^{d_i^{(k)}(\pi)} \cdot \prod_{i=k+1}^n y_{\pi(i)}^{d_i^{(k)}(\pi)} =$$

$$\prod_{\substack{i \in \operatorname{Des}(\pi) \\ i \le k-1}} (x_{\pi(1)} \cdots x_{\pi(i)}) \cdot \prod_{\substack{i \in \operatorname{Des}(\pi) \\ i \ge k}} (y_{\pi(i+1)} \cdots y_{\pi(n)}).$$

Example. $n = 8, k = 4, \text{ and } \pi = 8 \ 6 \ 1 \ 4 \ 7 \ 3 \ 5 \ 2,$ then $Des(\pi) = \{1, 2, 5, 7\},$ $(d_1^{(4)}(\pi), \dots, d_8^{(4)}(\pi)) = (2, 1, 0, 0, 0, 1, 1, 2),$ and $a_{\pi}^{(4)} = x_1^2 x_2 y_6 y_7 y_8^2.$

Theorem. For every $1 \leq k \leq n$, the set

$$\{a_{\pi}^{(k)} : \pi \in S_n\}$$

forms a basis for the Garsia-Haiman module $\mathbf{H}'_{(k,1^{n-k})}$.

 1^{st} **Proof** - Straightening.

 2^{nd} **Proof** - A special case of an inductive basis.

The k^{th} Inversion Number

Definition. For every $1 \le k \le n$ and $\pi \in S_n$ define

$$\operatorname{inv}_i^{(k)}(\pi) :=$$

$$\begin{cases} |\{j : i < j \le k \text{ and } \pi(i) > \pi(j)\}|, & \text{if } 1 \le i < k; \\ 0, & \text{if } i = k; \\ |\{j : k \le j < i \text{ and } \pi(j) > \pi(i)\}|, & \text{if } k < i \le n. \end{cases}$$

Example.

If
$$n = 8$$
, $k = 4$, and $\pi = 8 \ 6 \ 1 \ 4 \ 7 \ 3 \ 5 \ 2$,
then
$$(inv_1^{(4)}(\pi), \dots, inv_8^{(4)}(\pi)) = (3, 2, 0, 0, 0, 2, 1, 4).$$

More k^{th} Bases

Define the k^{th} Artin monomial

$$b_{\pi}^{(k)} := \prod_{i=1}^{k-1} x_{\pi(i)}^{\operatorname{inv}_{i}^{(k)}(\pi)} \cdot \prod_{i=k+1}^{n} y_{\pi(i)}^{\operatorname{inv}_{i}^{(k)}(\pi)}.$$

and the k^{th} Haglund monomial

$$c_{\pi}^{(k)} := \prod_{i=1}^{k-1} x_{\pi(i)}^{d_i^{(k)}(\pi)} \cdot \prod_{i=k+1}^n y_{\pi(i)}^{\operatorname{inv}_i^{(k)}(\pi)}.$$

Theorem.

Each of the following sets:

$$\{a_{\pi}^{(k)}: \pi \in S_n\}, \{b_{\pi}^{(k)}: \pi \in S_n\}, \{c_{\pi}^{(k)}: \pi \in S_n\}$$

forms an (inductive) basis for the Garsia-Haiman module $\mathbf{H}'_{(k,1^{n-k})}$.

B3. Representations

Descent Representations
(= Zigzags)

Figure 2: The skew shape corresponding to the composition (3, 2, 4).

The corresponding S_n -representation is called the (3, 2, 4)-zigzag representation and denoted by $Z^{(3,2,4)}$. For a composition $\mathbf{a} = (a_1, a_2, \dots, a_k)$ associate the set

$$\bar{\mathbf{a}} := \{a_1, a_1 + a_2, a_1 + a_2 + a_3, \dots, a_1 + a_2 + \dots, a_{k-1}\}.$$

For any composition \mathbf{a} of n, the descent class

$$\{\pi \in S_n : \operatorname{Des}(\pi) = \bar{\mathbf{a}}\}$$

carries the S_n -zigzag representation $Z^{\mathbf{a}}$.

Constructions:

Solomon '66 (Solomon descent representations)

Kazhdan-Lusztig '79

Stanley '82

Gessel '84

Adin-Brenti-Roichman '95

Decomposition of $\mathbf{H}_{(k,1^{n-k})}$ into Descent Representations

Let $\mathbf{H}_{(k,1^{n-k})}^{(t_1,t_2)}$ be the $(t_1,t_2)^{th}$ homogeneous component of $\mathbf{H}_{(k,1^{n-k})}$ (bi-graded by total degrees in the x-s and y-s).

Theorem. For every $t_1, t_2 \ge 0$ and $1 \le k \le n$

$$\mathbf{H}_{(k,1^{n-k})}^{(t_1,t_2)} \cong \bigoplus_{\lambda} R_{\lambda}^{(k)},$$

where the sum is over all (n, k)-bipartitions $\lambda = (\mu, \nu)$ with $\mu_{i+1} - \mu_i \in \{0, 1\}$ $(\forall i)$, $\nu_{i+1} - \nu_i \in \{0, 1\}$ $(\forall i)$ and

$$\sum_{i < k \text{ and } \mu_i > \mu_{i+1}} i = t_1, \qquad \sum_{i \ge k \text{ and } \nu_i < \nu_{i+1}} (n-i) = t_2.$$

Decomposition into Irreducibles

For a standard Young tableau T define

$$\operatorname{maj}_{i,j}(T) := \sum_{\substack{r \in \operatorname{Des}(T) \\ i < r < j}} r$$

and

$$\operatorname{comaj}_{i,j}(T) := \sum_{\substack{r \in \operatorname{Des}(T) \\ i < r < j}} (n - r).$$

Theorem [Stembridge '94 + Garsia-Haiman '96]

The multiplicity of the irreducible S_n -representation S^{λ} in $\mathbf{H}_{(k,1^{n-k})}^{(t_1,t_2)}$ is

$$\#\{T \in SYT(\lambda) : \text{maj}_{1,k}(T) = t_1, \text{comaj}_{k,n}(T) = t_2\}$$

The Inductive Basis

Let

$$c \in [n],$$

$$A = \{a_1, \dots, a_{k-1}\} \subseteq [n] \setminus \{c\},$$

$$\bar{A} := [n] \setminus (A \cup \{c\}).$$

Let

 $B_A :=$ a basis of the coinvariant algebra of S_{k-1} acting on $\mathbf{Q}[\bar{x}_A]$, and

 $C_{\bar{A}} := \text{a basis of the coinvariant algebra of } S_{n-k}$ acting on $\mathbf{Q}[\bar{y}_{\bar{A}}].$

Finally define

$$m_{(A,c,\bar{A})} := \prod_{\{i \in A : i > c\}} x_i \prod_{\{j \in \bar{A} : j < c\}} y_j \in \mathbf{Q}[\bar{x},\bar{y}].$$

Then

Theorem. The set

$$\bigcup_{A,c} m_{(A,c,\bar{A})} B_A C_{\bar{A}} :=$$

$$\bigcup_{A,c} \{ m_{(A,c,\bar{A})}bc : b \in B_A, c \in C_{\bar{A}} \}$$

forms a basis for the Garsia-Haiman module $\mathbf{H}'_{(k,1^{n-k})}$.

The Inductive Basis - Sketch of the Proof

For every triple (A, c, \bar{A}) define an (A, c, \bar{A}) -permutation $\pi_{(A,c,\bar{A})} \in S_n$ as in the following example:

$$n = 9, k = 4, c = 5, A = \{1, 6, 7\}$$
 then $\pi_{(A,c,\bar{A})} = 761523489.$

Example. For n = 4 and k = 3, the list of (A, c, \bar{A}) -permutations is

$$\pi_{(\{34\},2,\{1\})} = 4321, \ \pi_{(\{34\},1,\{2\})} = 4312, \dots,$$

$$\pi_{(\{12\},4,\{3\})} = 2143, \ \pi_{(\{12\},3,\{4\})} = 2134.$$

For a given n and k, order the distinct (A, c, \bar{A}) -permutations in reverse lexicographic order.

Example (cont.)

$$4321 <_L 4312 <_L 4231 <_L 4213$$
 $<_L 4132 <_L 4123 <_L 3241 <_L 3214$
 $<_L 3142 <_L 3124 <_L 2143 <_L 2134.$

Index the permutations and corresponding monomials by order

$$\pi_1 = 4321, \ \pi_2 = 4312, \ \pi_3 = 4231, \dots,$$

$$\pi_{11} = 2143, \ \pi_N = \pi_{12} = 2134.$$

$$m_1 = x_4 x_3 y_1, \ m_2 = x_4 x_3, \ m_3 = x_4 y_1,$$

$$m_{11} = y_3, \ m_N = m_{12} = 1.$$

Let

$$I_0 := J_{(k,1^{n-k})}$$

and define

$$I_t := I_{t-1} + m_t \mathbf{Q}[\bar{x}, \bar{y}] \qquad (1 \le t \le N).$$

Clearly,

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_N = \mathbf{Q}[\bar{x}, \bar{y}].$$

and

$$\mathbf{H}'_{(k,1^{n-k})} = \mathbf{Q}[\bar{x}, \bar{y}]/I_0 \cong \bigoplus_{t=1}^{N} (I_t/I_{t-1})$$

as vector spaces.

Lemma. The set $m_t \cdot B_A \cdot C_{\bar{A}}$ is a basis for I_t/I_{t-1} .

Proof of Lemma (Sketch).

It is shown that if $i \notin A$ then $m_t x_i \in I_{t-1}$ by a combinatorial analysis of four complementary cases:

Similarly, if $j \notin \overline{A}$ then $m_t y_j \in I_{t-1}$.

This implies that the natural projection

$$f_t: m_t \mathbf{Q}[\bar{x}, \bar{y}] \longrightarrow I_t/I_{t-1}.$$

is well defined on the quotient

$$m_t \mathbf{Q}[\bar{x}, \bar{y}] /$$

$$\left[m_t \cdot \left(\sum_{i \notin A} \langle x_i \rangle + \sum_{j \notin \bar{A}} \langle y_j \rangle + \langle \Lambda[\bar{x}]^+ \rangle + \langle \Lambda[\bar{y}]^+ \rangle \right) \right] \cong$$

$$m_t \cdot \mathbf{Q}[\bar{x}_A]/\langle \Lambda[\bar{x}_A]^+ \rangle \cdot \mathbf{Q}[\bar{y}_{\bar{A}}]/\langle \Lambda[\bar{y}_{\bar{A}}]^+ \rangle).$$

and is essentially an isomorphism.

Decomposition of $\mathbf{H}_{(k,1^{n-k})}$ into Descent Representations

Proof Sketch

Notation.

A pair of partitions $\lambda = (\mu, \nu)$ is called an (n, k)-bipartition if μ has at most k-1 parts and ν has at most n-k parts.

Let <u>dominance</u> order on bipartitions:

$$(\mu^1, \nu^1) \leq (\mu^2, \nu^2)$$
 if $\mu^1 \leq \mu^2$ and $\nu^1 \leq \nu^2$.

For $\pi \in S_n$ and

$$a_{\pi}^{(k)} = \prod_{i=1}^{k-1} x_{\pi(i)}^{d_i} \cdot \prod_{i=k+1}^{n} y_{\pi(i)}^{d_i},$$

let

$$\lambda(a_{\pi}^{(k)}) := ((d_1, d_2, \dots, d_{k-1}), (d_n, d_{n-1}, \dots, d_{k+1}))$$

be its exponent bipartition.

For an (n, k)-bipartition $\lambda = (\mu, \nu)$ let

$$I_{\lambda}^{(k) \unlhd} :=$$

 $\operatorname{span}_{\mathbf{Q}} \{ a_{\pi}^{(k)} + J_{(k,1^{n-k})} : \pi \in S_n, \ \lambda(a_{\pi}^{(k)}) \leq \lambda \},$ and

$$I_{\lambda}^{(k)} :=$$

 $\operatorname{span}_{\mathbf{Q}} \{ a_{\pi}^{(k)} + J_{(k,1^{n-k})} : \pi \in S_n, \ \lambda(a_{\pi}^{(k)}) \triangleleft \lambda \}$

be subspaces of the module $\mathbf{H}'_{(k,1^{n-k})}$. Let

$$R_{\lambda}^{(k)} := I_{\lambda}^{(k) \triangleleft} / I_{\lambda}^{(k) \triangleleft}.$$

Proposition. $I_{\lambda}^{(k) \triangleleft}$, $I_{\lambda}^{(k) \triangleleft}$ and thus $R_{\lambda}^{(k)}$ are S_n -invariant.

Lemma. Let $\lambda = (\mu, \nu)$ be an (n, k)-bipartition. Then

$$R_{\lambda}^{(k)} \neq \{0\} \iff$$
 $(\forall 1 \le i < k-1) \quad \mu_i - \mu_{i+1} \in \{0, 1\} \text{ and}$
 $(\forall 1 \le i < n-k) \quad \nu_i - \nu_{i+1} \in \{0, 1\}.$

If these conditions hold then

$$\{a_{\pi}^{(k)} + I_{\lambda}^{(k) \triangleleft} : \operatorname{Des}(\pi) = A_{\lambda}\}$$

is a basis for $R_{\lambda}^{(k)}$, where

$$A_{\lambda} :=$$

$$\{1 \le i < n : \mu_i - \mu_{i+1} = 1 \text{ or } \nu_{n-i} - \nu_{n-i+1} = 1 \}.$$

Let $\lambda = (\mu, \nu)$ be an (n, k)-bipartition with $R_{\lambda}^{(k)} \neq \{0\}$. Recall

$$A_{\lambda} :=$$

$$\{1 \le i < n : \mu_i - \mu_{i+1} = 1 \text{ or } \nu_{n-i} - \nu_{n-i+1} = 1 \}.$$

Theorem.

 $R_{\lambda}^{(k)}$ is isomorphic as an S_n -module to the Solomon descent representation determined by the descent class

$$\{\pi \in S_n : \operatorname{Des}(\pi) = A_{\lambda}\}.$$

An Explicit Formula for the Action

Theorem. The S_n -action on $R_{\lambda}^{(k)}$ is given by

$$s_j(a_{\pi}^{(k)}) =$$

$$\begin{cases} a_{s_{j}\pi}^{(k)}, & |\pi^{-1}(j+1) - \pi^{-1}(j)| > 1 \\ a_{\pi}^{(k)}, & \pi^{-1}(j+1) = \pi^{-1}(j) + 1; \\ -a_{\pi}^{(k)} - \sum_{\sigma \in A_{j}(\pi)} a_{\sigma}^{(k)}, & \pi^{-1}(j+1) = \pi^{-1}(j) - 1. \end{cases}$$

Example. Let $\pi = 2416573 \in S_7$ and j = 5. Then:

$$Des(\pi) = \{2, 4, 6\};$$

 $A_j(\pi) = \{24\underline{1756}3, 24\underline{5617}3, 24\underline{5716}3, 24\underline{6715}3\}.$