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Before the beginnings.

* In 1936, Margarete Wolf proves a version for the fundamental theorem of
symmetric functions for the situation where the variables do not commute.

She was interested in a theory of symmetric functions where the variables
are “completely independent and completely noncommutative”

* In 1972, Peter Doubilet, observes that the partition lattice gives an
elegant combinatorial framework for the study symmetric functions.



Outline of the talk

* Combinatorics of set partitions

* Symmetric functions in noncommutative variables.

* The action of the symmetric group

* Symmetric functions

* Young subgroups of the symmetric group

* MacMahon symmetric functions



Combinatorics of set partitions

A set partition A of m, written A ` [m], is a collection of nonempty
subsets A1, A2, . . . , Ak ⊆ [m] = {1,2, . . . , m} such that [m] is equals
to the disjoint union A1 ∪A2 ∪ · · · ∪Ak.

The number of set partitions is given by the Bell numbers.

B0 = 1 Bn =
n−1∑
i=0

(n− 1

i

)
Bi

The next seven Bell numbers are 1,2,5,15,52,203,877.



The lattice structure on set partitions

For A, B ` [n] that A ≤ B if for each Ai ∈ A there is a Bj ∈ B such that
Ai ⊆ Bj (otherwise stated, that A is finer than B).

The set of set partitions of [n] with this order forms a poset with rank
function given by n− k where k the length of the set partition. This poset
has minimal element {1,2, · · · , n} and maximal element {12 · · ·n}.

The largest element smaller than both A and B will be denoted
A ∧B = {Ai ∩Bj : 1 ≤ i ≤ `(A),1 ≤ j ≤ `(B)} while the smallest
element larger than A and B is denoted A ∨B.

Let A = {138,24,5,67} and B = {1,238,4567}. A and B are not
comparable in the inclusion order on set partitions. We calculate that
A ∧B = {1,2,38,4,5,67} and A ∨B = {12345678}.



Symmetric functions in noncommutative variables

(I will be following work with Bruce Sagan, and parts of my thesis).

The space of symmetric functions is a subspace of the space polynomials
in noncommutative variables.

NCSymn ⊆ Q〈Xn〉

Indeed, it is the space of invariants under the canonical action of the
symmetric group.

NCSymn = Q〈Xn〉Sn



Monomial symmetric functions in noncommutative variables

Monomial NCSFs corresponding to set partitions of size 3 in a polynomial
algebra with 4 variables.

m{123}[X4] = x1x1x1 + x2x2x2 + x3x3x3 + x4x4x4.

m{12,3}[X4] = x1x1x2 + x1x1x3 + x1x1x4 + x2x2x1 + x2x2x3 + x2x2x4+

x3x3x1 + x3x3x2 + x3x3x4 + x4x4x1 + x2
4x2 + x2

4x3.
m{13,2}[X4] = x1x2x1 + x1x3x1 + x1x4x1 + x2x1x2 + x2x3x2 + x2x4x2+

x3x1x3 + x3x2x3 + x3x4x3 + x4x1x4 + x4x2x4 + x4x3x4.
m{23,1}[X4] = x2x1x1 + x3x1x1 + x4x1x1 + x1x2x2 + x3x2x2 + x4x2x2+

x1x3x3 + x2x3x3 + x4x3x3 + x1x4x4 + x2x4x4 + x3x4x4.
m{1,2,3}[X4] =

∑
σ∈S4

xσ(1)xσ(2)xσ(3).



NCSymn

The vector space NCSymn will be defined as the linear span of the
elements

mA[Xn] =
∑

∇(i1,i2,...,im)=A

xi1xi2 · · ·xim

for A ` [m], where the sum is over all sequences with 1 ≤ ij ≤ n.

For the empty set partition, we define by convention m{}[Xn] = 1. If
`(A) > n we must have that mA[Xn] = 0.

Since for any permutation σ ∈ Sn,

∇(i1, i2, . . . , im) = ∇(σ(i1), σ(i2), . . . , σ(im)),

we also know σmA[Xn] = mA[Xn].



NCSymn

Now let NCSymn be the space of polynomials of Q〈Xn〉 which are
invariant under the action of Sn.

For any element f ∈ NCSymn, if ∇(i1, i2, . . . , ik) = ∇(j1, j2, . . . , jk)

then the coefficient of xi1xi2 · · ·xim in f is equal to the coefficient of
xj1xj2 · · ·xjk in f .

We therefore conclude that {mA[Xn]}`(A)≤n is a basis for NCSymn.

In addition NCSymn has a ring structure where the product in this ring is
defined as the natural extension of the ring structure on Q〈Xn〉.



The forgetful map :

The forgetful map :

ρ : Q〈Xn〉 → Q[Xn]

the map that lets the variables to conmute

What happens to the monomial basis of NCSymn under the action of the
forgetful map ??



The forgetful map :

There is a natural mapping from set partitions to integer partitions given by

λ(A) = (|A1|, |A2|, . . . , |Ak|),
where we assume that the parts of the partition have been listed in weakly
decreasing order.

For instance,

λ(14.256.37.8) = (3,2,2,1)

Theorem : The image of the monomial symmetric function under the
forgetful map are

ρ(mA) = A!mλ(A)



Symmetric functions

Let NCSym and Sym be the inverse limits of NCSymn and Symn.

The forgetful map induced a map from

ρ : NCSym → Sym

How is this useful ?



Other basis for Sym :

The power sums.

pA =
∑

B≥A

mA

Indeed, the pA deserve to be called power sums, since

ρ(pA) = pλ(A)

Using Möbius inversion, we can write the mA in the power sum basis :

mA =
∑

B≥A

µ(A, B)pB



The lifting map

The lifting map is a right inverse for the projection map ρ.

ρ̃ : Sym → NCSym

It is defined by linearly extending

ρ̃(mλ) =
λ!

n!

∑
A:λ(A)=λ

mA



Computing scalar products

We define an scalar product :

〈pA, pB〉 = n!
δA,B

|µ(0̂, B)|

Theorem: The bilinear form 〈 , 〉 has the following properties:

* It is symmetric and positive definite, hence it defines a scalar product.

* It is invariant under the action of the symmetric group on places.

* It makes the lifting map into an isometry.



Young subgroups of the symmetric group

Let u = (u1, u2, · · · , uk) be a vector in Nk whose coordinates add to n.

Then, Su denotes the Young subgroup of Sn,

S{1,2,···,u1} × · · · × S{n−uk+1,···,n}

The action of Su partition [n] into equivalence classes that we order using
the smallest element in each.



The type of a set partition B1.B2. · · · .B` under the action of Su is the
vector partition

λ = λ1λ2 · · ·λl

where λk is the vector whose ith coordinate is the number of elements of
Bi in the ith coordinate class.



MacMahon symmetric functions

The monomial symmetric functions

Let A = (a1, · · · , an) · · · (c1, · · · , cn). Then mA be the result of
symmetrizing

x
a1
1 y

a2
1 · · · zan

1 · xb1
2 y

b2
2 · · · zbn

2 · · ·xc1
r y

c2
r · · · zcn

r .

The power sum symmetric functions

p(u1,u2,···,uk)
=

∑
i≥1

y
u1
i x

u2
i · · · zuk

i

and extend to vector partitions multiplicatively.



The forgetful map and Young subgroups:

There is also a natural mapping from set partitions to vector partitions
given by λ(A) equals the type of A under Su.

We assume that the parts of the partition have been listed in weakly
decreasing order.

For instance, if our Young subgroup is S(4,2,2). Then the equivalence
classes are 1234/56/78, and

λ(14.256.37.8) = ((2,0,0), (1,2,0), (1,0,1), (0,0,1)) ` (4,2,2)



MacMahon symmetric functions and the projection map

Theorem : Let Su be a Young subgroup of the symmetric group Sn. Let
A be a set partition of [n] and let λ be the type of A under Sn. Then,
under the projection map

mA 7→ λ!mλ pA 7→ pλ



Why this may be useful :

* Representation theory (including Schur functions) for NCSym. (with
Nantel Bergeron, Hohlweg, R, Zabrocki).

* Generating functions in noncommutative variables are sometimes easier
to manipulate.

* There is are two analogues to Chevalley’s theorem for the ring of
polynomials in noncommutative variables. (Nantel Bergeron, Reutenauer,
R, Zabrocki)

* It is possible to compute the graded Frobenius characteristic for the two
spaces of Harmonics appearing in the previous decomposition (Briand, R,
Zabrocki).


