Symmetric Functions in Noncommutative variables and MacMahon Symmetric functions

Mercedes Helena Rosas

Universidad de Sevilla, España

Before the beginnings.

* In 1936, Margarete Wolf proves a version for the fundamental theorem of symmetric functions for the situation where the variables do not commute.

She was interested in a theory of symmetric functions where the variables are "completely independent and completely noncommutative"

* In 1972, Peter Doubilet, observes that the partition lattice gives an elegant combinatorial framework for the study symmetric functions.

Outline of the talk

* Combinatorics of set partitions
* Symmetric functions in noncommutative variables.
* The action of the symmetric group
* Symmetric functions
* Young subgroups of the symmetric group
* MacMahon symmetric functions

Combinatorics of set partitions

A set partition A of m, written $A \vdash[m]$, is a collection of nonempty subsets $A_{1}, A_{2}, \ldots, A_{k} \subseteq[m]=\{1,2, \ldots, m\}$ such that $[m]$ is equals to the disjoint union $A_{1} \cup A_{2} \cup \cdots \cup A_{k}$.

The number of set partitions is given by the Bell numbers.

$$
B_{0}=1 \quad B_{n}=\sum_{i=0}^{n-1}\binom{n-1}{i} B_{i}
$$

The next seven Bell numbers are $1,2,5,15,52,203,877$.

The lattice structure on set partitions

For $A, B \vdash[n]$ that $A \leq B$ if for each $A_{i} \in A$ there is a $B_{j} \in B$ such that $A_{i} \subseteq B_{j}$ (otherwise stated, that A is finer than B).

The set of set partitions of $[n]$ with this order forms a poset with rank function given by $n-k$ where k the length of the set partition. This poset has minimal element $\{1,2, \cdots, n\}$ and maximal element $\{12 \cdots n\}$.

The largest element smaller than both A and B will be denoted $A \wedge B=\left\{A_{i} \cap B_{j}: 1 \leq i \leq \ell(A), 1 \leq j \leq \ell(B)\right\}$ while the smallest element larger than A and B is denoted $A \vee B$.

Let $A=\{138,24,5,67\}$ and $B=\{1,238,4567\} . A$ and B are not comparable in the inclusion order on set partitions. We calculate that $A \wedge B=\{1,2,38,4,5,67\}$ and $A \vee B=\{12345678\}$.

Symmetric functions in noncommutative variables

(I will be following work with Bruce Sagan, and parts of my thesis).

The space of symmetric functions is a subspace of the space polynomials in noncommutative variables.

$$
N C \operatorname{Sym}_{n} \subseteq \mathbb{Q}\left\langle X_{n}\right\rangle
$$

Indeed, it is the space of invariants under the canonical action of the symmetric group.

$$
N C S y m_{n}=\mathbb{Q}\left\langle X_{n}\right\rangle^{\mathfrak{S}_{n}}
$$

Monomial symmetric functions in noncommutative variables

Monomial NCSFs corresponding to set partitions of size 3 in a polynomial algebra with 4 variables.

$$
\begin{aligned}
& \mathbf{m}_{\{123\}}\left[X_{4}\right]=x_{1} x_{1} x_{1}+x_{2} x_{2} x_{2}+x_{3} x_{3} x_{3}+x_{4} x_{4} x_{4} . \\
& \mathbf{m}_{\{12,3\}}\left[X_{4}\right]=x_{1} x_{1} x_{2}+x_{1} x_{1} x_{3}+x_{1} x_{1} x_{4}+x_{2} x_{2} x_{1}+x_{2} x_{2} x_{3}+x_{2} x_{2} x_{4} \\
& x_{3} x_{3} x_{1}+x_{3} x_{3} x_{2}+x_{3} x_{3} x_{4}+x_{4} x_{4} x_{1}+x_{4}^{2} x_{2}+x_{4}^{2} x^{2} \\
& \mathbf{m}_{\{13,2\}}\left[X_{4}\right]=x_{1} x_{2} x_{1}+x_{1} x_{3} x_{1}+x_{1} x_{4} x_{1}+x_{2} x_{1} x_{2}+x_{2} x_{3} x_{2}+x_{2} x_{4} x_{2} \\
& x_{3} x_{1} x_{3}+x_{3} x_{2} x_{3}+x_{3} x_{4} x_{3}+x_{4} x_{1} x_{4}+x_{4} x_{2} x_{4}+x \\
& \mathbf{m}_{\{23,1\}}\left[X_{4}\right]=x_{2} x_{1} x_{1}+x_{3} x_{1} x_{1}+x_{4} x_{1} x_{1}+x_{1} x_{2} x_{2}+x_{3} x_{2} x_{2}+x_{4} x_{2} x_{2} \\
& x_{1} x_{3} x_{3}+x_{2} x_{3} x_{3}+x_{4} x_{3} x_{3}+x_{1} x_{4} x_{4}+x_{2} x_{4} x_{4}+x \\
& \mathbf{m}_{\{1,2,3\}}\left[X_{4}\right]=\sum_{\sigma \in S_{4}} x_{\sigma(1)} x_{\sigma(2)} x_{\sigma(3)} .
\end{aligned}
$$

$\underline{\text { NCSym }_{n}}$

The vector space $N C S y m_{n}$ will be defined as the linear span of the elements

$$
\mathbf{m}_{A}\left[X_{n}\right]=\sum_{\nabla\left(i_{1}, i_{2}, \ldots, i_{m}\right)=A} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}
$$

for $A \vdash[m]$, where the sum is over all sequences with $1 \leq i_{j} \leq n$.

For the empty set partition, we define by convention $\mathbf{m}_{\{ \}}\left[X_{n}\right]=1$. If $\ell(A)>n$ we must have that $\mathbf{m}_{A}\left[X_{n}\right]=0$.

Since for any permutation $\sigma \in S_{n}$,

$$
\nabla\left(i_{1}, i_{2}, \ldots, i_{m}\right)=\nabla\left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \ldots, \sigma\left(i_{m}\right)\right)
$$

we also know $\sigma \mathbf{m}_{A}\left[X_{n}\right]=\mathbf{m}_{A}\left[X_{n}\right]$.

NCSym_{n}

Now let $N C S_{y m}$ be the space of polynomials of $\mathbb{Q}\left\langle X_{n}\right\rangle$ which are invariant under the action of \mathfrak{S}_{n}.

For any element $f \in N C \operatorname{Sym}_{n}$, if $\nabla\left(i_{1}, i_{2}, \ldots, i_{k}\right)=\nabla\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ then the coefficient of $x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}$ in f is equal to the coefficient of $x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}}$ in f.

We therefore conclude that $\left\{\mathbf{m}_{A}\left[X_{n}\right]\right\}_{\ell(A) \leq n}$ is a basis for $N_{\text {NS Sym }}^{n}$.

In addition $N C \operatorname{Sym}_{n}$ has a ring structure where the product in this ring is defined as the natural extension of the ring structure on $\mathbb{Q}\left\langle X_{n}\right\rangle$.

$\underline{T h e ~ f o r g e t f u l ~ m a p ~: ~}$

The forgetful map :

$$
\rho: \mathbb{Q}\left\langle X_{n}\right\rangle \rightarrow \mathbb{Q}\left[X_{n}\right]
$$

the map that lets the variables to conmute

What happens to the monomial basis of $N C S y m_{n}$ under the action of the forgetful map ??

$\underline{T h e ~ f o r g e t f u l ~ m a p ~: ~}$

There is a natural mapping from set partitions to integer partitions given by

$$
\lambda(A)=\left(\left|A_{1}\right|,\left|A_{2}\right|, \ldots,\left|A_{k}\right|\right)
$$

where we assume that the parts of the partition have been listed in weakly decreasing order.

For instance,

$$
\lambda(14.256 .37 .8)=(3,2,2,1)
$$

Theorem : The image of the monomial symmetric function under the forgetful map are

$$
\rho\left(\mathbf{m}_{A}\right)=A^{!} m_{\lambda(A)}
$$

Symmetric functions

Let NCSym and Sym be the inverse limits of $N C S y m_{n}$ and $S^{S y} m_{n}$.

The forgetful map induced a map from

$$
\rho: \text { NCSym } \rightarrow \text { Sym }
$$

How is this useful?

Other basis for Sym :

The power sums.

$$
\mathbf{p}_{A}=\sum_{B \geq A} \mathbf{m}_{A}
$$

Indeed, the \mathbf{p}_{A} deserve to be called power sums, since

$$
\rho\left(\mathbf{p}_{A}\right)=p_{\lambda(A)}
$$

Using Möbius inversion, we can write the \mathbf{m}_{A} in the power sum basis :

$$
\mathbf{m}_{A}=\sum_{B \geq A} \mu(A, B) \mathbf{p}_{B}
$$

The lifting map

The lifting map is a right inverse for the projection map ρ.

$$
\tilde{\rho}: S y m \rightarrow N C S y m
$$

It is defined by linearly extending

$$
\tilde{\rho}\left(m_{\lambda}\right)=\frac{\lambda!}{n!} \sum_{A: \lambda(A)=\lambda} m_{A}
$$

Computing scalar products

We define an scalar product :

$$
\left\langle p_{A}, p_{B}\right\rangle=n!\frac{\delta_{A, B}}{|\mu(\widehat{0}, B)|}
$$

Theorem: The bilinear form \langle,$\rangle has the following properties:$

* It is symmetric and positive definite, hence it defines a scalar product.
* It is invariant under the action of the symmetric group on places.
* It makes the lifting map into an isometry.

Young subgroups of the symmetric group

Let $u=\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ be a vector in \mathbb{N}^{k} whose coordinates add to n.

Then, \mathfrak{S}_{u} denotes the Young subgroup of \mathfrak{S}_{n},

$$
S_{\left\{1,2, \cdots, u_{1}\right\}} \times \cdots \times S_{\left\{n-u_{k}+1, \cdots, n\right\}}
$$

The action of S_{u} partition [n] into equivalence classes that we order using the smallest element in each.

The type of a set partition $B_{1} \cdot B_{2} \cdots \cdot B_{\ell}$ under the action of S_{u} is the vector partition

$$
\lambda=\lambda_{1} \lambda_{2} \cdots \lambda_{l}
$$

where λ_{k} is the vector whose $i^{t} h$ coordinate is the number of elements of B_{i} in the $i^{t} h$ coordinate class.

MacMahon symmetric functions

The monomial symmetric functions

Let $A=\left(a_{1}, \cdots, a_{n}\right) \cdots\left(c_{1}, \cdots, c_{n}\right)$. Then m_{A} be the result of symmetrizing

$$
x_{1}^{a_{1}} y_{1}^{a_{2}} \cdots z_{1}^{a_{n}} \cdot x_{2}^{b_{1}} y_{2}^{b_{2}} \cdots z_{2}^{b_{n}} \cdots x_{r}^{c_{1}} y_{r}^{c_{2}} \cdots z_{r}^{c_{n}} .
$$

The power sum symmetric functions

$$
p_{\left(u_{1}, u_{2}, \cdots, u_{k}\right)}=\sum_{i \geq 1} y_{i}^{u_{1}} x_{i}^{u_{2}} \cdots z_{i}^{u_{k}}
$$

and extend to vector partitions multiplicatively.

The forgetful map and Young subgroups:

There is also a natural mapping from set partitions to vector partitions given by $\lambda(A)$ equals the type of A under \mathfrak{S}_{u}.

We assume that the parts of the partition have been listed in weakly decreasing order.

For instance, if our Young subgroup is $\mathfrak{S}_{(4,2,2)}$. Then the equivalence classes are 1234/56/78, and

$$
\lambda(14.256 .37 .8)=((2,0,0),(1,2,0),(1,0,1),(0,0,1)) \vdash(4,2,2)
$$

MacMahon symmetric functions and the projection map

Theorem : Let \mathfrak{S}_{u} be a Young subgroup of the symmetric group \mathfrak{S}_{n}. Let A be a set partition of $[n]$ and let λ be the type of A under \mathfrak{S}_{n}. Then, under the projection map

$$
m_{A} \mapsto \lambda!m_{\lambda} \quad p_{A} \mapsto p_{\lambda}
$$

Why this may be useful :

* Representation theory (including Schur functions) for NCSym. (with Nantel Bergeron, Hohlweg, R, Zabrocki).
* Generating functions in noncommutative variables are sometimes easier to manipulate.
* There is are two analogues to Chevalley's theorem for the ring of polynomials in noncommutative variables. (Nantel Bergeron, Reutenauer, R, Zabrocki)
* It is possible to compute the graded Frobenius characteristic for the two spaces of Harmonics appearing in the previous decomposition (Briand, R, Zabrocki).

