A Conjecture of Foulkes, I

Castro Urdiales
October 15-19, 2007

Johannes Siemons
UEA Norwich UK

- The Conjecture
- Maps
- More Conjectures?
- Foulkes' Theorem for $3=b \leq a$
- Maps between permutation modules
- An application

The Conjecture

Let $0 \leq a, b$ be integers and $N=\{1 \ldots n\}$ where $n=a \cdot b$. Let $P\left(a^{b}\right)$ be the set of all partitions of N into b parts of size a, thus

$$
\left|P\left(a^{b}\right)\right|=\frac{1}{b!}\binom{n}{a}\binom{n-a}{a} \ldots\binom{a}{a} .
$$

The Conjecture

Let $0 \leq a, b$ be integers and $N=\{1 \ldots n\}$ where $n=a \cdot b$. Let $P\left(a^{b}\right)$ be the set of all partitions of N into b parts of size a, thus

$$
\left|P\left(a^{b}\right)\right|=\frac{1}{b!}\binom{n}{a}\binom{n-a}{a} \ldots\binom{a}{a} .
$$

For instance,

1	2	3	4					
5	6	7	8					
9	10	11	12	$=$	9	10	11	12
:---:	:---:	:---:	:---:					
6	8	7	5					
4	3	2	1					

is an element in $P\left(4^{3}\right)$.

Evidently Sym_{n} permutes the set $P\left(a^{b}\right)$ transitively. Let $\mathbb{C} P\left(a^{b}\right)$ be the corresponding permutation module over the complex numbers.

Evidently Sym $_{n}$ permutes the set $P\left(a^{b}\right)$ transitively. Let $\mathbb{C} P\left(a^{b}\right)$ be the corresponding permutation module over the complex numbers.

Conjecture (Foulkes 1950): If $b \leq a$ then

$$
\operatorname{mult}\left(I, \mathbb{C} P\left(a^{b}\right)\right) \leq \operatorname{mult}\left(I, \mathbb{C} P\left(b^{a}\right)\right)
$$

for all irreducible modules I of Sym_{n}.

Evidently Sym $_{n}$ permutes the set $P\left(a^{b}\right)$ transitively. Let $\mathbb{C} P\left(a^{b}\right)$ be the corresponding permutation module over the complex numbers.

Conjecture (Foulkes 1950): If $b \leq a$ then

$$
\operatorname{mult}\left(I, \mathbb{C} P\left(a^{b}\right)\right) \leq \operatorname{mult}\left(I, \mathbb{C} P\left(b^{a}\right)\right)
$$

for all irreducible modules I of Sym $_{n}$.

This is well-known to hold if partition classes are ordered, i.e.

1	2	3	4					
5	6	7	8					
9	10	11	12	\neq	5	6	7	8
:---:	:---:	:---:	:---:					
1	2	3	4					
9	10	11	12	.				

Using work of Thrall (1942) and Littlewood (1944) Foulkes proved the conjecture for all $b<a \leq 5$.

Using work of Thrall (1942) and Littlewood (1944) Foulkes proved the conjecture for all $b<a \leq 5$.

Even for small a the representations are enormous. For instance,

$$
\left|P\left(5^{5}\right)\right| \approx 5 \cdot 10^{12}
$$

and computational work becomes extremely difficult.

Using work of Thrall (1942) and Littlewood (1944) Foulkes proved the conjecture for all $b<a \leq 5$.

Even for small a the representations are enormous. For instance,

$$
\left|P\left(5^{5}\right)\right| \approx 5 \cdot 10^{12}
$$

and computational work becomes extremely difficult.

The conjecture is true for $b=2 \leq a$. There are several proofs, see for instance the Encyclopedia (1981) by James \& Kerber, in connection to plethysm. (I will show a different proof later.)

Using work of Thrall (1942) and Littlewood (1944) Foulkes proved the conjecture for all $b<a \leq 5$.

Even for small a the representations are enormous. For instance,

$$
\left|P\left(5^{5}\right)\right| \approx 5 \cdot 10^{12}
$$

and computational work becomes extremely difficult.

The conjecture is true for $b=2 \leq a$. There are several proofs, see for instance the Encyclopedia (1981) by James \& Kerber, in connection to plethysm. (I will show a different proof later.)

The conjecture is true for $b=3 \leq a$ (Dent \& Siemons, 2000) and I will outline a proof. Recently Tom McKay, 2007 at UEA proved the same for $b=4<a$. You will hear his report after this talk.

In an AMS millenium survey Richard Stanley (2000) writes on "Positivity problems and Conjectures in Algebraic Combinatorics". In this article the Foulkes conjecture appears as an outstanding problem in positivity: If λ, μ are partitions of n,

For which λ, μ is $\mathbb{C} P(\lambda)-\mathbb{C} P(\mu)$ a positive Sym $_{n}$-module?

In an AMS millenium survey Richard Stanley (2000) writes on "Positivity problems and Conjectures in Algebraic Combinatorics". In this article the Foulkes conjecture appears as an outstanding problem in positivity: If λ, μ are partitions of n,

For which λ, μ is $\mathbb{C} P(\lambda)-\mathbb{C} P(\mu)$ a positive Sym $_{n}$-module?

Invariant theory: The conjecture also plays some role for the theory of multi-symmetric polynomials. Brion (1993) shows that the Foulkes conjecture is true for $a \gg b$. There are also applications in rational homotopy and the homology of suspensions.

In an AMS millenium survey Richard Stanley (2000) writes on "Positivity problems and Conjectures in Algebraic Combinatorics". In this article the Foulkes conjecture appears as an outstanding problem in positivity: If λ, μ are partitions of n,

For which λ, μ is $\mathbb{C} P(\lambda)-\mathbb{C} P(\mu)$ a positive Sym $_{n}$-module?

Invariant theory: The conjecture also plays some role for the theory of multi-symmetric polynomials. Brion (1993) shows that the Foulkes conjecture is true for $a \gg b$. There are also applications in rational homotopy and the homology of suspensions.

Apart from what is mentioned above the conjecture is open, as far as I am aware. It has been a challenging playground for ideas in the past 60 year, with the occasional success story.

Maps

In which way could one prove statements of the kind

$$
\operatorname{mult}\left(I, \mathbb{C} P\left(a^{b}\right)\right) \leq \operatorname{mult}\left(I, \mathbb{C} P\left(b^{a}\right)\right) ?
$$

There is little hope to work out the multiplicities, these are known in a very few cases only, and very difficult to control.

Maps

In which way could one prove statements of the kind

$$
\operatorname{mult}\left(I, \mathbb{C} P\left(a^{b}\right)\right) \leq \operatorname{mult}\left(I, \mathbb{C} P\left(b^{a}\right)\right) ?
$$

There is little hope to work out the multiplicities, these are known in a very few cases only, and very difficult to control.

Instead, the conjecture is the same as saying that there exists a $\mathbb{C} G$-homomorphisms

$$
\varphi: \mathbb{C} P\left(a^{b}\right) \longrightarrow \mathbb{C} P\left(b^{a}\right)
$$

which is injective. ($G:=$ Sym $_{n}$ for the remainder.) So, what are the standard constructions for such maps?

Consider a simple example. A standard partition in $P\left(a^{b}\right)=$ $P\left(4^{3}\right)$ is

$$
x=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline
\end{array} .
$$

Consider a simple example. A standard partition in $P\left(a^{b}\right)=$ $P\left(4^{3}\right)$ is

$$
x=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline
\end{array}
$$

What are the options for $\varphi(x)=w$ in $\mathbb{C} P\left(b^{a}\right)=\mathbb{C} P\left(3^{4}\right)$?

Consider a simple example. A standard partition in $P\left(a^{b}\right)=$ $P\left(4^{3}\right)$ is

$$
x=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline
\end{array}
$$

What are the options for $\varphi(x)=w$ in $\mathbb{C} P\left(b^{a}\right)=\mathbb{C} P\left(3^{4}\right)$?

Since φ is a $\mathbb{C} G$-map we must have $w^{g}=w$, for all $g \in G_{x}$. Thus,

$$
\varphi(x)=\sum_{g \in G_{x}} u^{g}
$$

for an arbitrarily chosen $u \in \mathbb{C} P\left(3^{4}\right)$.

Consider a simple example. A standard partition in $P\left(a^{b}\right)=$ $P\left(4^{3}\right)$ is

$$
x=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline
\end{array}
$$

What are the options for $\varphi(x)=w$ in $\mathbb{C} P\left(b^{a}\right)=\mathbb{C} P\left(3^{4}\right)$?

Since φ is a $\mathbb{C} G$-map we must have $w^{g}=w$, for all $g \in G_{x}$. Thus,

$$
\varphi(x)=\sum_{g \in G_{x}} u^{g}
$$

for an arbitrarily chosen $u \in \mathbb{C} P\left(3^{4}\right)$.

This describes all possible G-homomorphisms

$$
\varphi: \mathbb{C} P\left(4^{3}\right) \rightarrow \mathbb{C} P\left(3^{4}\right)
$$

Probably the most natural choice is

$$
u=\left|\begin{array}{c|c|c|c}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right|
$$

and for this choice the map is denoted $\varphi^{\left(4^{3}\right)}$. So, this is the standard map

$$
\varphi^{\left(4^{3}\right)}: \left.\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline
\end{array} \longmapsto \sum_{g \in G_{x}} \right\rvert\, \begin{array}{c|c|c|c|c}
1 & 2 & 3 & 4 & g \\
5 & 6 & 7 & 8 \\
9 & 11 & 12
\end{array}
$$

Probably the most natural choice is

$$
u=\left|\begin{array}{c|c|c|c}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right|
$$

and for this choice the map is denoted $\varphi^{\left(4^{3}\right)}$. So, this is the standard map

$$
\varphi^{\left(4^{3}\right)}: \left.\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline
\end{array} \longmapsto \sum_{g \in G_{x}} \right\rvert\, \begin{array}{c|c|c|c|c}
1 & 2 & 3 & 4 & g \\
5 & 6 & 7 & 8 & 10 \\
9 & 11 & 12 &
\end{array}
$$

Theorem (Black \& List, 1987): If the standard map $\varphi^{\left(a^{a}\right)}$ is injective then the Foulkes conjecture is true for all $b<a$.

Theorem: The Foulkes conjecture is true for all $a \geq b=2$.

A sketch of Dent's proof (1997): Let $\varphi=\varphi^{\left(a^{2}\right)}$ be the standard map $\varphi: \mathbb{C} P\left(a^{2}\right) \rightarrow \mathbb{C} P\left(2^{a}\right)$ and consider the map

$$
\varphi^{T} \varphi: \mathbb{C} P\left(a^{2}\right) \rightarrow \mathbb{C} P\left(a^{2}\right)
$$

Theorem: The Foulkes conjecture is true for all $a \geq b=2$.

A sketch of Dent's proof (1997): Let $\varphi=\varphi^{\left(a^{2}\right)}$ be the standard map $\varphi: \mathbb{C} P\left(a^{2}\right) \rightarrow \mathbb{C} P\left(2^{a}\right)$ and consider the map

$$
\varphi^{T} \varphi: \mathbb{C} P\left(a^{2}\right) \rightarrow \mathbb{C} P\left(a^{2}\right)
$$

This map is symmetric (as a matrix) and lies in the centralizer algebra of G on $P\left(a^{2}\right)$. This module is multiplicity-free. (It is a submodule of the module of a-element subsets of $\{1, \ldots, 2 a\}$.)

Theorem: The Foulkes conjecture is true for all $a \geq b=2$.

A sketch of Dent's proof (1997): Let $\varphi=\varphi^{\left(a^{2}\right)}$ be the standard map $\varphi: \mathbb{C} P\left(a^{2}\right) \rightarrow \mathbb{C} P\left(2^{a}\right)$ and consider the map

$$
\varphi^{T} \varphi: \mathbb{C} P\left(a^{2}\right) \rightarrow \mathbb{C} P\left(a^{2}\right)
$$

This map is symmetric (as a matrix) and lies in the centralizer algebra of G on $P\left(a^{2}\right)$. This module is multiplicity-free. (It is a submodule of the module of a-element subsets of $\{1, \ldots, 2 a\}$.)

Therefore one can use technique from association schemes to work out the eigenvalues of $\varphi^{T} \varphi$. These are

$$
\rho_{i}=(a-i)!i!2^{a-2 i-1}\binom{2 i}{i} \neq 0
$$

for $i=0,1, \ldots,\left\lfloor\frac{a}{2}\right\rfloor$.

Moreover, each eigenspace $E_{\rho_{i}}=E_{\lambda_{i}}$ is associated to a partition $\lambda_{i}>a^{2}$ in the dominance order, via the corresponding Spechtmodule.

Moreover, each eigenspace $E_{\rho_{i}}=E_{\lambda_{i}}$ is associated to a partition $\lambda_{i}>a^{2}$ in the dominance order, via the corresponding Spechtmodule.

The interesting fact in this proof is that

$$
\rho_{i}>\rho_{j} \quad \text { iff } \quad \lambda_{i} \gg \lambda_{j} .
$$

Any More Conjectures?

Let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}\right)$ be a partition of n and let $P(\lambda)$ be the set of all unordered λ-partitions of $\{1, \ldots, n\}$. A typical element in $P(\lambda)$ is

$$
x=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & \\
\hline 8 & 9 & 10 & \\
\hline 11 & & \begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 8 & 9 & 10 & \\
\hline 5 & 6 & 7 & \\
\hline 11 & & \\
\hline
\end{array} . . . ~
\end{array}
$$

As before, let $\mathbb{C} P(\lambda)$ be the corresponding permutation module.

Any More Conjectures?

Let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}\right)$ be a partition of n and let $P(\lambda)$ be the set of all unordered λ-partitions of $\{1, \ldots, n\}$. A typical element in $P(\lambda)$ is

$$
x=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & \\
\hline 8 & 9 & 10 & \\
\hline 11 &
\end{array}=\begin{array}{cccc}
\hline 1 & 2 & 3 & 4 \\
\hline 8 & 9 & 10 & \\
\hline 5 & 6 & 7 & \\
\hline 11 & & \\
\hline
\end{array} .
$$

As before, let $\mathbb{C} P(\lambda)$ be the corresponding permutation module.

Then again there is a standard map

$$
\varphi^{\lambda}: \mathbb{C} P(\lambda) \longrightarrow \mathbb{C} P\left(\lambda^{\prime}\right)
$$

where λ^{\prime} is the conjugate partition,
define in the analogous fashion:

Can one prove the assumption in the theorem of Black and List using the standard map for partitions in general ?
define in the analogous fashion:

$\varphi^{\lambda}: x=$	1 2 3 5 4 6 7 11 9 10					
1	$\sum_{g \in G_{\lambda}}$	2	3	4	g	
8	6	7		10		

Can one prove the assumption in the theorem of Black and List using the standard map for partitions in general ?

Conjecture (Wagner \& Siemons, 1986; Stanley, 2000): The map $\varphi^{\lambda}: \mathbb{C} P(\lambda) \longrightarrow \mathbb{C} P\left(\lambda^{\prime}\right)$ has maximal rank. (So φ^{λ} is surjective or injective, and λ^{\prime} is the conjugate partition.)
define in the analogous fashion:

$\varphi^{\lambda}: \left.x=$	1 2 3	
$\begin{array}{c}5 \\ 6\end{array} \mathbf{6}$		
8 11	10	$\quad \longmapsto \quad \sum_{g \in G_{\lambda}} \right\rvert\,$
:---:	:---:	:---:
8	6	7
11	10	

Can one prove the assumption in the theorem of Black and List using the standard map for partitions in general ?

Conjecture (Wagner \& Siemons, 1986; Stanley, 2000): The map $\varphi^{\lambda}: \mathbb{C} P(\lambda) \longrightarrow \mathbb{C} P\left(\lambda^{\prime}\right)$ has maximal rank. (So φ^{λ} is surjective or injective, and λ^{\prime} is the conjugate partition.)

Note: (i) As stated, this includes the Foulkes conjecture.
(ii) The conjecture is true for ordered partitions.

However,

Theorem (Neunhöfer \& Müller, 2005): The standard map $\varphi^{\left(5^{5}\right)}$ does not have maximal rank.

However,

Theorem (Neunhöfer \& Müller, 2005): The standard map $\varphi^{\left(5^{5}\right)}$ does not have maximal rank.

Note: (i) Recall, $\operatorname{dim} \mathbb{C} P\left(5^{5}\right) \approx 5 \cdot 10^{12}$ and computations are difficult.
(ii) Recall that the Foulkes conjecture is true for all $b \leq a \leq 5$, the N\&M Theorem has no bearing on this.
(iii) We know that $\varphi^{\left(2^{2}\right)}, \varphi^{\left(3^{3}\right)}$ and $\varphi^{\left(4^{4}\right)}$ (Jacob, 2004) all are of maximal rank. This will be crucial later on. Unfortunately no results known for larger a.

Just One More Conjecture (S, 2000):

Let $\varphi=\varphi^{\lambda}: \mathbb{C} P(\lambda) \rightarrow \mathbb{C} P\left(\lambda^{\prime}\right)$ be the standard map. Then a minimal eigenvalue $\rho \geq 0$ of $\varphi^{T} \varphi$ appears on an eigenspace E_{ρ} containing a Specht module S^{μ} with μ minimally dominating λ.

Foulkes' Theorem for $3=b \leq a$

Theorem (Dent \& Siemons, 2000:) Foulkes' conjecture is true for all $a \geq b=3$.

Foulkes' Theorem for $3=b \leq a$

Theorem (Dent \& Siemons, 2000:) Foulkes' conjecture is true for all $a \geq b=3$.

Sketch of Proof: (i) Let μ dominate a^{3}. Find a lower bound for the multiplicities m_{μ} of the Specht module S^{μ} in $\mathbb{C} P\left(a^{3}\right)$ by writing down sufficiently many linearly independent homomorphism $S^{\mu} \rightarrow \mathbb{C} P\left(a^{3}\right)$.

Foulkes' Theorem for $3=b \leq a$

Theorem (Dent \& Siemons, 2000:) Foulkes' conjecture is true for all $a \geq b=3$.

Sketch of Proof: (i) Let μ dominate a^{3}. Find a lower bound for the multiplicities m_{μ} of the Specht module S^{μ} in $\mathbb{C} P\left(a^{3}\right)$ by writing down sufficiently many linearly independent homomorphism $S^{\mu} \rightarrow \mathbb{C} P\left(a^{3}\right)$.
(ii) Find an upper bound for $\sum m_{\mu}^{2}$. This involves counting intersection arrays of partitions, and in particular 3×3 matrices with constant row/column sums. It turns out that the bound is a certain invariant of "binary seventhics" (Cayley 1879).
(iii) By now m_{λ} is known. Write down m_{λ} linearly independent homomorphisms $S^{\lambda} \rightarrow \mathbb{C} P\left(3^{a}\right)$.
(iii) By now m_{λ} is known. Write down m_{λ} linearly independent homomorphisms $S^{\lambda} \rightarrow \mathbb{C} P\left(3^{a}\right)$.

We have partial results on the eigenvalues of $\varphi^{T} \varphi$, corroborating the conjecture earlier for a^{3}. There is also computational evidence confirming the conjecture for all a^{3} with $a \leq 8$. (This requires looking at representations of degree $\simeq 10^{10}$.)
(iii) By now m_{λ} is known. Write down m_{λ} linearly independent homomorphisms $S^{\lambda} \rightarrow \mathbb{C} P\left(3^{a}\right)$.

We have partial results on the eigenvalues of $\varphi^{T} \varphi$, corroborating the conjecture earlier for a^{3}. There is also computational evidence confirming the conjecture for all a^{3} with $a \leq 8$. (This requires looking at representations of degree $\simeq 10^{10}$.)

In the next slide we will see some illustration of this.

Figure 5: Partial Ordering of the Partitions of 12

Figure 6: Partial Ordering of the Eigenvalues of $M^{3,4}\left(M^{3,4}\right)^{T}$

Figure 7: Partial Ordering of the Partitions of

$$
P\left(5^{3}\right)
$$

Figure 8: Partial Ordering of the Eigenvalues of $M^{3,5}\left(M^{3,5}\right)^{T}$

We have seen two proof variants of Foulkes' Conjecture. In Tom McKay's talk

A Conjecture of Foulkes, II

you will see one further proof that generalizes the proofs here.

Permutation homomorphisms

Let G act as a permutation group on a set Ω and also on a set Δ. Let F be a field and suppose there is an injective $F G$ homomorphism

$$
\varphi: F \Omega \rightarrow F \Delta .
$$

Permutation homomorphisms

Let G act as a permutation group on a set Ω and also on a set Δ. Let F be a field and suppose there is an injective $F G$ homomorphism

$$
\varphi: F \Omega \rightarrow F \Delta .
$$

Then the number of G-orbits on Ω is at most the number of G-orbits on Δ. But not much can be said about the shape of the orbits, so it appears.

Permutation homomorphisms

Let G act as a permutation group on a set Ω and also on a set Δ. Let F be a field and suppose there is an injective $F G$ homomorphism

$$
\varphi: F \Omega \rightarrow F \Delta .
$$

Then the number of G-orbits on Ω is at most the number of G-orbits on Δ. But not much can be said about the shape of the orbits, so it appears.

Here is an example: Let $G=G L(3, q)$ act on the Points and the Lines of the projective plane over $\operatorname{GF}(q)$. Then the stabilizer of a point has orbits of length 1 and $q^{2}+q$ on Points but orbits of length $q+1$ and q^{2} on Lines.

On the other hand, each individual element in G has the same orbit shapes on Points and Lines! So cyclic subgroups are special.

On the other hand, each individual element in G has the same orbit shapes on Points and Lines! So cyclic subgroups are special.

The reason for this is a famous lemma of Brauer, 1941:

Brauer's Permutation Lemma: If P and Q are permutation matrices and if there is an invertible matrix M such that $P=$ $M Q M^{-1}$ then P and Q represent similar permutations.

On the other hand, each individual element in G has the same orbit shapes on Points and Lines! So cyclic subgroups are special.

The reason for this is a famous lemma of Brauer, 1941:

Brauer's Permutation Lemma: If P and Q are permutation matrices and if there is an invertible matrix M such that $P=$ $M Q M^{-1}$ then P and Q represent similar permutations.

One can extend this a little further:

Lemma (Siemons \& Zalesskii 2002): Let H be a cyclic group acting on Ω. Then the number of orbits of length $|H|$ is equal to the multiplicity of the regular module $F H$ in $F \Omega$.

Corollary: Let H be a cyclic group acting on the set Ω and on the set Δ. If there exists an injective H-homomorphism $\varphi: F \Omega \rightarrow F \Delta$ then the number of H-orbits of length $|H|$ on Δ is no less than the number of such orbits on Ω.

An Application

The symmetric group Sym_{n} is particular for having elements of large order for relatively small degree. For instance, Sym_{28} has elements of order $2970=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, as $28=2+3+5+7+11$.

An Application

The symmetric group Sym_{n} is particular for having elements of large order for relatively small degree. For instance, Sym 28 has elements of order $2970=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, as $28=2+3+5+7+11$.

This can't be said for other 'nearly simple' groups: Any finite simple G group has some natural representation, of degree $n(G)$, and it has been observed experimentally that any $g \in G$ has at least one orbit of length $|g|$, unless G is alternating or one of a few small exceptions. In particular, $|g| \leq n(G)$ for all $g \in G$.

An Application

The symmetric group Sym_{n} is particular for having elements of large order for relatively small degree. For instance, Sym 28 has elements of order $2970=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, as $28=2+3+5+7+11$.

This can't be said for other 'nearly simple' groups: Any finite simple G group has some natural representation, of degree $n(G)$, and it has been observed experimentally that any $g \in G$ has at least one orbit of length $|g|$, unless G is alternating or one of a few small exceptions. In particular, $|g| \leq n(G)$ for all $g \in G$.

In fact, elements of order equal to $n(G)$ are usually quite special. (For instance, Singer cycles of the group, etc.)

What about an arbitrary representation of such a group?

Theorem (Siemons \& A. Zalesskii, 2000 \& 2002, CFSG):
Let G be a finite simple group. Assume that
(i) G is not an alternating group, and
(ii) G acts doubly transitively on some set Ω.

Let (G, Δ) be any non-trivial permutation representation of G.
Then every cyclic $H \subseteq G$ has an orbit of length $|H|$ on Δ.

Theorem (Siemons \& A. Zalesskii, $2000 \& 2002, C F S G):$
Let G be a finite simple group. Assume that
(i) G is not an alternating group, and
(ii) G acts doubly transitively on some set Ω.

Let (G, Δ) be any non-trivial permutation representation of G.
Then every cyclic $H \subseteq G$ has an orbit of length $|H|$ on Δ.

Sketch of Proof: (i) Show this is true for the natural doubly transitive representation; call this set Ω.
(ii) For the 'arbitrary' representation on Δ define the natural standard homomorphism

$$
\varphi: F \Omega \rightarrow F \Delta
$$

just as before

$$
\varphi(\omega):=\sum_{g \in G_{\omega}} \delta^{g} .
$$

If this map is injective then we are done, by the Corollary. The double transitivity on Ω leaves only few options for a kernel of φ. So for φ to have an non-zero kernel is exceptional.

If this map is injective then we are done, by the Corollary. The double transitivity on Ω leaves only few options for a kernel of φ. So for φ to have an non-zero kernel is exceptional.
(iii) The exceptions occur exactly when we have a factorization of G in the form $G=G_{\omega} \cdot G_{\delta}$. Thankfully there is a known and short list of such factorisation for finite simple groups.

A Resumé

- We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)

A Resumé

- We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)
- Beyond the immediate question of the FC other ideas are to be explored: (i) Association Schemes and Eigenvalue Distributions related to such representations; and (ii) Explicit Formulae for Character Multiplicities, in at least some cases.

A Resumé

- We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)
- Beyond the immediate question of the FC other ideas are to be explored: (i) Association Schemes and Eigenvalue Distributions related to such representations; and (ii) Explicit Formulae for Character Multiplicities, in at least some cases.
- In the second part I commented on embeddings of permutation modules in a general setting: What are the permutational properties that can be transported via permutation embeddings?

A Resumé

- We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)
- Beyond the immediate question of the FC other ideas are to be explored: (i) Association Schemes and Eigenvalue Distributions related to such representations; and (ii) Explicit Formulae for Character Multiplicities, in at least some cases.
- In the second part I commented on embeddings of permutation modules in a general setting: What are the permutational properties that can be transported via permutation embeddings?

