A Conjecture of Foulkes, I

Castro Urdiales October 15 - 19, 2007

Johannes Siemons UEA Norwich UK

- The Conjecture
- Maps
- More Conjectures?
- Foulkes' Theorem for $3 = b \le a$

- Maps between permutation modules
- An application

The Conjecture

Let $0 \le a, b$ be integers and $N = \{1...n\}$ where $n = a \cdot b$. Let $P(a^b)$ be the set of all partitions of N into b parts of size a, thus

$$|P(a^b)| = \frac{1}{b!} \binom{n}{a} \binom{n-a}{a} \dots \binom{a}{a}$$

٠

The Conjecture

Let $0 \le a, b$ be integers and $N = \{1...n\}$ where $n = a \cdot b$. Let $P(a^b)$ be the set of all partitions of N into b parts of size a, thus

$$|P(a^b)| = \frac{1}{b!} \binom{n}{a} \binom{n-a}{a} \dots \binom{a}{a}$$

For instance,

is an element in $P(4^3)$.

Evidently Sym_n permutes the set $P(a^b)$ transitively. Let $\mathbb{C}P(a^b)$ be the corresponding **permutation module** over the complex numbers.

Evidently Sym_n permutes the set $P(a^b)$ transitively. Let $\mathbb{C}P(a^b)$ be the corresponding **permutation module** over the complex numbers.

Conjecture (Foulkes 1950): If $b \le a$ then $mult(I, \mathbb{C}P(a^b)) \le mult(I, \mathbb{C}P(b^a))$

for all irreducible modules I of Sym_n .

Evidently Sym_n permutes the set $P(a^b)$ transitively. Let $\mathbb{C}P(a^b)$ be the corresponding **permutation module** over the complex numbers.

Conjecture (Foulkes 1950): If
$$b \le a$$
 then
 $mult(I, \mathbb{C}P(a^b)) \le mult(I, \mathbb{C}P(b^a))$

for all irreducible modules I of Sym_n .

This is well-known to hold if partition classes are ordered, i.e.

1	2	3	4		5	6	7	8
5	6	7	8	\neq	1	2	3	4
9	10	11	12		9	10	11	12

Even for small *a* the representations are enormous. For instance,

 $|P(5^5)| \approx 5 \cdot 10^{12}$

and computational work becomes extremely difficult.

Even for small a the representations are enormous. For instance,

$$P(5^5)| \approx 5 \cdot 10^{12}$$

and computational work becomes extremely difficult.

The conjecture is true for $b = 2 \le a$. There are several proofs, see for instance the **Encyclopedia (1981)** by **James & Kerber**, in connection to plethysm. (I will show a different proof later.)

Even for small a the representations are enormous. For instance,

 $|P(5^5)| \approx 5 \cdot 10^{12}$

and computational work becomes extremely difficult.

The conjecture is true for $b = 2 \le a$. There are several proofs, see for instance the **Encyclopedia (1981)** by **James & Kerber**, in connection to plethysm. (I will show a different proof later.)

The conjecture is true for $b = 3 \le a$ (Dent & Siemons, 2000) and I will outline a proof. Recently Tom McKay, 2007 at UEA proved the same for b = 4 < a. You will hear his report after this talk. In an AMS millenium survey **Richard Stanley (2000)** writes on "Positivity problems and Conjectures in Algebraic Combinatorics". In this article the Foulkes conjecture appears as an outstanding problem in positivity: If λ , μ are partitions of n,

For which λ, μ is $\mathbb{C}P(\lambda) - \mathbb{C}P(\mu)$ a positive Sym_n-module?

In an AMS millenium survey **Richard Stanley (2000)** writes on "Positivity problems and Conjectures in Algebraic Combinatorics". In this article the Foulkes conjecture appears as an outstanding problem in positivity: If λ , μ are partitions of n,

For which λ, μ is $\mathbb{C}P(\lambda) - \mathbb{C}P(\mu)$ a positive Sym_n-module?

Invariant theory: The conjecture also plays some role for the theory of multi-symmetric polynomials. **Brion (1993)** shows that the Foulkes conjecture is true for $a \gg b$. There are also applications in **rational homotopy** and the **homology of suspensions**.

In an AMS millenium survey **Richard Stanley (2000)** writes on "Positivity problems and Conjectures in Algebraic Combinatorics". In this article the Foulkes conjecture appears as an outstanding problem in positivity: If λ , μ are partitions of n,

For which λ , μ is $\mathbb{C}P(\lambda) - \mathbb{C}P(\mu)$ a positive Sym_n-module?

Invariant theory: The conjecture also plays some role for the theory of multi-symmetric polynomials. **Brion (1993)** shows that the Foulkes conjecture is true for $a \gg b$. There are also applications in **rational homotopy** and the **homology of suspensions**.

Apart from what is mentioned above the conjecture is open, as far as I am aware. It has been a challenging playground for ideas in the past 60 year, with the occasional success story.

Maps

In which way could one prove statements of the kind

$$\operatorname{mult}(I, \mathbb{C}P(a^b)) \leq \operatorname{mult}(I, \mathbb{C}P(b^a))$$
 ?

There is little hope to work out the multiplicities, these are known in a very few cases only, and very difficult to control.

Maps

In which way could one prove statements of the kind

$$\operatorname{mult}(I, \mathbb{C}P(a^b)) \leq \operatorname{mult}(I, \mathbb{C}P(b^a))$$
?

There is little hope to work out the multiplicities, these are known in a very few cases only, and very difficult to control.

Instead, the conjecture is the same as saying that there exists a $\mathbb{C}G$ -homomorphisms

$$\varphi: \mathbb{C}P(a^b) \longrightarrow \mathbb{C}P(b^a)$$

which is injective. ($G := Sym_n$ for the remainder.) So, what are the standard constructions for such maps?

$$x = \frac{\begin{array}{cccccccc} 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11 & 12 \end{array}}{}.$$

What are the options for $\varphi(x) = w$ in $\mathbb{C}P(b^a) = \mathbb{C}P(3^4)$?

$$x = \begin{array}{ccccccccc} 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11 & 12 \end{array}$$

What are the options for $\varphi(x) = w$ in $\mathbb{C}P(b^a) = \mathbb{C}P(3^4)$?

Since φ is a $\mathbb{C}G$ -map we must have $w^g = w$, for all $g \in G_x$. Thus,

$$\varphi(x) = \sum_{g \in G_x} u^g$$

for an arbitrarily chosen $u \in \mathbb{C}P(3^4)$.

What are the options for $\varphi(x) = w$ in $\mathbb{C}P(b^a) = \mathbb{C}P(3^4)$?

Since φ is a $\mathbb{C}G$ -map we must have $w^g = w$, for all $g \in G_x$. Thus,

$$\varphi(x) = \sum_{g \in G_x} u^g$$

for an arbitrarily chosen $u \in \mathbb{C}P(3^4)$.

This describes all possible *G*-homomorphisms

$$\varphi: \mathbb{C}P(4^3) \to \mathbb{C}P(3^4).$$

Probably the most natural choice is

$$u = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{vmatrix},$$

and for this choice the map is denoted $\varphi^{(4^3)}$. So, this is the standard map

Probably the most natural choice is

$$u = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{vmatrix},$$

and for this choice the map is denoted $\varphi^{(4^3)}$. So, this is the **standard map**

Theorem (Black & List, 1987): If the standard map $\varphi^{(a^a)}$ is injective then the Foulkes conjecture is true for all b < a.

Theorem: The Foulkes conjecture is true for all $a \ge b = 2$.

A sketch of Dent's proof (1997): Let $\varphi = \varphi^{(a^2)}$ be the standard map $\varphi : \mathbb{C}P(a^2) \to \mathbb{C}P(2^a)$ and consider the map

$$\varphi^T \varphi : \mathbb{C}P(a^2) \to \mathbb{C}P(a^2).$$

Theorem: The Foulkes conjecture is true for all $a \ge b = 2$.

A sketch of Dent's proof (1997): Let $\varphi = \varphi^{(a^2)}$ be the standard map $\varphi : \mathbb{C}P(a^2) \to \mathbb{C}P(2^a)$ and consider the map

$$\varphi^T \varphi : \mathbb{C}P(a^2) \to \mathbb{C}P(a^2).$$

This map is symmetric (as a matrix) and lies in the centralizer algebra of G on $P(a^2)$. This module is multiplicity-free. (It is a submodule of the module of a-element subsets of $\{1, ..., 2a\}$.)

Theorem: The Foulkes conjecture is true for all $a \ge b = 2$.

A sketch of Dent's proof (1997): Let $\varphi = \varphi^{(a^2)}$ be the standard map $\varphi : \mathbb{C}P(a^2) \to \mathbb{C}P(2^a)$ and consider the map

$$\varphi^T \varphi : \mathbb{C}P(a^2) \to \mathbb{C}P(a^2).$$

This map is symmetric (as a matrix) and lies in the centralizer algebra of G on $P(a^2)$. This module is multiplicity-free. (It is a submodule of the module of a-element subsets of $\{1, ..., 2a\}$.)

Therefore one can use technique from association schemes to work out the eigenvalues of $\varphi^T \varphi$. These are

$$\rho_i = (a-i)! \quad i! \quad 2^{a-2i-1} \quad {\binom{2i}{i}} \neq 0$$

for $i = 0, 1, ..., \lfloor \frac{a}{2} \rfloor$.

Moreover, each eigenspace $E_{\rho_i} = E_{\lambda_i}$ is associated to a partition $\lambda_i > a^2$ in the dominance order, via the corresponding Spechtmodule.

Moreover, each eigenspace $E_{\rho_i} = E_{\lambda_i}$ is associated to a partition $\lambda_i > a^2$ in the dominance order, via the corresponding Spechtmodule.

The interesting fact in this proof is that

 $\rho_i > \rho_j \quad \text{iff} \quad \lambda_i \ \triangleright \ \lambda_j.$

Any More Conjectures?

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r)$ be a partition of n and let $P(\lambda)$ be the set of all **unordered** λ -partitions of $\{1, ..., n\}$. A typical element in $P(\lambda)$ is

	1	2	3	4	1	2	3	4
~ <u> </u>	5	6	7		8	9	10	
<i>x</i> —	8	9	10		_ 5	6	7	
	11				1	1		

As before, let $\mathbb{C}P(\lambda)$ be the corresponding permutation module.

Any More Conjectures?

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_r)$ be a partition of n and let $P(\lambda)$ be the set of all **unordered** λ -partitions of $\{1, ..., n\}$. A typical element in $P(\lambda)$ is

	1	2	3	4	1	2	3	4
~ _	5	6	7		8	9	10	
<i>x</i> —	8	9	10		- 5	6	7	
	11				11			

As before, let $\mathbb{C}P(\lambda)$ be the corresponding permutation module.

Then again there is a **standard map**

$$\varphi^{\lambda}: \mathbb{C}P(\lambda) \longrightarrow \mathbb{C}P(\lambda'),$$

where λ' is the conjugate partition,

define in the analogous fashion:

Can one prove the assumption in the theorem of Black and List using the standard map for partitions in general ?

define in the analogous fashion:

Can one prove the assumption in the theorem of Black and List using the standard map for partitions in general ?

Conjecture (Wagner & Siemons, 1986; Stanley, 2000): The map $\varphi^{\lambda} : \mathbb{C}P(\lambda) \longrightarrow \mathbb{C}P(\lambda')$ has maximal rank. (So φ^{λ} is surjective or injective, and λ' is the conjugate partition.) define in the analogous fashion:

Can one prove the assumption in the theorem of Black and List using the standard map for partitions in general ?

Conjecture (Wagner & Siemons, 1986; Stanley, 2000): The map $\varphi^{\lambda} : \mathbb{C}P(\lambda) \longrightarrow \mathbb{C}P(\lambda')$ has maximal rank. (So φ^{λ} is surjective or injective, and λ' is the conjugate partition.)

Note: (i) As stated, this includes the Foulkes conjecture.(ii) The conjecture is true for *ordered partitions*.

However,

Theorem (Neunhöfer & Müller, 2005): The standard map $\varphi^{(5^5)}$ does not have maximal rank.

However,

Theorem (Neunhöfer & Müller, 2005): The standard map $\varphi^{(5^5)}$ does not have maximal rank.

- Note: (i) Recall, dim $\mathbb{C}P(5^5) \approx 5 \cdot 10^{12}$ and computations are difficult.
- (ii) Recall that the Foulkes conjecture is true for all $b \le a \le 5$, the N&M Theorem has no bearing on this.
- (iii) We know that $\varphi^{(2^2)}$, $\varphi^{(3^3)}$ and $\varphi^{(4^4)}$ (Jacob, 2004) all are of maximal rank. This will be crucial later on. Unfortunately no results known for larger *a*.

Just One More Conjecture (S, 2000):

Let $\varphi = \varphi^{\lambda} : \mathbb{C}P(\lambda) \to \mathbb{C}P(\lambda')$ be the standard map. Then a minimal eigenvalue $\rho \ge 0$ of $\varphi^T \varphi$ appears on an eigenspace E_{ρ} containing a Specht module S^{μ} with μ minimally dominating λ .

Foulkes' Theorem for $3 = b \le a$

Theorem (Dent & Siemons, 2000:) Foulkes' conjecture is true for all $a \ge b = 3$.

Foulkes' Theorem for $3 = b \le a$

Theorem (Dent & Siemons, 2000:) Foulkes' conjecture is true for all $a \ge b = 3$.

Sketch of Proof: (i) Let μ dominate a^3 . Find a lower bound for the multiplicities m_{μ} of the Specht module S^{μ} in $\mathbb{C}P(a^3)$ by writing down sufficiently many linearly independent homomorphism $S^{\mu} \to \mathbb{C}P(a^3)$.

Foulkes' Theorem for $3 = b \le a$

Theorem (Dent & Siemons, 2000:) Foulkes' conjecture is true for all $a \ge b = 3$.

Sketch of Proof: (i) Let μ dominate a^3 . Find a lower bound for the multiplicities m_{μ} of the Specht module S^{μ} in $\mathbb{C}P(a^3)$ by writing down sufficiently many linearly independent homomorphism $S^{\mu} \to \mathbb{C}P(a^3)$.

(ii) Find an upper bound for $\sum m_{\mu}^2$. This involves counting intersection arrays of partitions, and in particular 3×3 matrices with constant row/column sums. It turns out that the bound is a certain **invariant of "binary seventhics" (Cayley 1879).**

(iii) By now m_{λ} is known. Write down m_{λ} linearly independent homomorphisms $S^{\lambda} \to \mathbb{C}P(3^a)$.

(iii) By now m_{λ} is known. Write down m_{λ} linearly independent homomorphisms $S^{\lambda} \to \mathbb{C}P(3^a)$.

We have partial results on the eigenvalues of $\varphi^T \varphi$, corroborating the conjecture earlier for a^3 . There is also computational evidence confirming the conjecture for all a^3 with $a \leq 8$. (This requires looking at representations of degree $\simeq 10^{10}$.) (iii) By now m_{λ} is known. Write down m_{λ} linearly independent homomorphisms $S^{\lambda} \to \mathbb{C}P(3^a)$.

We have partial results on the eigenvalues of $\varphi^T \varphi$, corroborating the conjecture earlier for a^3 . There is also computational evidence confirming the conjecture for all a^3 with $a \leq 8$. (This requires looking at representations of degree $\simeq 10^{10}$.)

In the next slide we will see some illustration of this.

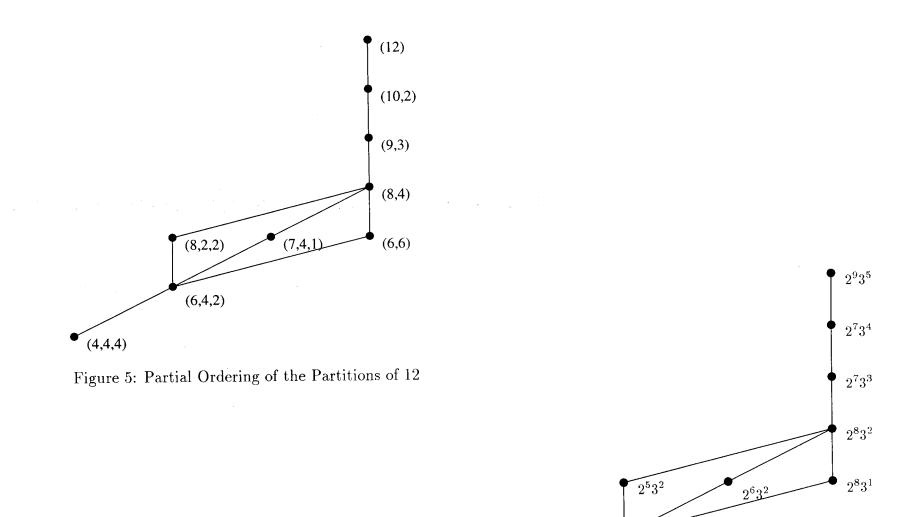


Figure 6: Partial Ordering of the Eigenvalues of $M^{3,4}(M^{3,4})^T$

 2^7

 $2^{5}3^{1}$

 $P(4^3)$:

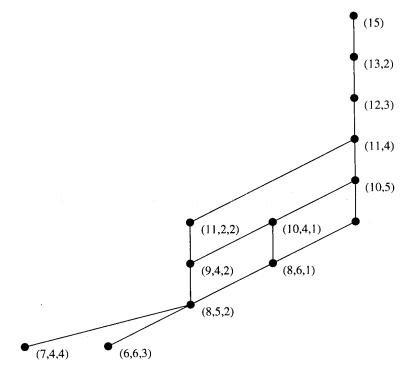


Figure 7: Partial Ordering of the Partitions of

 $P(5^3)$:



Figure 8: Partial Ordering of the Eigenvalues of $M^{3,5}(M^{3,5})^T$

We have seen two proof variants of Foulkes' Conjecture. In **Tom McKay's** talk

A Conjecture of Foulkes, II

you will see one further proof that generalizes the proofs here.

Permutation homomorphisms

Let G act as a permutation group on a set Ω and also on a set Δ . Let F be a field and suppose there is an **injective** FG-**homomorphism**

 $\varphi : F\Omega \rightarrow F\Delta$.

Permutation homomorphisms

Let G act as a permutation group on a set Ω and also on a set Δ . Let F be a field and suppose there is an **injective** FG-**homomorphism**

$$\varphi : F\Omega \rightarrow F\Delta$$
.

Then the number of *G*-orbits on Ω is at most the number of *G*-orbits on Δ . But not much can be said about the **shape of the orbits**, so it appears.

Permutation homomorphisms

Let G act as a permutation group on a set Ω and also on a set Δ . Let F be a field and suppose there is an **injective** FG-**homomorphism**

$$\varphi: F\Omega \rightarrow F\Delta$$
.

Then the number of G-orbits on Ω is at most the number of G-orbits on Δ . But not much can be said about the **shape of the orbits**, so it appears.

Here is an example: Let G = GL(3,q) act on the Points and the Lines of the projective plane over GF(q). Then the stabilizer of a point has orbits of length 1 and $q^2 + q$ on Points but orbits of length q + 1 and q^2 on Lines.

On the other hand, each individual element in *G* has the same orbit shapes on Points and Lines! So cyclic subgroups are special.

On the other hand, each individual element in *G* has the same orbit shapes on Points and Lines! So cyclic subgroups are special.

The reason for this is a famous lemma of Brauer, 1941:

Brauer's Permutation Lemma: If *P* and *Q* are permutation matrices and if there is an invertible matrix *M* such that $P = MQM^{-1}$ then *P* and *Q* represent similar permutations.

On the other hand, each individual element in G has the same orbit shapes on Points and Lines! So cyclic subgroups are special.

The reason for this is a famous lemma of Brauer, 1941:

Brauer's Permutation Lemma: If *P* and *Q* are permutation matrices and if there is an invertible matrix *M* such that $P = MQM^{-1}$ then *P* and *Q* represent similar permutations.

One can extend this a little further:

Lemma (Siemons & Zalesskii 2002): Let H be a cyclic group acting on Ω . Then the number of orbits of length |H| is equal to the multiplicity of the regular module FH in $F\Omega$.

Corollary: Let H be a cyclic group acting on the set Ω and on the set Δ . If there exists an injective H-homomorphism $\varphi: F\Omega \to F\Delta$ then the number of H-orbits of length |H| on Δ is no less than the number of such orbits on Ω .

An Application

The symmetric group Sym_n is particular for having elements of large order for relatively small degree. For instance, Sym_{28} has elements of order $2970 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, as 28 = 2 + 3 + 5 + 7 + 11.

An Application

The symmetric group Sym_n is particular for having elements of large order for relatively small degree. For instance, Sym_{28} has elements of order $2970 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, as 28 = 2 + 3 + 5 + 7 + 11.

This can't be said for other 'nearly simple' groups: Any finite simple G group has some natural representation, of degree n(G), and **it has been observed experimentally that any** $g \in G$ **has at least one orbit of length** |g|, unless G is alternating or one of a few small exceptions. In particular, $|g| \leq n(G)$ for all $g \in G$.

An Application

The symmetric group Sym_n is particular for having elements of large order for relatively small degree. For instance, Sym_{28} has elements of order $2970 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$, as 28 = 2 + 3 + 5 + 7 + 11.

This can't be said for other 'nearly simple' groups: Any finite simple G group has some natural representation, of degree n(G), and **it has been observed experimentally that any** $g \in G$ **has at least one orbit of length** |g|, unless G is alternating or one of a few small exceptions. In particular, $|g| \leq n(G)$ for all $g \in G$.

In fact, elements of order equal to n(G) are usually quite special. (For instance, Singer cycles of the group, etc.)

What about an arbitrary representation of such a group?

Theorem (Siemons & A. Zalesskii, 2000 & 2002, CFSG):

Let G be a finite simple group. Assume that

- (i) G is not an alternating group, and
- (ii) G acts doubly transitively on some set Ω .

Let (G, Δ) be any non-trivial permutation representation of G. Then every cyclic $H \subseteq G$ has an orbit of length |H| on Δ .

Theorem (Siemons & A. Zalesskii, 2000 & 2002, CFSG): Let *G* be a finite simple group. Assume that

- (i) G is not an alternating group, and
- (ii) G acts doubly transitively on some set Ω .

Let (G, Δ) be any non-trivial permutation representation of G. Then every cyclic $H \subseteq G$ has an orbit of length |H| on Δ .

Sketch of Proof: (i) Show this is true for the natural doubly transitive representation; call this set Ω .

(ii) For the 'arbitrary' representation on Δ define the natural standard homomorphism

$$\varphi: F\Omega \rightarrow F\Delta$$

just as before

$$\varphi(\omega) := \sum_{g \in G_{\omega}} \delta^g.$$

If this map is injective then we are done, by the Corollary. The double transitivity on Ω leaves only few options for a kernel of φ . So for φ to have an non-zero kernel is exceptional.

If this map is injective then we are done, by the Corollary. The double transitivity on Ω leaves only few options for a kernel of φ . So for φ to have an non-zero kernel is exceptional.

(iii) The exceptions occur exactly when we have a factorization of G in the form $G = G_{\omega} \cdot G_{\delta}$. Thankfully there is a known and short list of such factorisation for finite simple groups.

• We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)

• We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)

• Beyond the immediate question of the FC other ideas are to be explored: (i) Association Schemes and Eigenvalue Distributions related to such representations; and (ii) Explicit Formulae for Character Multiplicities, in at least some cases.

• We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)

• Beyond the immediate question of the FC other ideas are to be explored: (i) Association Schemes and Eigenvalue Distributions related to such representations; and (ii) Explicit Formulae for Character Multiplicities, in at least some cases.

• In the second part I commented on embeddings of permutation modules in a general setting: What are the permutational properties that can be transported via permutation embeddings?

• We have seen two particular cases where the FC has been proved, by at least two different methods. (One additional method will become apparent in Tom McKay's paper.)

• Beyond the immediate question of the FC other ideas are to be explored: (i) Association Schemes and Eigenvalue Distributions related to such representations; and (ii) Explicit Formulae for Character Multiplicities, in at least some cases.

• In the second part I commented on embeddings of permutation modules in a general setting: What are the permutational properties that can be transported via permutation embeddings?

Thank you!