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For instance,

1 2 3 4
5 6 7 8
9 10 11 12

=
9 10 11 12
6 8 7 5
4 3 2 1

is an element in P (43).
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Evidently Symn permutes the set P (ab) transitively. Let CP (ab)

be the corresponding permutation module over the complex

numbers.

Conjecture (Foulkes 1950): If b ≤ a then

mult
(
I, CP (ab)

)
≤ mult

(
I, CP (ba)

)
for all irreducible modules I of Symn.

This is well-known to hold if partition classes are ordered, i.e.

1 2 3 4
5 6 7 8
9 10 11 12

6=
5 6 7 8
1 2 3 4
9 10 11 12

.
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Even for small a the representations are enormous. For instance,

|P (55)| ≈ 5 · 1012

and computational work becomes extremely difficult.

The conjecture is true for b = 2 ≤ a. There are several proofs,

see for instance the Encyclopedia (1981) by James & Kerber,

in connection to plethysm. (I will show a different proof later.)

The conjecture is true for b = 3 ≤ a (Dent & Siemons, 2000)

and I will outline a proof. Recently Tom McKay, 2007 at UEA

proved the same for b = 4 < a. You will hear his report after this

talk.
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In an AMS millenium survey Richard Stanley (2000) writes

on “Positivity problems and Conjectures in Algebraic Combina-

torics”. In this article the Foulkes conjecture appears as an

outstanding problem in positivity: If λ, µ are partitions of n,

For which λ, µ is CP (λ)− CP (µ) a positive Symn-module?

Invariant theory: The conjecture also plays some role for the

theory of multi-symmetric polynomials. Brion (1993) shows

that the Foulkes conjecture is true for a >> b. There are also

applications in rational homotopy and the homology of sus-

pensions.

Apart from what is mentioned above the conjecture is open, as

far as I am aware. It has been a challenging playground for ideas

in the past 60 year, with the occasional success story.
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In which way could one prove statements of the kind

mult
(
I, CP (ab)

)
≤ mult

(
I, CP (ba)

)
?

There is little hope to work out the multiplicities, these are known

in a very few cases only, and very difficult to control.

Instead, the conjecture is the same as saying that there exists

a CG-homomorphisms

ϕ : CP (ab) −→ CP (ba)

which is injective. (G := Symn for the remainder.) So, what

are the standard constructions for such maps?
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Consider a simple example. A standard partition in P (ab) =

P (43) is

x =
1 2 3 4
5 6 7 8
9 10 11 12

.

What are the options for ϕ(x) = w in CP (ba) = CP (34)?

Since ϕ is a CG-map we must have wg = w, for all g ∈ Gx. Thus,

ϕ(x) =
∑

g∈Gx

ug

for an arbitrarily chosen u ∈ CP (34).

This describes all possible G-homomorphisms

ϕ : CP (43) → CP (34).
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Theorem: The Foulkes conjecture is true for all a ≥ b = 2.

A sketch of Dent’s proof (1997): Let ϕ = ϕ(a2) be the standard

map ϕ : CP (a2) → CP (2a) and consider the map

ϕTϕ : CP (a2) → CP (a2).

This map is symmetric (as a matrix) and lies in the centralizer

algebra of G on P (a2). This module is multiplicity-free. (It is a

submodule of the module of a-element subsets of {1, ..., 2a}.)

Therefore one can use technique from association schemes to

work out the eigenvalues of ϕTϕ. These are

ρi = (a− i)! i! 2a−2i−1
(2i

i

)
6= 0

for i = 0, 1, ..., ba
2c. �



Moreover, each eigenspace Eρi = Eλi
is associated to a partition

λi |> a2 in the dominance order, via the corresponding Specht-

module.



Moreover, each eigenspace Eρi = Eλi
is associated to a partition

λi |> a2 in the dominance order, via the corresponding Specht-

module.

The interesting fact in this proof is that

ρi > ρj iff λi |> λj.
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define in the analogous fashion:

ϕλ : x =

1 2 3 4
5 6 7
8 9 10
11

|−→
∑

g∈Gλ

1 2 3 4 g
5 6 7
8 9 10
11

.

Can one prove the assumption in the theorem of Black and List

using the standard map for partitions in general ?

Conjecture (Wagner & Siemons, 1986; Stanley, 2000):

The map ϕλ : CP (λ) −→ CP (λ′) has maximal rank. (So ϕλ

is surjective or injective, and λ′ is the conjugate partition.)

Note: (i) As stated, this includes the Foulkes conjecture.

(ii) The conjecture is true for ordered partitions.
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However,

Theorem (Neunhöfer & Müller, 2005): The standard map

ϕ(55) does not have maximal rank.

Note: (i) Recall, dimCP (55) ≈ 5 · 1012 and computations

are difficult.

(ii) Recall that the Foulkes conjecture is true for all b ≤ a ≤ 5,

the N&M Theorem has no bearing on this.

(iii) We know that ϕ(22) , ϕ(33) and ϕ(44) (Jacob, 2004) all

are of maximal rank. This will be crucial later on.

Unfortunately no results known for larger a.



Just One More Conjecture (S, 2000):

Let ϕ = ϕλ : CP (λ) → CP (λ′) be the standard map. Then a

minimal eigenvalue ρ ≥ 0 of ϕTϕ appears on an eigenspace Eρ

containing a Specht module Sµ with µ minimally dominating λ.
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Foulkes’ Theorem for 3 = b ≤ a

Theorem (Dent & Siemons, 2000:) Foulkes’ conjecture is

true for all a ≥ b = 3.

Sketch of Proof : (i) Let µ dominate a3. Find a lower bound

for the multiplicities mµ of the Specht module Sµ in CP (a3) by

writing down sufficiently many linearly independent homomor-

phism Sµ → CP (a3).

(ii) Find an upper bound for
∑

m2
µ. This involves counting

intersection arrays of partitions, and in particular 3× 3 matrices

with constant row/column sums. It turns out that the bound is

a certain invariant of “binary seventhics” (Cayley 1879).
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(iii) By now mλ is known. Write down mλ linearly independent

homomorphisms Sλ → CP (3a). �

We have partial results on the eigenvalues of ϕTϕ, corroborat-

ing the conjecture earlier for a3. There is also computational

evidence confirming the conjecture for all a3 with a ≤ 8. (This

requires looking at representations of degree ' 1010.)

In the next slide we will see some illustration of this.



P (43) :



P (53) :



We have seen two proof variants of Foulkes’ Conjecture. In Tom

McKay’s talk

A Conjecture of Foulkes, II

you will see one further proof that generalizes the proofs here.
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Let G act as a permutation group on a set Ω and also on a

set ∆. Let F be a field and suppose there is an injective FG-

homomorphism

ϕ : FΩ → F∆ .

Then the number of G-orbits on Ω is at most the number of

G-orbits on ∆. But not much can be said about the shape of

the orbits, so it appears.

Here is an example: Let G = GL(3, q) act on the Points and

the Lines of the projective plane over GF(q). Then the stabilizer

of a point has orbits of length 1 and q2 + q on Points but orbits

of length q + 1 and q2 on Lines.
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On the other hand, each individual element in G has the

same orbit shapes on Points and Lines! So cyclic subgroups

are special.

The reason for this is a famous lemma of Brauer, 1941:

Brauer’s Permutation Lemma: If P and Q are permutation

matrices and if there is an invertible matrix M such that P =

MQM−1 then P and Q represent similar permutations.

One can extend this a little further:

Lemma (Siemons & Zalesskii 2002): Let H be a cyclic

group acting on Ω. Then the number of orbits of length |H| is

equal to the multiplicity of the regular module FH in FΩ.



Corollary: Let H be a cyclic group acting on the set Ω

and on the set ∆. If there exists an injective H -homomorphism

ϕ : FΩ → F∆ then the number of H -orbits of length |H| on

∆ is no less than the number of such orbits on Ω.
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An Application

The symmetric group Symn is particular for having elements of

large order for relatively small degree. For instance, Sym28 has

elements of order 2970 = 2 ·3 ·5 ·7 ·11, as 28 = 2+3+5+7+11.

This can’t be said for other ’nearly simple’ groups: Any finite

simple G group has some natural representation, of degree n(G),

and it has been observed experimentally that any g ∈ G has

at least one orbit of length |g|, unless G is alternating or one

of a few small exceptions. In particular, |g| ≤ n(G) for all g ∈ G.

In fact, elements of order equal to n(G) are usually quite special.

(For instance, Singer cycles of the group, etc.)

What about an arbitrary representation of such a group?
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Theorem (Siemons & A. Zalesskii, 2000 & 2002, CFSG):

Let G be a finite simple group. Assume that

(i) G is not an alternating group, and

(ii) G acts doubly transitively on some set Ω.

Let (G, ∆) be any non-trivial permutation representation of G.

Then every cyclic H ⊆ G has an orbit of length |H| on ∆.

Sketch of Proof: (i) Show this is true for the natural doubly

transitive representation; call this set Ω.

(ii) For the ’arbitrary’ representation on ∆ define the natural

standard homomorphism

ϕ : FΩ → F∆

just as before

ϕ(ω) :=
∑

g∈Gω

δg.



If this map is injective then we are done, by the Corollary. The

double transitivity on Ω leaves only few options for a kernel

of ϕ. So for ϕ to have an non-zero kernel is exceptional.



If this map is injective then we are done, by the Corollary. The

double transitivity on Ω leaves only few options for a kernel

of ϕ. So for ϕ to have an non-zero kernel is exceptional.

(iii) The exceptions occur exactly when we have a factorization

of G in the form G = Gω · Gδ. Thankfully there is a known and

short list of such factorisation for finite simple groups.
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A Resumé

• We have seen two particular cases where the FC has been

proved, by at least two different methods. (One additional

method will become apparent in Tom McKay’s paper.)

• Beyond the immediate question of the FC other ideas are to be

explored: (i) Association Schemes and Eigenvalue Distributions

related to such representations; and (ii) Explicit Formulae for

Character Multiplicities, in at least some cases.

• In the second part I commented on embeddings of permuta-

tion modules in a general setting: What are the permutational

properties that can be transported via permutation embeddings?

Thank you!


