q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

October 16, 2007

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

• • • • • • • • • • • • • •

-

Table of contents

Finite reflection groups

q, t-Fuss-Catalan numbers

Arrangements of hyperplanes

Connections to rational Cherednik algebras

▲ 同 ▶ → 三 ▶

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Table of contents

Finite reflection groups

q, t-Fuss-Catalan numbers

Arrangements of hyperplanes

Connections to rational Cherednik algebras

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

reflections, reflection groups, root systems

イロン イボン イヨン イヨン

What is a finite reflection group Classification of finite reflection groups An example

reflections, reflection groups, root systems

Let α be a nonzero vector in some real vector space V. We define s_α to be the *reflection in V* sending α to its negative while fixing pointwise the hyperplane H_α orthogonal to α.

• • • • • • • • • • • • • •

What is a finite reflection group Classification of finite reflection groups An example

reflections, reflection groups, root systems

- Let α be a nonzero vector in some real vector space V. We define s_{α} to be the *reflection in* V sending α to its negative while fixing pointwise the hyperplane H_{α} orthogonal to α .
- ► A *(finite) reflection group* W is a finite group generated by reflections.

Image: A math a math

What is a finite reflection group Classification of finite reflection groups An example

reflections, reflection groups, root systems

- Let α be a nonzero vector in some real vector space V. We define s_{α} to be the *reflection in* V sending α to its negative while fixing pointwise the hyperplane H_{α} orthogonal to α .
- ► A *(finite) reflection group* W is a finite group generated by reflections.
- A root system Φ is a finite set of nonzero vectors in V satisfying the conditions:

i.
$$\Phi \cap \mathbb{R}\alpha = \{\pm \alpha\}$$
 for all $\alpha \in \Phi$,

ii. the group $W_{\Phi} := \langle s_{\alpha} : \alpha \in \Phi \rangle$ permutes Φ among itself, i.e.

$$s_{\alpha}(\beta) \in \Phi$$

for all $\alpha, \beta \in \Phi$.

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Simple roots, positive roots

イロト イポト イヨト イヨト

э

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Simple roots, positive roots

Let Φ be a root system.

- A simple system in Φ is a subset $\Delta \subseteq \Phi$, such that
 - Δ forms a vector space basis of the \mathbb{R} -span of Φ in V and
 - any α ∈ Φ is a linear combination of Δ with coefficients all of the same sign,

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Simple roots, positive roots

Let Φ be a root system.

- A simple system in Φ is a subset $\Delta \subseteq \Phi$, such that
 - Δ forms a vector space basis of the \mathbb{R} -span of Φ in V and
 - any α ∈ Φ is a linear combination of Δ with coefficients all of the same sign,
- a positive system in Φ is a subset Φ⁺ ⊆ Φ of all α ∈ Φ which are positive linear combinations of a simple system Δ.

< < >> < </p>

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Simple roots, positive roots

Let Φ be a root system.

- A simple system in Φ is a subset $\Delta \subseteq \Phi$, such that
 - Δ forms a vector space basis of the \mathbb{R} -span of Φ in V and
 - any α ∈ Φ is a linear combination of Δ with coefficients all of the same sign,
- a positive system in Φ is a subset Φ⁺ ⊆ Φ of all α ∈ Φ which are positive linear combinations of a simple system Δ.

Remark

Any two simple (resp. positive) systems in Φ are conjugate under W_{Φ} .

q, *t*-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Irreducible reflection groups

イロト イポト イヨト イヨト

э

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Irreducible reflection groups

Every finite reflection group W is equal to W_Φ for some root system Φ.

イロン イボン イヨン イヨン

What is a finite reflection group Classification of finite reflection groups An example

Irreducible reflection groups

- Every finite reflection group W is equal to W_Φ for some root system Φ.
- The following root systems determine (up to isomorphisms) the irreducible finite reflection groups:

 A_n, B_n, D_n and $I_2(m), H_3, H_4, F_4, E_6, E_7, E_8.$

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Example: Type A_2

・ロト ・回ト ・ヨト ・ヨト

2

q, t-Fuss-Catalan numbers Arrangements of hyperplanes Connections to rational Cherednik algebras What is a finite reflection group Classification of finite reflection groups An example

Example: Type A_2

Let

$$V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$$

Setting

$$\alpha_1=\mathbf{e}_1-\mathbf{e}_2, \alpha_2=\mathbf{e}_2-\mathbf{e}_3,$$

we can realize type A_2 as follows:

イロン イボン イヨン イヨン

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Table of contents

Finite reflection groups

q, t-Fuss-Catalan numbers

Arrangements of hyperplanes

Connections to rational Cherednik algebras

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type A

q, t-Fuss-Catalan numbers for reflection groups

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type A

Let Φ be the root system of type A_{n-1} . Then W_{Φ} is the symmetric group S_n and we define a *diagonal action* on

$$\mathbb{C}[\mathbf{x},\mathbf{y}] := \mathbb{C}[x_1,y_1,\ldots,x_n,y_n]$$

by

$$\sigma(x_i) = x_{\sigma(i)}, \sigma(y_i) = y_{\sigma(i)}$$
 for $\sigma \in S_n$.

イロン イボン イヨン イヨン

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type A

Let Φ be the root system of type A_{n-1} . Then W_{Φ} is the symmetric group S_n and we define a *diagonal action* on

$$\mathbb{C}[\mathbf{x},\mathbf{y}] := \mathbb{C}[x_1,y_1,\ldots,x_n,y_n]$$

by

$$\sigma(x_i) = x_{\sigma(i)}, \sigma(y_i) = y_{\sigma(i)} \text{ for } \sigma \in S_n.$$

We call a polynomial f alternating of type A_{n-1} if

$$\sigma(f) = \operatorname{sgn}(\sigma)f$$
 for all $\sigma \in \mathcal{S}_n$.

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type A

Let Φ be the root system of type A_{n-1} . Then W_{Φ} is the symmetric group S_n and we define a *diagonal action* on

$$\mathbb{C}[\mathbf{x},\mathbf{y}] := \mathbb{C}[x_1,y_1,\ldots,x_n,y_n]$$

by

$$\sigma(x_i) = x_{\sigma(i)}, \sigma(y_i) = y_{\sigma(i)} \text{ for } \sigma \in S_n.$$

We call a polynomial f alternating of type A_{n-1} if

$$\sigma(f) = \operatorname{sgn}(\sigma)f$$
 for all $\sigma \in \mathcal{S}_n$.

$$\begin{bmatrix} n = 2 : & x_1y_1 - x_2y_2 & \text{alternating,} \\ & x_1y_1 + x_2y_2 & \text{not alternating} \end{bmatrix}$$

< < >> < </p>

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type ${\cal B}$

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

イロト イポト イヨト イヨト

10 of 35

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type B

For Φ being the root system of type B_n , W_{Φ} is the group of signed permutations and the diagonal action is given by

$$\sigma(x_i) = \pm x_{\sigma(i)}, \sigma(y_i) = \pm y_{\sigma(i)}$$
 for $\sigma \in W_{\Phi}$.

イロト イポト イヨト イヨト

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type B

For Φ being the root system of type B_n , W_{Φ} is the group of signed permutations and the diagonal action is given by

$$\sigma(x_i) = \pm x_{\sigma(i)}, \sigma(y_i) = \pm y_{\sigma(i)}$$
 for $\sigma \in W_{\Phi}$.

We call a polynomial f alternating of type B_n if

$$\sigma(f) = \operatorname{sgn}(\sigma)f$$
 for all $\sigma \in W_{\Phi}$.

Here, $sgn(\sigma)$ is the signum of the underlying permutation multiplied by $(-1)^{\text{number of minus signs}}$.

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials of type B

For Φ being the root system of type B_n , W_{Φ} is the group of signed permutations and the diagonal action is given by

$$\sigma(x_i) = \pm x_{\sigma(i)}, \sigma(y_i) = \pm y_{\sigma(i)} \text{ for } \sigma \in W_{\Phi}.$$

We call a polynomial f alternating of type B_n if

$$\sigma(f) = \operatorname{sgn}(\sigma)f$$
 for all $\sigma \in W_{\Phi}$.

Here, $sgn(\sigma)$ is the signum of the underlying permutation multiplied by $(-1)^{\text{number of minus signs}}$.

$$\begin{bmatrix} n = 2 : & x_1y_1 - x_2y_2 & \text{not alternating,} \\ & x_1y_2 - x_2y_1 & \text{alternating} \end{bmatrix}$$

< < >> < </p>

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials for all types

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials for all types

This definition can be generalized in the following way:

イロン イボン イヨン イヨン

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials for all types

This definition can be generalized in the following way:

Let Φ be a root system and let \mathfrak{h} be the complexification of V. The *contragredient action* of W_{Φ} on $\mathfrak{h}^* = \text{Hom}(\mathfrak{h}, \mathbb{C})$ is given by

$$\omega(\rho) := \rho \circ \omega^{-1}.$$

< < >> < </p>

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials for all types

This definition can be generalized in the following way:

Let Φ be a root system and let \mathfrak{h} be the complexification of V. The *contragredient action* of W_{Φ} on $\mathfrak{h}^* = \text{Hom}(\mathfrak{h}, \mathbb{C})$ is given by

$$\omega(\rho) := \rho \circ \omega^{-1}.$$

This gives an action of W_{Φ} on the symmetric algebra $S(\mathfrak{h}^*) = \mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a *diagonal action* on $\mathbb{C}[\mathbf{x}, \mathbf{y}]$.

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Alternating polynomials for all types

This definition can be generalized in the following way:

Let Φ be a root system and let \mathfrak{h} be the complexification of V. The *contragredient action* of W_{Φ} on $\mathfrak{h}^* = \text{Hom}(\mathfrak{h}, \mathbb{C})$ is given by

$$\omega(\rho) := \rho \circ \omega^{-1}.$$

This gives an action of W_{Φ} on the symmetric algebra $S(\mathfrak{h}^*) = \mathbb{C}[\mathbf{x}]$ and 'doubling up' this action gives a *diagonal action* on $\mathbb{C}[\mathbf{x}, \mathbf{y}]$.

We call a polynomial f alternating of type Φ , if

$$\omega(f) = \det(\omega) f$$
 for all $\omega \in W_{\Phi}$.

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

Let Φ be a root system and let $I \trianglelefteq \mathbb{C}[\mathbf{x}, \mathbf{y}]$ be the ideal generated by all alternating polynomials of type Φ .

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

Let Φ be a root system and let $I \trianglelefteq \mathbb{C}[\mathbf{x}, \mathbf{y}]$ be the ideal generated by all alternating polynomials of type Φ . The W_{Φ} -module $M_{\Phi}^{(m)}$ given by

$$M^{(m)}_{\Phi} := I^m / \langle \mathbf{x}, \mathbf{y} \rangle I^m$$

is the minimal generating space of I^m . It is naturally bigraded by degree in **x** and degree in **y**, $M_{\Phi}^{(m)} = \bigoplus_{i,j \ge 0} M_{ij}$.

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

Let Φ be a root system and let $I \trianglelefteq \mathbb{C}[\mathbf{x}, \mathbf{y}]$ be the ideal generated by all alternating polynomials of type Φ . The W_{Φ} -module $M_{\Phi}^{(m)}$ given by

 $M^{(m)}_{\Phi} := I^m / \langle \mathbf{x}, \mathbf{y} \rangle I^m$

is the minimal generating space of I^m . It is naturally bigraded by degree in **x** and degree in **y**, $M_{\Phi}^{(m)} = \bigoplus_{i,j \ge 0} M_{ij}$.

Remark

As a vector space, $M_{\Phi}^{(m)}$ is isomorphic to the vector space with basis in one-to-one correspondence with a homogeneous minimal generating set of I^m .

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

Definition

We define q, t-Fuss-Catalan numbers as the bigraded Hilbert series of $M_{\Phi}^{(m)}$, this is the generating function of the dimensions of its bigraded components:

$$\operatorname{Cat}_{\Phi}^{(m)}(q,t) := \mathcal{H}(M_{\Phi}^{(m)};q,t) = \sum_{i,j\geq 0} \dim{(M_{ij})q^i t^j}.$$
Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

q, t-Fuss-Catalan numbers as a bigraded Hilbert series

Definition

We define q, t-Fuss-Catalan numbers as the bigraded Hilbert series of $M_{\Phi}^{(m)}$, this is the generating function of the dimensions of its bigraded components:

$$\operatorname{Cat}_{\Phi}^{(m)}(q,t) := \mathcal{H}(M_{\Phi}^{(m)};q,t) = \sum_{i,j\geq 0} \dim (M_{ij})q^it^j.$$

• $Cat_{\Phi}^{(m)}(q,t)$ is a symmetric polynomial in q and t.

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

The well-studied type A

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

・ロト ・回ト ・ヨト ・ヨト

2

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

The well-studied type A

 First, Cat^(m)_{A_{n-1}}(q, t) occurred as a complicated rational function in the context of modified Macdonald polynomials (Garsia, Haiman).

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

The well-studied type A

- First, Cat^(m)_{A_{n-1}}(q, t) occurred as a complicated rational function in the context of modified Macdonald polynomials (Garsia, Haiman).
- Later it was shown to be equal to the Hilbert series of some cohomology module in the theory of *Hilbert schemes of points in the plane* (Haiman).

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

The well-studied type A

- First, Cat^(m)_{A_{n-1}}(q, t) occurred as a complicated rational function in the context of modified Macdonald polynomials (Garsia, Haiman).
- Later it was shown to be equal to the Hilbert series of some cohomology module in the theory of *Hilbert schemes of points in the plane* (Haiman).
- ► It has a conjectured combinatorial interpretation in terms of two statistics on partitions that fit inside the partition ((n-1)m,...,2m,m):

$$\mathsf{Cat}_{A_{n-1}}^{(m)}(q,t) = \sum q^{\mathsf{area}(\lambda)} t^{\mathsf{dinv}(\lambda)}$$

▶ proved for m = 1 (Garsia, Haglund) and for t = 1 (Haiman).

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Example: $Cat^{(1)}_{A_2}(q,t)$

・ロン ・回 と ・ ヨン ・ ヨン

2

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Example: $Cat^{(1)}_{A_2}(q, t)$

Let λ be a partition that fits inside the partition (2,1). Then

$$\mathsf{area}(\lambda) \hspace{.1in} := \hspace{.1in} |(2,1)| - |\lambda| = 3 - |\lambda| \hspace{.1in} \mathsf{and}$$

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Example: $Cat^{(1)}_{A_2}(q, t)$

Let λ be a partition that fits inside the partition (2,1). Then

$$egin{array}{rcl} {
m area}(\lambda) &:= & |(2,1)|-|\lambda|=3-|\lambda| \ {
m and} \ {
m dinv}(\lambda) &:= & \#ig\{c\in\lambda:{
m arm}(c)-{
m leg}(c)\in\{0,1\}ig\}. \end{array}$$

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

Example: $Cat^{(1)}_{A_2}(q, t)$

Let λ be a partition that fits inside the partition (2,1). Then

$$\begin{split} & \mathsf{area}(\lambda) &:= \ |(2,1)| - |\lambda| = 3 - |\lambda| \text{ and} \\ & \mathsf{dinv}(\lambda) &:= \ \# \big\{ c \in \lambda : \mathsf{arm}(c) - \mathsf{leg}(c) \in \{0,1\} \big\}. \end{split}$$

So, let us compute $\operatorname{Cat}_{A_2}^{(1)}(q,t) = \sum_{\lambda} q^{\operatorname{area}(\lambda)} t^{\operatorname{dinv}(\lambda)}$:

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M^{(m)}_{\Phi}$

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M^{(m)}_{\Phi}$

Computations of the dimensions of $M_{\Phi}^{(m)}$ were the first motivation for further investigations:

(日) (同) (三) (三)

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M^{(m)}_{\Phi}$

Computations of the dimensions of $M_{\Phi}^{(m)}$ were the first motivation for further investigations:

Conjecture

$$\mathsf{Cat}_{\Phi}^{(m)}(1,1) = \prod_{i=1}^{l} \frac{d_i + mh}{d_i},$$

where *I* is the rank of Φ , *h* the Coxeter number and d_1, \ldots, d_l the degrees of the *fundamental invariant of* Φ .

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M^{(m)}_{\Phi}$

Computations of the dimensions of $M_{\Phi}^{(m)}$ were the first motivation for further investigations:

Conjecture

$$\mathsf{Cat}_{\Phi}^{(m)}(1,1) = \prod_{i=1}^{l} \frac{d_i + mh}{d_i},$$

where *I* is the rank of Φ , *h* the Coxeter number and d_1, \ldots, d_l the degrees of the *fundamental invariant of* Φ .

These numbers, called Fuss-Catalan numbers, count many combinatorial objects, for example k-divisible non-crossing partitions (Reiner, Bessis).

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M^{(m)}_{\Phi}$

イロト イポト イヨト イヨト

э

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M^{(m)}_{\Phi}$

For m = 1 they reduce to the well-known Catalan numbers of type Φ:

イロン イボン イヨン イヨン

Alternating polynomials q, t-Fuss-Catalan numbers A first conjecture

A conjectured formula for the dimension of $M_{\Phi}^{(m)}$

For m = 1 they reduce to the well-known Catalan numbers of type Φ:

$I_2(m)$	H ₃	H_4	F ₄	E_6	E ₇	E ₈
m+2	32	280	105	833	4160	25080

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Table of contents

Finite reflection groups

q, t-Fuss-Catalan numbers

Arrangements of hyperplanes

Connections to rational Cherednik algebras

(日) (同) (三) (三)

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The extended Shi arrangement

<ロ> <同> <同> < 回> < 回>

э

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The extended Shi arrangement

Let Φ be crystallographic (A_{n-1} , B_n , D_n , $I_2(6)$, F_4 , E_6 , E_7 , E_8). We define the *extended Shi arrangement* Shi^(m)(Φ) as

$$\bigcup_{\alpha\in\Phi^+,0\leq k\leq m}H_{\alpha}^k\subseteq V,$$

where $H_{\alpha}^{k} = \{x \in V : (x, \alpha) = k\}.$

(日) (同) (三) (三)

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The extended Shi arrangement

Let Φ be crystallographic (A_{n-1} , B_n , D_n , $I_2(6)$, F_4 , E_6 , E_7 , E_8). We define the *extended Shi arrangement* Shi^(m)(Φ) as

$$\bigcup_{\alpha\in\Phi^+,0\leq k\leq m}H_{\alpha}^k\subseteq V,$$

where $H_{\alpha}^{k} = \{x \in V : (x, \alpha) = k\}.$

 A region of Shi^(m)(Φ) is a connected component of V \ Shi^(m)(Φ).

(日) (同) (三) (三)

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The extended Shi arrangement

Let Φ be crystallographic (A_{n-1} , B_n , D_n , $I_2(6)$, F_4 , E_6 , E_7 , E_8). We define the *extended Shi arrangement* Shi^(m)(Φ) as

$$\bigcup_{\alpha\in\Phi^+,0\leq k\leq m}H_{\alpha}^k\subseteq V,$$

where $H_{\alpha}^{k} = \{x \in V : (x, \alpha) = k\}.$

 A region of Shi^(m)(Φ) is a connected component of V \ Shi^(m)(Φ).

Remark

For m = 0, the extended Shi arrangement reduces to the Coxeter arrangement associated to Φ .

イロン イボン イヨン イヨン

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Example: $Shi^{(2)}(A_2)$

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

・ロト ・四ト ・ヨト ・ヨト

20 of 35

Ξ.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Example: $Shi^{(2)}(A_2)$

<ロ> <同> <同> < 回> < 回>

2

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Number of regions of the extended Shi arrangement

イロン イボン イヨン イヨン

э

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Number of regions of the extended Shi arrangement

Theorem (C.A. Athanasiadis)

The number of regions into which the fundamental chamber of the Coxeter arrangement is dissected by the hyperplanes of $Shi^{(m)}(\Phi)$ equals

$$\prod_{i=1}^{l} \frac{d_i + mh}{d_i},$$

where I is the rank of Φ , h the Coxeter number and d_1, \ldots, d_l the degrees of the fundamental invariant of Φ .

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Example: $Shi^{(2)}(A_2)$

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

イロト イヨト イヨト イヨト

22 of 35

Ξ.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Example: $Shi^{(2)}(A_2)$

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The coheight of a region in the extended Shi arrangement

イロン イボン イヨン イヨン

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The coheight of a region in the extended Shi arrangement

Let R^{∞} be the region given by $(x, \alpha) > m$ for all $\alpha \in \Phi^+$ and for any region R let coh(R) be the number of hyperplanes separating R from R^{∞} .

(ロ) (四) (三) (三)

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The coheight of a region in the extended Shi arrangement

Let R^{∞} be the region given by $(x, \alpha) > m$ for all $\alpha \in \Phi^+$ and for any region R let $\operatorname{coh}(R)$ be the number of hyperplanes separating R from R^{∞} .

We combinatorially define *q*-Fuss-Catalan numbers by

$$\mathsf{Cat}_{\Phi}^{(m)}(q) := \sum q^{\mathsf{coh}(R)},$$

where the sum ranges over all regions of $\text{Shi}^{(m)}(\Phi)$ which lie in the fundamental chamber of the Coxeter arrangement.

(日) (同) (三) (三)

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Example: $Shi^{(2)}(A_2)$

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

・ロト ・回ト ・ヨト ・ヨト

Ξ.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Example: $Shi^{(2)}(A_2)$

$$\operatorname{Cat}_{A_2}^{(2)}(q) = \sum q^{\operatorname{coh}(R)} = 1 + 2q + 3q^2 + 2q^3 + 2q^4 + q^5 + q^6$$

<ロ> <同> <同> < 回> < 回>

2

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Properties of $\operatorname{Cat}_{\Phi}^{(m)}(q)$

・ロト ・四ト ・ヨト ・ヨト

Ξ.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Properties of $Cat_{\Phi}^{(m)}(q)$

► The coheight generating function reduces for type A to the Carlitz q-Catalan numbers ∑_λ q^{area(λ)},

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Properties of $Cat_{\Phi}^{(m)}(q)$

- ► The coheight generating function reduces for type A to the Carlitz q-Catalan numbers $\sum_{\lambda} q^{\operatorname{area}(\lambda)}$,
- ▶ also in type A, they satisfy the generating function identity

$$\sum_{n\geq 0} \frac{x^n q^{-(m+1)\binom{n}{2}}}{(-x; q^{-1})_{(m+1)n+1}} \operatorname{Cat}_{A_{n-1}}^{(m)}(q) = 1,$$

where $(a; q)_k = (1 - a)(1 - qa) \cdots (1 - q^{k-1}a)$.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

Properties of $Cat_{\Phi}^{(m)}(q)$

- ► The coheight generating function reduces for type A to the Carlitz q-Catalan numbers $\sum_{\lambda} q^{\operatorname{area}(\lambda)}$,
- ▶ also in type A, they satisfy the generating function identity

$$\sum_{n \ge 0} \frac{x^n q^{-(m+1)\binom{n}{2}}}{(-x; q^{-1})_{(m+1)n+1}} \operatorname{Cat}_{A_{n-1}}^{(m)}(q) = 1,$$

where $(a; q)_k = (1 - a)(1 - qa) \cdots (1 - q^{k-1}a)$.

▶ For type B and m = 1, they satisfy the generating function identity

$$\sum_{n\geq 0} \frac{x^n q^{-n(n-1)}(1-qx)}{(-x;q^{-1})_{2n+1}} \operatorname{Cat}_{B_n}^{(1)}(q) = 1.$$
Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization t = 1 in $\operatorname{Cat}_{\Phi}^{(m)}(q, t)$

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

イロト イポト イヨト イヨト

26 of 35

э

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization t=1 in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

The definition of *q*-Fuss-Catalan numbers is motivated - as one could guess - by the following conjecture:

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization t=1 in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

The definition of *q*-Fuss-Catalan numbers is motivated - as one could guess - by the following conjecture:

Conjecture

Let Φ be a crystallographic root system. Then

$$\mathsf{Cat}_\Phi^{(m)}(q)=\mathsf{Cat}_\Phi^{(m)}(q,1)$$

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization t=1 in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

The definition of *q*-Fuss-Catalan numbers is motivated - as one could guess - by the following conjecture:

Conjecture

Let Φ be a crystallographic root system. Then

$$\mathsf{Cat}_\Phi^{(m)}(q) = \mathsf{Cat}_\Phi^{(m)}(q,1)$$

► The conjecture is known to be true for type A,

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization t=1 in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

The definition of *q*-Fuss-Catalan numbers is motivated - as one could guess - by the following conjecture:

Conjecture

Let Φ be a crystallographic root system. Then

$$\mathsf{Cat}_\Phi^{(m)}(q)=\mathsf{Cat}_\Phi^{(m)}(q,1)$$

The conjecture is known to be true for type A,

- was validated by computations for
 - types *B* and *D* with $n \le 4, m \le 3$,
 - types $I_2(6)$ and F_4 with $m \leq 3$.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

A remark on non-crystallographic root systems

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

イロト イポト イヨト イヨト

27 of 35

э

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

A remark on non-crystallographic root systems

For crystallographic types, Φ^+ can be considered as a poset, the *root poset* of type Φ . It is defined by

 $\alpha \leq \beta :\Leftrightarrow \beta - \alpha$ is a positive linear combination of simple roots.

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

A remark on non-crystallographic root systems

For crystallographic types, Φ^+ can be considered as a poset, the *root poset* of type Φ . It is defined by

 $\alpha \leq \beta :\Leftrightarrow \beta - \alpha$ is a positive linear combination of simple roots.

An easy bijection shows that

$$\operatorname{Cat}_{\Phi}^{(1)}(q) = \sum q^{\#I}.$$

order ideals $I \trianglelefteq \Phi^+$

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

A remark on non-crystallographic root systems

For crystallographic types, Φ^+ can be considered as a poset, the *root poset* of type Φ . It is defined by

 $\alpha \leq \beta :\Leftrightarrow \beta - \alpha$ is a positive linear combination of simple roots.

An easy bijection shows that

$$\operatorname{Cat}_{\Phi}^{(1)}(q) = \sum_{q \neq I} q^{\#I}.$$

order ideals $I \leq \Phi^+$

Image: A math a math

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

A remark on non-crystallographic root systems

q, t-Fuss-Catalan numbers for reflection groups

Christian Stump

イロト イポト イヨト イヨト

28 of 35

э

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

A remark on non-crystallographic root systems

D. Armstrong suggested the following root posets for types $I_2(k)$ for any $k \ge 3$ and for type H_3 :

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization $t = q^{-1}$ in $\operatorname{Cat}_{\Phi}^{(m)}(q, t)$

イロト イポト イヨト イヨト

э

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization $t=q^{-1}$ in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

In type A and m = 1, the following is known:

$$q^{\binom{n}{2}}\operatorname{Cat}_{\Phi}^{(1)}(q,q^{-1}) = rac{1}{[n+1]_q} \left[egin{array}{c} 2n \\ n \end{array}
ight]_q$$

イロト イポト イヨト イヨト

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization $t=q^{-1}$ in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

In type A and m = 1, the following is known:

$$\begin{array}{lll} q^{\binom{n}{2}} \operatorname{Cat}_{\Phi}^{(1)}(q,q^{-1}) & = & \displaystyle \frac{1}{[n+1]_q} \left[\begin{array}{c} 2n \\ n \end{array} \right]_q \\ & = & \displaystyle \sum_{\lambda \subseteq (n-1,\dots,1)} q^{\operatorname{maj}(\lambda)} \ (\mathsf{F}"urlinger-\mathsf{Hofbauer}). \end{array}$$

イロト イポト イヨト イヨト

Regions in the extended Shi arrangement *q*-Fuss-Catalan numbers More conjectures

The specialization $t=q^{-1}$ in $\operatorname{Cat}_{\Phi}^{(m)}(q,t)$

In type A and m = 1, the following is known:

$$q^{\binom{n}{2}} \operatorname{Cat}_{\Phi}^{(1)}(q, q^{-1}) = \frac{1}{[n+1]_q} \begin{bmatrix} 2n \\ n \end{bmatrix}_q$$
$$= \sum_{\lambda \subseteq (n-1, \dots, 1)} q^{\operatorname{maj}(\lambda)} \text{ (Fürlinger-Hofbauer).}$$

Conjecture

$$q^{mN}\operatorname{Cat}_{\Phi}^{(m)}(q,q^{-1}) = \prod_{i=1}^{l} rac{[d_i+mh]_q}{[d_i]_q},$$

where N is the number of positive roots.

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

(日) (同) (三) (三)

Table of contents

Finite reflection groups

q, t-Fuss-Catalan numbers

Arrangements of hyperplanes

Connections to rational Cherednik algebras

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

<ロ> <四> <四> <日> <日> <日</p>

Some facts about rational Cherednik algebras

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

Some facts about rational Cherednik algebras

Let \mathfrak{h} be the complexification of the real vector space V and let W be a Coxeter group, now acting on \mathfrak{h} .

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

< < >> < </p>

Some facts about rational Cherednik algebras

Let \mathfrak{h} be the complexification of the real vector space V and let W be a Coxeter group, now acting on \mathfrak{h} . The *rational Cherednik algebra*

 $\mathsf{H}_c = \mathsf{H}_c(W)$

is an associative algebra generated by the vector spaces \mathfrak{h} , its dual \mathfrak{h}^* and the group W subject to defining relations depending on the rational parameter c, such that

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

(日) (同) (三) (三)

Some facts about rational Cherednik algebras

Let \mathfrak{h} be the complexification of the real vector space V and let W be a Coxeter group, now acting on \mathfrak{h} . The *rational Cherednik algebra*

 $\mathsf{H}_c = \mathsf{H}_c(W)$

is an associative algebra generated by the vector spaces \mathfrak{h} , its dual \mathfrak{h}^* and the group W subject to defining relations depending on the rational parameter c, such that

- the polynomial rings $\mathbb{C}[\mathfrak{h}], \mathbb{C}[\mathfrak{h}^*]$ and
- the group algebra $\mathbb{C}W$

are subalgebras of H_c .

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

<ロ> <同> <同> < 回> < 回>

A simple H_c-module

2

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロン イボン イヨン イヨン

A simple H_c-module

The trivial idempotent $\mathbf{e} = \frac{1}{|W|} \sum_{\omega \in W} \omega$ is the projection of a representation of W on its trivial component.

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロト イポト イヨト イヨト

A simple H_c-module

The trivial idempotent $\mathbf{e} = \frac{1}{|W|} \sum_{\omega \in W} \omega$ is the projection of a representation of W on its trivial component.

For $c = \frac{mh+1}{h}$ there exists a unique simple H_c-module L(triv).

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロン イボン イヨン イヨン

A simple H_c-module

The trivial idempotent $\mathbf{e} = \frac{1}{|W|} \sum_{\omega \in W} \omega$ is the projection of a representation of W on its trivial component.

For $c = \frac{mh+1}{h}$ there exists a unique simple H_c-module L(triv). It has following properties:

- L(triv) is finite dimensional and graded (e respects this grading),
- the Hilbert series of its trivial component is given by

$$\mathcal{H}(\mathsf{eL}(\mathsf{triv}),q) = q^{-mN} \prod_{i=1}^{l} rac{[d_i+mh]_q}{[d_i]_q}$$

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロト イポト イヨト イヨト

The conjectured connection to $M_{\Phi}^{(m)}$

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロト イポト イヨト イヨト

The conjectured connection to $M_{\Phi}^{(m)}$

Conjecture Let $M_{\Phi}^{(m)}$ be graded by degree in **x** minus degree in **y**. Then

$$M^{(m)}_{\Phi} \cong \mathbf{e}L(\mathsf{triv})$$

as graded W_{Φ} -modules.

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

• • • • • • • • • • • • •

The conjectured connection to $M^{(m)}_{\Phi}$

Conjecture Let $M_{\Phi}^{(m)}$ be graded by degree in **x** minus degree in **y**. Then

$$M^{(m)}_{\Phi} \cong \mathbf{e}L(\mathsf{triv})$$

as graded W_{Φ} -modules.

▶ The conjecture is known to be true in type A and

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

(日) (同) (三) (三)

The conjectured connection to $M^{(m)}_{\Phi}$

Conjecture Let $M_{\Phi}^{(m)}$ be graded by degree in **x** minus degree in **y**. Then

$$M^{(m)}_{\Phi} \cong \mathbf{e}L(\mathsf{triv})$$

as graded W_{Φ} -modules.

- ▶ The conjecture is known to be true in type A and
- ▶ would imply the conjectures about the specializations t = q = 1 and about the specialization t = q⁻¹.

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロト イポト イヨト イヨト

H_c and the coinvariant ring

э

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

(日) (同) (三) (三)

H_c and the coinvariant ring

For crystallographic reflection groups and m = 1, it is known that

 $L(triv) \otimes \epsilon$

is a *W*-stable quotient of the coinvariant ring $\mathbb{C}[\mathbf{x}, \mathbf{y}]/\langle \mathbb{C}[\mathbf{x}, \mathbf{y}]_+^W \rangle$.

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

(日) (同) (三) (三)

H_c and the coinvariant ring

For crystallographic reflection groups and m = 1, it is known that

 $L(\mathsf{triv})\otimes\epsilon$

- is a *W*-stable quotient of the coinvariant ring $\mathbb{C}[\mathbf{x}, \mathbf{y}]/\langle \mathbb{C}[\mathbf{x}, \mathbf{y}]_+^W \rangle$.
 - In type A, both are in fact equal, otherwise L(triv) ⊗ ε is a proper quotient

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

(日) (同) (三) (三)

H_c and the coinvariant ring

For crystallographic reflection groups and m = 1, it is known that

 $L(\mathsf{triv})\otimes\epsilon$

- is a *W*-stable quotient of the coinvariant ring $\mathbb{C}[\mathbf{x}, \mathbf{y}]/\langle \mathbb{C}[\mathbf{x}, \mathbf{y}]_+^W \rangle$.
 - In type A, both are in fact equal, otherwise L(triv) ⊗ ε is a proper quotient

Conjecture

The associated W-stable ideal does not contain a copy of the sign representation.

Some facts of rational Cherednik algebra Rational Cherednik algebra and the coinvariant ring

イロン イボン イヨン イヨン

H_c and the coinvariant ring

For crystallographic reflection groups and m = 1, it is known that

 $L(\mathsf{triv})\otimes\epsilon$

- is a *W*-stable quotient of the coinvariant ring $\mathbb{C}[\mathbf{x}, \mathbf{y}]/\langle \mathbb{C}[\mathbf{x}, \mathbf{y}]_+^W \rangle$.
 - In type A, both are in fact equal, otherwise L(triv) ⊗ ε is a proper quotient

Conjecture

The associated W-stable ideal does not contain a copy of the sign representation.

In these cases, the conjecture would imply the conjecture presented on the previous slide.

Work for the future:

q, t-Fuss-Catalan numbers for reflection groups

<ロ> <同> <同> < 回> < 回>

2

Work for the future:

Find generating functions for the q-Fuss-Catalan numbers for type B and higher m's resp. for type D

Work for the future:

- Find generating functions for the q-Fuss-Catalan numbers for type B and higher m's resp. for type D
- Find a statistic dinv* generalizing dinv such that $\operatorname{Cat}_{\Phi}^{(m)}(q,t) = \sum_{\text{regions } R} q^{\operatorname{coh}(R)} t^{\operatorname{dinv}*(R)}$

イロト イポト イヨト イヨト
Work for the future:

- Find generating functions for the q-Fuss-Catalan numbers for type B and higher m's resp. for type D
- ► Find a statistic dinv* generalizing dinv such that $Cat_{\Phi}^{(m)}(q,t) = \sum_{\text{regions } R} q^{\operatorname{coh}(R)} t^{\operatorname{dinv}*(R)}$
- Find a definition of *q*-Fuss-Catalan numbers for non-crystallographic types

(日) (同) (三) (三)

Work for the future:

- Find generating functions for the q-Fuss-Catalan numbers for type B and higher m's resp. for type D
- ► Find a statistic dinv* generalizing dinv such that $Cat_{\Phi}^{(m)}(q,t) = \sum_{\text{regions } R} q^{\operatorname{coh}(R)} t^{\operatorname{dinv}*(R)}$
- Find a definition of *q*-Fuss-Catalan numbers for non-crystallographic types
- ► Find a module for which L(triv) ⊗ e is a W-stable quotient for higher m's

(日) (同) (三) (三)

Work for the future:

- Find generating functions for the q-Fuss-Catalan numbers for type B and higher m's resp. for type D
- ► Find a statistic dinv* generalizing dinv such that $Cat_{\Phi}^{(m)}(q,t) = \sum_{\text{regions } R} q^{\operatorname{coh}(R)} t^{\operatorname{dinv}*(R)}$
- Find a definition of *q*-Fuss-Catalan numbers for non-crystallographic types
- ► Find a module for which L(triv) ⊗ e is a W-stable quotient for higher m's
- Generalize this to non-crystallographic types

(日) (同) (三) (三)

Work for the future:

- Find generating functions for the q-Fuss-Catalan numbers for type B and higher m's resp. for type D
- ► Find a statistic dinv* generalizing dinv such that $Cat_{\Phi}^{(m)}(q,t) = \sum_{\text{regions } R} q^{coh(R)} t^{dinv*(R)}$
- Find a definition of *q*-Fuss-Catalan numbers for non-crystallographic types
- ► Find a module for which L(triv) ⊗ e is a W-stable quotient for higher m's
- Generalize this to non-crystallographic types
- Think about the whole situation for well-generated complex reflection groups - the conjectures seem to be true also for those...

イロト イポト イヨト イヨト