A characteristic free presentation of the ring of multisymmetric functions.

Francesco Vaccarino

Dipartimento di Matematica
Politecnico di Torino

19 oct. 2007 / CIEM Castro Urdiales

- R is a commutative ring and let $n, m>0$
- $A_{R}(n, m)=R\left[x_{i}(j)\right]$ with $i=1, \ldots, m ; j=1, \ldots, n$
- The symmetric group on n letters S_{n} acts on $A_{R}(n, m)$ by means of $\sigma\left(x_{i}(j)\right)=x_{i}(\sigma(j))$
- $A_{R}(n, m)^{S_{n}}$ the rings of invariants for this action
- if $m=1$, then $A_{R}(n, 1) \cong R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{s_{n}}$ is freely generated by the elementary symmetric functions e_{1}, \ldots, e_{n} given by the equality

$$
1+\sum_{k=1}^{n} t^{k} e_{k}:=\prod_{i=1}^{n}\left(1+t x_{i}\right)
$$

t is a commuting independent variable.

- R is a commutative ring and let $n, m>0$
- $A_{R}(n, m)=R\left[x_{i}(j)\right]$ with $i=1, \ldots, m ; j=1, \ldots, n$
- The symmetric group on n letters S_{n} acts on $A_{R}(n, m)$ by means of $\sigma\left(x_{i}(j)\right)=x_{i}(\sigma(j))$
- $A_{R}(n, m)^{S_{n}}$ the rings of invariants for this action
- if $m=1$, then $A_{R}(n, 1) \cong R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{s_{n}}$ is freely generated by the elementary symmetric functions e_{1}, \ldots, e_{n} given by the equality

$$
1+\sum_{k=1}^{n} t^{k} e_{k}:=\prod_{i=1}^{n}\left(1+t x_{i}\right)
$$

t is a commuting independent variable.

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

Unless otherwise stated, we now assume that $m>1$. We first obtain generators of the ring $A_{R}(n, m)^{S_{n}}$

$$
\begin{aligned}
& A_{R}(m)=R\left[y_{1}, \ldots, y_{m}\right] \text { and } f=f\left(y_{1}, \ldots, y_{m}\right) \in A_{R}(m) \\
& f(j)=f\left(x_{1}(j), \ldots, x_{m}(j)\right) 1 \leq j \leq n \\
& f(j) \in A_{R}(n, m) \forall 1 \leq j \leq n \\
& \sigma(f(j))=f(\sigma(j)), \forall \sigma \in S_{n}, j=1, \ldots, n \\
& e_{k}(f)=e_{k}(f(1), f(2), \ldots, f(n)) \text { i.e. } \\
& \qquad 1+\sum_{k=1}^{n} t^{k} e_{k}(f)=\prod_{i=1}^{n}(1+t f(i)) \\
& \text { clearly } e_{k}(f) \in A_{R}(n, m)^{S_{n}}
\end{aligned}
$$

Unless otherwise stated, we now assume that $m>1$. We first obtain generators of the ring $A_{R}(n, m)^{S_{n}}$

- $A_{R}(m)=R\left[y_{1}, \ldots, y_{m}\right]$ and $f=f\left(y_{1}, \ldots, y_{m}\right) \in A_{R}(m)$
- $f(j)=f\left(x_{1}(j), \ldots, x_{m}(j)\right) 1 \leq j \leq n$
- $f(j) \in A_{R}(n, m) \forall 1 \leq j \leq n$
- $\sigma(f(j))=f(\sigma(j)), \forall \sigma \in S_{n}, j=1, \ldots, n$
- $e_{k}(f)=e_{k}(f(1), f(2), \ldots, f(n))$ i.e.

$$
1+\sum_{k=1}^{n} t^{k} e_{k}(f)=\prod_{i=1}^{n}(1+t f(i))
$$

clearly $e_{k}(f) \in A_{R}(n, m)^{S_{n}}$

Unless otherwise stated, we now assume that $m>1$. We first obtain generators of the ring $A_{R}(n, m)^{S_{n}}$

- $A_{R}(m)=R\left[y_{1}, \ldots, y_{m}\right]$ and $f=f\left(y_{1}, \ldots, y_{m}\right) \in A_{R}(m)$
- $f(j)=f\left(x_{1}(j), \ldots, x_{m}(j)\right) 1 \leq j \leq n$
- $f(j) \in A_{R}(n, m) \forall 1 \leq j \leq n$
- $\sigma(f(j))=f(\sigma(j)), \forall \sigma \in S_{n}, j=1, \ldots, n$
- $e_{k}(f)=e_{k}(f(1), f(2), \ldots, f(n))$ i.e.

$$
1+\sum_{k=1}^{n} t^{k} e_{k}(f)=\prod_{i=1}^{n}(1+t f(i))
$$

clearly $e_{k}(f) \in A_{R}(n, m)^{S_{n}}$

- One may think about the y_{i} as diagonal matrices in the following sense: let $M_{n}\left(A_{R}(n, m)\right)$ be the full ring of $n \times n$ matrices with coefficients in $A_{R}(n, m)$. Then there is an embedding

$$
\rho_{n}: A_{R}(m) \hookrightarrow M_{n}\left(A_{R}(n, m)\right)
$$

given by

$$
\rho_{n}\left(y_{i}\right):=\left(\begin{array}{cccc}
x_{i}(1) & 0 & \ldots & 0 \\
0 & x_{i}(2) & \ldots & 0 \\
0 & 0 & \ldots & x_{i}(n)
\end{array}\right) \text { for } i=1, \ldots, m .
$$

so that

$$
1+\sum_{k=1}^{n} t^{k} e_{k}(f)=\prod_{j=1}^{n}\left(1+t \rho_{n}(f)_{j j}\right)=\operatorname{det}\left(1+t \rho_{n}(f)\right)
$$

where $\operatorname{det}(-)$ is the usual determinant of $n \times n$ matrices.

- Let \mathcal{M}_{m} be the set of monomials in $A_{R}(m)$. For $\mu \in \mathcal{M}_{m}^{+}$let $\partial_{i}(\mu)$ denote the degree of μ in y_{i}, for all $i=1, \ldots, m$. We set

$$
\partial(\mu):=\left(\partial_{1}(\mu), \ldots, \partial_{m}(\mu)\right)
$$

for its multidegree. The total degree of μ is $\sum_{i} \partial_{i}(\mu)$.

- Let \mathcal{M}_{m}^{+}be the set of monomials of positive degree. A monomial $\mu \in \mathcal{M}_{m}^{+}$is called primitive if it is not a power of another one. We denote by \mathfrak{M}_{m}^{+}the set of primitive monomials.
- We define an S_{n} invariant multidegree on $A_{R}(n, m)$ by setting $\partial\left(x_{i}(j)\right)=\partial\left(y_{i}\right) \in \mathbb{N}^{m}$ for all $1 \leq j \leq n$ and $1 \leq i \leq m$.
- If $f \in A_{R}(m)$ is homogeneous of total degree I, then $e_{k}(f)$ has total degree $k l$ (for all k and n).
- Let \mathcal{M}_{m} be the set of monomials in $A_{R}(m)$. For $\mu \in \mathcal{M}_{m}^{+}$let $\partial_{i}(\mu)$ denote the degree of μ in y_{i}, for all $i=1, \ldots, m$. We set

$$
\partial(\mu):=\left(\partial_{1}(\mu), \ldots, \partial_{m}(\mu)\right)
$$

for its multidegree. The total degree of μ is $\sum_{i} \partial_{i}(\mu)$.

- Let \mathcal{M}_{m}^{+}be the set of monomials of positive degree. A monomial $\mu \in \mathcal{M}_{m}^{+}$is called primitive if it is not a power of another one. We denote by \mathfrak{M}_{m}^{+}the set of primitive monomials.
- We define an S_{n} invariant multidegree on $A_{R}(n, m)$ by setting $\partial\left(x_{i}(j)\right)=\partial\left(y_{i}\right) \in \mathbb{N}^{m}$ for all $1 \leq j \leq n$ and $1 \leq i \leq m$.
- If $f \in A_{R}(m)$ is homogeneous of total degree I, then $\epsilon_{k}(f)$ has total degree $k l$ (for all k and n).

Theorem

The ring of multisymmetric functions $A_{R}(n, m)^{S_{n}}$ is generated by the $e_{k}(\mu)$, where $\mu \in \mathfrak{M}_{m}^{+}, k=1, \ldots n$ and the total degree of $e_{k}(\mu)$ is less or equal than $n(m-1)$. If $n=p^{s}$ is a power of a prime and $R=\mathbb{Z}$ or $p \cdot 1_{R}=0$, then at least one generator has degree equal to $m(n-1)$. If $R \supset \mathbb{Q}$ then $A_{R}(n, m)^{S_{n}}$ is generated by the $e_{1}(\mu)$, where $\mu \in \mathcal{M}_{m}^{+}$ and the degree of μ is less or equal than n.

- The action of S_{n} on $A_{R}(n, 1) \cong R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ preserves the usual degree. We denote by $\Lambda_{R, n}^{k}$ the R-submodule of invariants of degree k.
- Let $q_{n}: R\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow R\left[x_{1}, x_{2}, \ldots, x_{n-1}\right]$ be given by $x_{n} \mapsto 0$ and $x_{i} \mapsto x_{i}$, for $i=1, \ldots, n-1$.
- This map sends $\Lambda_{n, R}^{k}$ to $\Lambda_{n-1, R}^{k}$ and it is easy to see that $\Lambda_{n, R}^{k} \cong \Lambda_{k, R}^{k}$ for all $n \geq k$.
- Denote by Λ_{R}^{k} the limit of the inverse system obtained in this way.
- The ring $\Lambda_{R}:=\bigoplus_{k \geq 0} \Lambda_{R}^{k}$ is called the ring of symmetric functions (over R).
- It can be shown (Macdonald) that Λ_{R} is a polynomial ring, freely generated by the (limits of the) e_{k}, that are given by

$$
1+\sum_{k=1}^{\infty} t^{k} e_{k}:=\prod_{i=1}^{\infty}\left(1+t x_{i}\right)
$$

- Furthermore the kernel of the natural projection $\pi_{n}: \Lambda_{R} \rightarrow \Lambda_{n, R}$ is generated by the e_{n+k}, where $k \geq 1$.

In a similar way we build a limit of multisymmetric functions.

- For any $a \in \mathbb{N}^{m}$ we set $A_{R}(n, m, a)$ for the linear span of the monomials of multidegree a. One has

$$
A_{R}(n, m)=\bigoplus_{a \in \mathbb{N}^{m}} A_{R}(n, m, a)
$$

- Let $\pi_{n}: A_{R}(n, m) \rightarrow A_{R}(n-1, m)$ be given by

$$
\pi_{n}\left(x_{i}(j)\right)=\left\{\begin{array}{ll}
0 & \text { if } j=n \\
x_{i}(j) & \text { if } j \leq n-1
\end{array} \quad \text { for all } i\right.
$$

- Then $\forall a \in \mathbb{N}^{m}$

$$
\pi_{n}\left(A_{R}(n, m, a)^{S_{n}}\right)=A_{R}(n-1, m, a)^{S_{n-1}}
$$

- For any $a \in \mathbb{N}^{m}$ set

$$
A_{R}(\infty, m, a)=\lim A_{R}(n, m, a)^{S_{n}}
$$

where the projective limit is taken with respect to n over the projective system $\left(A_{R}(n, m, a)^{S_{n}}, \pi_{n}\right)$.

- Set

$$
A_{R}(\infty, m)=\bigoplus_{a \in \mathbb{N}^{m}} A_{R}(\infty, m, a)
$$

- We set, by abuse of notation,

$$
e_{k}(f)=\lim _{\leftarrow} e_{k}(f) \in A_{R}(\infty, m)
$$

with $k \in \mathbb{N}$ and $f \in A(m)^{+}$, the augmentation ideal, i.e.

$$
1+\sum_{k=1}^{\infty} t^{k} e_{k}(f):=\prod_{j=1}^{\infty}(1+t f(j))
$$

- Then e_{k} is a homogeneous polynomial of degree k.
- If $f=\sum_{\mu \in \mathcal{M}_{m}^{+}} \lambda_{\mu} \mu$, we set

$$
e_{k}(f):=\sum_{\alpha} \lambda^{\alpha} e_{\alpha}
$$

where $\alpha:=\left(\alpha_{\mu}\right)_{\mu \in \mathcal{M}_{m}^{+}}$is such that $\alpha_{\mu} \in \mathbb{N}, \sum_{\mu \in \mathcal{M}_{m}^{+}} \alpha_{\mu} \leq k$ and $\lambda^{\alpha}:=\prod_{\mu \in \mathcal{M}_{m}^{+}} \lambda^{\alpha_{\mu}}$.

Theorem

- The ring $A_{R}(\infty, m)$ is a polynomial ring, freely generated by the (limits of) the $e_{k}(\mu)$, where $\mu \in \mathfrak{M}_{m}^{+}$and $k \in \mathbb{N}$.
- The kernel of the natural projection

$$
A_{R}(\infty, m) \rightarrow A_{R}(n, m)^{S_{n}}
$$

is generated as R-module by the coefficients e_{α} of the elements

$$
e_{n+k}(f), \text { where } k \geq 1 \text { and } f \in A_{R}(m)^{+} .
$$

Theorem

- If R is an infinite field then the kernel of the natural projection is generated as an ideal by the elements

$$
e_{n+k}(f), \text { where } k \geq 1 \text { and } f \in A_{R}(m)^{+} .
$$

- If $R \supset \mathbb{Q}$ then $A_{R}(\infty, m)$ is freely generated by the $e_{1}(\mu)$, where $\mu \in \mathcal{M}_{m}^{+}$and the kernel of the natural projection is generated as an ideal by the $e_{n+1}(f)$, where $f \in A_{R}(m)^{+}$.

