A characteristic free presentation of the ring of multisymmetric functions.

Francesco Vaccarino

Dipartimento di Matematica Politecnico di Torino

19 oct. 2007 / CIEM Castro Urdiales

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 1 / 14

- *R* is a commutative ring and let *n*, *m* > 0
- $A_R(n,m) = R[x_i(j)]$ with i = 1, ..., m; j = 1, ..., n
- The symmetric group on *n* letters S_n acts on $A_R(n, m)$ by means of $\sigma(x_i(j)) = x_i(\sigma(j))$
- $A_R(n,m)^{S_n}$ the rings of invariants for this action
- if m = 1, then $A_R(n, 1) \cong R[x_1, x_2, ..., x_n]$, and $R[x_1, x_2, ..., x_n]^{S_n}$ is freely generated by the elementary symmetric functions $e_1, ..., e_n$ given by the equality

$$1 + \sum_{k=1}^{n} t^{k} e_{k} := \prod_{i=1}^{n} (1 + tx_{i})$$

t is a commuting independent variable.

$$e_k(x_1,\ldots,x_n)=\sum_{i_1< i_2<\cdots< i_k\leq n}x_{i_1}x_{i_2}\cdots x_{i_k}$$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

- *R* is a commutative ring and let *n*, *m* > 0
- $A_R(n,m) = R[x_i(j)]$ with i = 1, ..., m; j = 1, ..., n
- The symmetric group on *n* letters S_n acts on $A_R(n, m)$ by means of $\sigma(x_i(j)) = x_i(\sigma(j))$
- $A_R(n,m)^{S_n}$ the rings of invariants for this action
- if m = 1, then $A_R(n, 1) \cong R[x_1, x_2, ..., x_n]$, and $R[x_1, x_2, ..., x_n]^{S_n}$ is freely generated by the elementary symmetric functions $e_1, ..., e_n$ given by the equality

$$1 + \sum_{k=1}^{n} t^{k} e_{k} := \prod_{i=1}^{n} (1 + tx_{i})$$

t is a commuting independent variable.

$$e_k(x_1,\ldots,x_n) = \sum_{i_1 < i_2 < \cdots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}$$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

Unless otherwise stated, we now assume that m > 1. We first obtain generators of the ring $A_R(n, m)^{S_n}$

- $A_{R}(m) = R[y_{1}, ..., y_{m}] \text{ and } f = f(y_{1}, ..., y_{m}) \in A_{R}(m)$
- $f(j) = f(x_1(j), \ldots, x_m(j)) \ 1 \le j \le n$
- $f(j) \in A_R(n,m) \,\forall \, 1 \leq j \leq n$
- $\sigma(f(j)) = f(\sigma(j)), \forall \sigma \in S_n, j = 1, \dots, n$ $e_k(f) = e_k(f(1), f(2), \dots, f(n)) \text{ i.e.}$

$$1 + \sum_{k=1}^{n} t^{k} e_{k}(f) = \prod_{i=1}^{n} (1 + tf(i))$$

clearly $e_k(f) \in A_R(n,m)^{S_n}$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 3 / 14

Unless otherwise stated, we now assume that m > 1. We first obtain generators of the ring $A_R(n,m)^{S_n}$

•
$$A_R(m) = R[y_1, ..., y_m]$$
 and $f = f(y_1, ..., y_m) \in A_R(m)$

•
$$f(j) = f(x_1(j), ..., x_m(j)) \ 1 \le j \le n$$

• $f(j) \in A_R(n,m) \forall 1 \leq j \leq n$

$$\sigma(f(j)) = f(\sigma(j)), \forall \sigma \in S_n, j = 1, \dots, n$$

$$e_k(f) = e_k(f(1), f(2), \dots, f(n)) \text{ i.e.}$$

$$1 + \sum_{k=1}^{n} t^{k} e_{k}(f) = \prod_{i=1}^{n} (1 + tf(i))$$

clearly $e_k(f) \in A_R(n,m)^{S_n}$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 3 / 14

Unless otherwise stated, we now assume that m > 1. We first obtain generators of the ring $A_R(n, m)^{S_n}$

•
$$A_R(m) = R[y_1, ..., y_m]$$
 and $f = f(y_1, ..., y_m) \in A_R(m)$

•
$$f(j) = f(x_1(j), ..., x_m(j)) \ 1 \le j \le n$$

• $f(j) \in A_R(n,m) \forall 1 \le j \le n$

$$\sigma(f(j)) = f(\sigma(j)), \forall \sigma \in S_n, j = 1, \dots, n$$

$$e_k(f) = e_k(f(1), f(2), \dots, f(n)) \text{ i.e.}$$

$$1 + \sum_{k=1}^{n} t^{k} e_{k}(f) = \prod_{i=1}^{n} (1 + tf(i))$$

clearly $e_k(f) \in A_R(n,m)^{S_n}$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 3 / 14

• One may think about the y_i as diagonal matrices in the following sense: let $M_n(A_R(n, m))$ be the full ring of $n \times n$ matrices with coefficients in $A_R(n, m)$. Then there is an embedding

 $\rho_n: A_R(m) \hookrightarrow M_n(A_R(n,m))$

given by

$$\rho_n(y_i) := \begin{pmatrix} x_i(1) & 0 & \dots & 0 \\ 0 & x_i(2) & \dots & 0 \\ 0 & 0 & \dots & x_i(n) \end{pmatrix} \text{ for } i = 1, \dots, m.$$

so that

$$1 + \sum_{k=1}^{n} t^{k} e_{k}(f) = \prod_{j=1}^{n} (1 + t \rho_{n}(f)_{jj}) = det(1 + t \rho_{n}(f))$$

where det(-) is the usual determinant of $n \times n$ matrices.

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 4 / 14

• Let \mathcal{M}_m be the set of monomials in $A_R(m)$. For $\mu \in \mathcal{M}_m^+$ let $\partial_i(\mu)$ denote the degree of μ in y_i , for all i = 1, ..., m. We set

 $\partial(\mu) := (\partial_1(\mu), \ldots, \partial_m(\mu))$

for its multidegree. The total degree of μ is $\sum_i \partial_i(\mu)$.

- Let *M*⁺_m be the set of monomials of positive degree. A monomial µ ∈ *M*⁺_m is called *primitive* if it is not a power of another one. We denote by 𝔐⁺_m the set of primitive monomials.
- We define an S_n invariant multidegree on $A_R(n, m)$ by setting $\partial(x_i(j)) = \partial(y_i) \in \mathbb{N}^m$ for all $1 \le j \le n$ and $1 \le i \le m$.
- If $f \in A_R(m)$ is homogeneous of total degree *l*, then $e_k(f)$ has total degree *kl* (for all *k* and *n*).

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 5 / 14

• Let \mathcal{M}_m be the set of monomials in $A_R(m)$. For $\mu \in \mathcal{M}_m^+$ let $\partial_i(\mu)$ denote the degree of μ in y_i , for all i = 1, ..., m. We set

 $\partial(\mu) := (\partial_1(\mu), \ldots, \partial_m(\mu))$

for its multidegree. The total degree of μ is $\sum_i \partial_i(\mu)$.

- Let *M*⁺_m be the set of monomials of positive degree. A monomial µ ∈ *M*⁺_m is called *primitive* if it is not a power of another one. We denote by 𝔐⁺_m the set of primitive monomials.
- We define an S_n invariant multidegree on $A_R(n, m)$ by setting $\partial(x_i(j)) = \partial(y_i) \in \mathbb{N}^m$ for all $1 \le j \le n$ and $1 \le i \le m$.
- If $f \in A_R(m)$ is homogeneous of total degree *l*, then $e_k(f)$ has total degree *kl* (for all *k* and *n*).

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 5 / 14

Theorem

The ring of multisymmetric functions $A_R(n,m)^{S_n}$ is generated by the $e_k(\mu)$, where $\mu \in \mathfrak{M}_m^+$, k = 1, ..., n and the total degree of $e_k(\mu)$ is less or equal than n(m-1). If $n = p^s$ is a power of a prime and $R = \mathbb{Z}$ or $p \cdot 1_R = 0$, then at least one generator has degree equal to m(n-1). If $R \supset \mathbb{Q}$ then $A_R(n,m)^{S_n}$ is generated by the $e_1(\mu)$, where $\mu \in \mathcal{M}_m^+$ and the degree of μ is less or equal than n.

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 6 / 14

- The action of S_n on $A_R(n, 1) \cong R[x_1, x_2, ..., x_n]$ preserves the usual degree. We denote by $\Lambda_{R,n}^k$ the *R*-submodule of invariants of degree *k*.
- Let $q_n : R[x_1, x_2, \dots, x_n] \rightarrow R[x_1, x_2, \dots, x_{n-1}]$ be given by $x_n \mapsto 0$ and $x_i \mapsto x_i$, for $i = 1, \dots, n-1$.
- This map sends $\Lambda_{n,R}^k$ to $\Lambda_{n-1,R}^k$ and it is easy to see that $\Lambda_{n,R}^k \cong \Lambda_{k,R}^k$ for all $n \ge k$.
- Denote by Λ_R^k the limit of the inverse system obtained in this way.
- The ring Λ_R := ⊕_{k≥0} Λ^k_R is called the ring of *symmetric functions* (over *R*).

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 7 / 14

• It can be shown (Macdonald) that Λ_R is a polynomial ring, freely generated by the (limits of the) e_k , that are given by

$$1+\sum_{k=1}^{\infty}t^{k}e_{k}:=\prod_{i=1}^{\infty}(1+tx_{i})$$

• Furthermore the kernel of the natural projection $\pi_n : \Lambda_R \to \Lambda_{n,R}$ is generated by the e_{n+k} , where $k \ge 1$.

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 8 / 14

In a similar way we build a limit of multisymmetric functions.

• For any $a \in \mathbb{N}^m$ we set $A_R(n, m, a)$ for the linear span of the monomials of multidegree *a*. One has

$$A_R(n,m) = \bigoplus_{a \in \mathbb{N}^m} A_R(n,m,a)$$

• Let $\pi_n : A_R(n,m) \rightarrow A_R(n-1,m)$ be given by

$$\pi_n(x_i(j)) = egin{cases} 0 & ext{if } j = n \ x_i(j) & ext{if } j \leq n-1 \end{cases}$$
 for all i .

• Then $\forall a \in \mathbb{N}^m$

$$\pi_n(A_R(n,m,a)^{S_n}) = A_R(n-1,m,a)^{S_{n-1}}$$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 9 / 14

• For any $a \in \mathbb{N}^m$ set

$$A_R(\infty, m, a) = \lim A_R(n, m, a)^{S_n}$$

where the projective limit is taken with respect to *n* over the projective system ($A_R(n, m, a)^{S_n}, \pi_n$).

Set

$$A_R(\infty,m) = \bigoplus_{a \in \mathbb{N}^m} A_R(\infty,m,a)$$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 10 / 14

We set, by abuse of notation,

$$e_k(f) = \lim_{k \to \infty} e_k(f) \in A_R(\infty, m)$$

with $k \in \mathbb{N}$ and $f \in A(m)^+$, the augmentation ideal, i.e.

$$1 + \sum_{k=1}^{\infty} t^{k} e_{k}(f) := \prod_{j=1}^{\infty} (1 + tf(j))$$

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 11 / 14

Then *e_k* is a homogeneous polynomial of degree *k*.
If *f* = Σ_{μ∈M[±]_m} λ_μμ, we set

$$oldsymbol{e}_{oldsymbol{k}}(f) := \sum_lpha \lambda^lpha oldsymbol{e}_lpha$$

where $\alpha := (\alpha_{\mu})_{\mu \in \mathcal{M}_{m}^{+}}$ is such that $\alpha_{\mu} \in \mathbb{N}$, $\sum_{\mu \in \mathcal{M}_{m}^{+}} \alpha_{\mu} \leq k$ and $\lambda^{\alpha} := \prod_{\mu \in \mathcal{M}_{m}^{+}} \lambda^{\alpha_{\mu}}$.

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 12 / 14

Theorem

- The ring $A_R(\infty, m)$ is a polynomial ring, freely generated by the (limits of) the $e_k(\mu)$, where $\mu \in \mathfrak{M}_m^+$ and $k \in \mathbb{N}$.
- The kernel of the natural projection

 $A_R(\infty,m) \rightarrow A_R(n,m)^{S_n}$

is generated as R-module by the coefficients e_{α} of the elements

 $e_{n+k}(f)$, where $k \ge 1$ and $f \in A_R(m)^+$.

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 13 / 14

Theorem

 If R is an infinite field then the kernel of the natural projection is generated as an ideal by the elements

 $e_{n+k}(f)$, where $k \ge 1$ and $f \in A_R(m)^+$.

If R ⊃ Q then A_R(∞, m) is freely generated by the e₁(μ), where μ ∈ M⁺_m and the kernel of the natural projection is generated as an ideal by the e_{n+1}(f), where f ∈ A_R(m)⁺.

F.Vaccarino (Politecnico di Torino)

The ring of multisymmetric functions.

CIEM - October 2007 14 / 14