XV Spanish Meeting
on

Computational Geometry

June 26-28, 2013
Sevilla, Spain

José Miguel Diaz-Baniez Alberto Marquez
Delia Garijo Jorge Urrutia

Preface

The XV Spanish Meeting on Computational Geometry (XV EGC “Encuentros de Geometria Computacional”)
was held on June 2628, 2013 in Seville, Spain. The EGC meetings were first held annually from 1990 to 1995, and
biennually since then. The meeting combines a strong scientific tradition with a friendly, collegial atmosphere.
The original aim of our meeting was to provide a forum where Spanish-speaking researchers and students could
present their research activities. Since then the EGC has evolved; in 2011, the XIV EGC was an international
gathering for the first time, and the abstracts contained in the 2011 proceedings were peer reviewed.

This volume contains the four-page extended abstracts of the presentations accepted and delivered at the
2013 EGC, and the four invited lectures. A selection of the papers accepted for the EGC will be published
in the International Journal of Computational Geometry and Applications following a formal review according
to the standards established by the latter journal. We would like to thank all the authors and attendees for
their participation in the XV ECG. Special thanks are expressed to the members of the Scientific Committee
and the referees for their careful review of the papers and their insightful comments. Lastly, we are grateful
for the generous support of our sponsors: Departamento de Matemaética Aplicada II, Vicerrectorado de Rela-
ciones Institucionales, IMUS (Instituto de Matematicas) and Departamento de Matemética Aplicada I, all of the
Universidad de Sevilla.

The Editors

Committees

Scientific Committee

Oswin Aichholzer

Sergey Bereg

Prosenjit K. Bose

Sergio Cabello

José Miguel Diaz-Bafnez (co-chair)
Alfredo Garcia

Ferran Hurtado

Rolf Klein

Stefan Langerman

Mario Lopez

Alberto Marquez (co-chair)
Belén Palop

Pedro Ramos

David Rappaport

Vera Sacristin

Gelasio Salazar

J. Antoni Sellarés

Jorge Urrutia (co-chair)
David Wood

ii

Organizing Committee

Carmen Cortés

Maria José Chéavez

José Miguel Diaz-Bafiez (chair)
Isabel Fernandez

Delia Garijo

M. Angeles Garrido

Alberto Marquez

Pablo Pérez-Lantero
Inmaculada Ventura,

Contents

Invited speaker 1-Wednesday 9:30-10:30

Art gallery problems, old and recent
Jorge Urrutia

Session 1-Wednesday 10:30-11:30

Continuous surveillance of points by rotating floodlights
Sergey Bereg, José Miguel Diaz-Banez, Marta Fort, Mario A. Lopez, Pablo Pérez-Lantero,
and Jorge Urrutia

Some results on open edge quarding of polygons
Antonio L. Bajuelos, Santiago Canales, Gregorio Hernandez, Mafalda Martins,
and Inés Matos

Guarding the vertices of thin orthogonal polygons is NP-hard
Ana Paula Tomaés

Session 2—Wednesday 12:00-13:20

Solving common influence region queries with the GPU
Marta Fort and J. Antoni Sellarés

Reporting flock patterns on the GPU
Marta Fort, J. Antoni Sellarés, and Nacho Valladares

Parallel constrained Delaunay triangulation
Narcis Coll and Marité Guerreri

Metaheuristic approaches for the Minimum Dilation Triangulation problem
Maria Gisela Dorzan, Mario Guillermo Leguizamén, Efrén Mezura-Montes,
and Gregorio Hernéndez

Invited speaker 2—Wednesday 15:30-16:30

Three location tapas calling for CG sauce
Frank Plastria

Session 3—Wednesday 17:00-18:40

On the barrier-resilience of arrangements of ray-sensors
David Kirkpatrick, Boting Yang, and Sandra Zilles

Computing the stretch of an embedded graph
Sergio Cabello, Markus Chimani, and Petr Hlimény

An algorithm that constructs irreducible triangulations of once-punctured surfaces
Maria José Chévez, Serge Lawrencenko, José R. Portillo, and M. Trinidad Villar

iii

11

15

19

23

27

31

35

39

43

On the enumeration of permutominoes
Ana Paula Tomés

Distance domination, guarding and vertex cover for mazimal outerplanar graphs
Santiago Canales, Gregorio Herndndez, Mafalda Martins, and Inés Matos

Invited speaker 3—Thursday 09:00-10:00

Abstract Voronoi diagrams
Rolf Klein

Session 4—Thursday 10:00-11:00

Equipartitioning triangles
Pedro Ramos and William Steiger

On the nonexistence of k-reptile simplices in R® and R*
Jan Kyné¢l and Zuzana Safernova

Drawing the double circle on a grid of minimum size

Sergey Bereg, Ruy Fabila-Monroy, David Flores-Penaloza, Mario A. Lopez,
and Pablo Pérez-Lantero

Session 5—Thursday 11:30-12:50

SensoGraph: Using proximity graphs for sensory analysis

David N. de Miguel, David Orden, Encarnacién Fernandez-Fernandez,
José M. Rodriguez-Nogales, and Josefina Vila-Crespo

Simulated Annealing applied to the MWPT problem
Edilma Olinda Gagliardi, Mario Guillermo Leguizamén, and Gregorio Hernéndez

A symbolic-numeric dynamic geometry environment for the computation of equidistant curves
Miguel A. Abanades and Francisco Botana

Simulating distributed algorithms for lattice agents

Oswin Aichholzer, Thomas Hackl, Vera Sacristan, Birgit Vogtenhuber,
and Reinhard Wallner

Session 6—Thursday 15:00-16:20

Empty convex polytopes in random point sets
Jozsef Balogh, Hernan Gonzalez-Aguilar, and Gelasio Salazar

Note on the number of obtuse angles in point sets
Ruy Fabila-Monroy, Clemens Huemer, and FEulalia Tramuns

Stabbing simplices of point sets with k-flats
Javier Cano, Ferran Hurtado, and Jorge Urrutia

Stackable tessellations
Lluis Enrique and Rafel Jaume

iv

47

51

95

97

61

65

69

73

7

81

85

89

91

95

Session 7—Friday 09:30-11:10

Improved enumeration of simple topological graphs
Jan Kyn¢l 99

On three parameters of invisibility graphs

Josef Cibulka, Miroslav Korbeléf, Jan Kyn¢l, Viola Mészaros, Rudolf Stolaf,
and Pavel Valtr 103

On making a graph crossing-critical
César Hernédndez-Vélez and Jestus Leanos 107

Witness bar visibility
Carmen Cortés, Ferran Hurtado, Alberto Marquez, and Jestus Valenzuela 111

The alternating path problem revisited
Merce Claverol, Delia Garijo, Ferran Hurtado, Dolores Lara, and Carlos Seara 115

Session 8—Friday 11:40-13:00

Phase transitions in the Ramsey-Turdn theory
Jozsef Balogh 119

On 4-connected geometric graphs
Alfredo Garcia, Clemens Huemer, Javier Tejel, and Pavel Valtr 123

Monotone crossing number of complete graphs
Martin Balko, Radoslav Fulek, and Jan Kyn¢l 127

Flips in combinatorial pointed pseudo-triangulations with face degree at most four

Oswin Aichholzer, Thomas Hackl, David Orden, Alexander Pilz, Maria Saumell,
and Birgit Vogtenhuber 131

Invited speaker 4—Friday 13:15-14:15

Recent developments on the crossing number of the complete graph
Pedro Ramos 135

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Art gallery problems, old and recent

Jorge Urrutia*®

Instituto de Mathematicas, Universidad Nacional Auténoma de Mexico (UNAM), Mexico City, México.

Abstract

In 1973, Victor Klee posed the following question:
How many guards are necessary, and how many are
sufficient to patrol the paintings and works of art in an
art gallery with n walls? This wonderfully naive ques-
tion of combinatorial geometry has, since its formula-
tion, stimulated a plethora of papers, surveys and a
books. The first result in this area, due to V. Chvatal,
asserts that | %] guards are occasionally necessary and
always sufficient to guard an art gallery represented
by a simple polygon with n vertices. Since Chvéatal’s
result, numerous variations on the art gallery problem
have been studied, including mobile guards, guards
with limited visibility or mobility, illumination of fam-
ilies of convex sets on the plane, guarding of rectilin-
ear polygons, and others. In this talk, we will review
some old results in this area of research, and review
some new results on Art Galleries, including some re-
cent results in R®, as well as results using rotating
floodlights.

*Email: urrutia@matem.unam.mx. Partially supported
by CONACYT of México Grant 178379, and MEC project
MTM2009-08652.

Art gallery problems, old and recent

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Continuous surveillance of points by rotating floodlights

S. Bereg*!, J. M. Diaz-Banezt?, M. Fort!3, M. A. Lopez®*, P. Pérez-Lantero¥®, and J. Urrutiall®

!Department of Computer Science, University of Texas at Dallas, USA.
2Departamento Mateméatica Aplicada II, Universidad de Sevilla, Spain.
3Departament d’Informatica i Matematica Aplicada, Universitat de Girona, Spain.
4Department of Computer Science, University of Denver, USA.

SEscuela de Ingenieria Civil en Informéatica, Universidad de Valparaiso, Chile.
6Instituto de Matematicas, UNAM, Mexico.

Abstract

Let P and F' be sets of n > 2 and m > 2 points in the
plane, respectively, so that PUF' is in general position.
We study the problem of finding the minimum angle
a € [2m/m, 27] such that one can install at each point
of F a stationary rotating floodlight with illumination
angle «, initially oriented in a suitable direction, in
such a way that, at all times, every target point of P is
illuminated by at least one light. All floodlights rotate
at unit speed and clockwise. We give an upper bound
for the 1-dimensional problem and present results for
some instances of the general problem. Specifically,
we solve the problem for the case in which we have
two floodlights and many points, and give an upper
bound for the case in which there are many floodlights
and only two target points.

1 Introduction

IMlumination problems are well known in Discrete and
Computational Geometry [4]. Let P be a set of n > 2
targets and F a set of m > 2 floodlights, both defined
in the plane. We assume that P U F' is in general po-
sition and that all floodlights rotate clockwise at unit
speed. We say that F' covers P with illumination an-
gle a« > 2w /m if there is a suitable initial orientation
of each light so that, at all times, each target point
of P is illuminated by at least one floodlight. We

*Email: besp@utdallas.edu. Partially supported by project
MEC MTM2009-08652.

TEmail: dbanezQus.es. Partially supported by project
MEC MTM2009-08652 and ESF EUROCORES programme
EuroGIGA-ComPoSe IP04-MICINN Project EUI-EURC-2011-
4306.

fEmail: mfort@ima.udg.edu. Partially supported by the
Spanish MCI grant TIN2010-20590-C02-02.

$Email: mlopezQdu.edu.

TEmail: pablo.perez@uv.cl. Partially supported by project
CONICYT, FONDECYT/Iniciacién 11110069 (Chile), and
project MEC MTM2009-08652.

Il Email: urrutia@matem.unam.mx. Partially supported by
project MEC MTM2009-08652.

consider the problem of finding the minimum angle
a = a(P,F) € [2r/m,2x] and initial orientation of
each floodlight so that F' covers P.

Our general problem can be considered a discretiza-
tion of the one studied by Kranakis et al. [2]. Given
the locations of m floodlights (i.e. antennae) and a re-
gion, their problem asks to schedule the lights so that
the entire region is covered at all times. The schedul-
ing of static floodlights for covering a given region was
first considered by Bose et al. [I]. Research related to
our problem can be found in a number of domains, in-
cluding art gallery and related problems, multi-target
tracking, and multi-robot surveillance tasks [3} [4]. A
complete review of these fields can be found in [4].

We present results for some cases of our general
problem: the elements of PUF are located on a given
line (Section[2)), the two-dimensional version with two
floodlights (Section , and the problem in the plane
with two target points (Section [4)).

Given points u,v in the plane, £(u,v) denotes the
line containing both u and v. We identify any flood-
light by the point where it is installed. For any flood-
light f, at any instance of time, the region illuminated
by f is delimited by rays f~ and f¥, starting at f~
and ending at fT in the clockwise direction. We say
that we configure f with angle B if the angle between
fT and the positive z-axis is equal to 3. Given that
all floodlights rotate at the same speed, it suffices to
consider only the interval of time [0, 27).

2 Points and floodlights on a line

We first consider the case in which the points of P
and the floodlights of F' lie on a line £, say the z-
axis. Kranakis et al. [2] considered the case in which
the floodlights are located on a line. They showed that
the entire line can be illuminated by m rotating flood-
lights using illumination angle 37/m and this bound
is tight. This can be viewed as a special case of our
problem where n > m + 1 and each of the m + 1 seg-
ments determined by F contains at least one point of

Continuous surveillance of points by rotating floodlights

P. We consider other cases and show that the illumi-
nation angle is smaller than 37 /m for some of them.

Partition P into & — 1 (k > 2) maximal inter-
vals s1, 83,...,8k—1, from left to right, each of which
contains elements of P but no elements of F. Let
F} denote the elements of F' to the left of sy, F;
(1 =2,...,k—1), the elements of F' between s,_1 and
s;, and Fj, the elements of F to the right of s;_1. Let
m; = |F;| for ¢ = 1,..., k. Observe that my,my > 0,
m; > 1fori=2,...k—1, and mi+mo+...+my = m.

Lemma 1 Two floodlights f1 and fo with illumina-
tion angle o, belonging to the same set among Fy U
Fy, Fs, F3, ..., F,_1, can be configured to cover P dur-
ing 2« time in total. Furthermore, if two floodlights
of F cover P with angle o < 3w /2, then they must
belong to a same set among Fy U Fy, Fo, F5, ... Fy_1.

Proof. Suppose that both f; and f; belong to a set
F; (i=1,...,k), and assume w.l.o.g. that f; is to the
left of fy. Configure f; with angle zero and fo with
angle 7 (see top of Figure . At time t = 7 the
configuration of f; and f; is as shown in the bottom
of Figure [Tal Since there is no element of P in the
segment connecting f; and fo then all elements of P
are illuminated during intervals [0, o] and [, 7 + «],
2a time in total.

Figure 1: Proof of Lemma @ Case where f; and fo
belong a same set F;. @Case where fi1 € Iy and f2 € Fy.

Suppose now that f; € Fy and fy € Fy. Configure
both f; and f with angle zero (see top of Figure[1b]).
At time ¢t = 7 the configuration of f; and f5 is as
shown in the bottom of Figure [Ib] Since all elements
of P belong to the segment connecting f; and f> then
all elements of P are illuminated during intervals [0, o
and [, 7+ af, 2a time in total.

For the second part of the lemma, let f and g be
the two lights that cover P. Clearly o > w. Assume,
w.l.o.g., that g € F1 U Fj, and that f is to the left of
g. Also, let @ C P denote the set of targets to the

right of f. Light f alone can cover @ for an interval
of length «, while g alone can cover @ for a — 7 only.
Since a < 37/2, an interval of length 27 — « > 7/2
is unaccounted for by f, but g can pick up at most
a—m < 7/2 of this. Hence, f and g must belong to the
same set. The claim does not hold if o > 37 /2. O

Lemma 2 Three floodlights f1, fo, and f3 with illu-
mination angle a < m, can be configured so that, to-
gether, they cover the whole line L (hence, P) during
2« time in total.

Proof. The proof can be obtained from [2]. Assume,
w.l.o.g., that f1, fo, and f3 appear in this order from
left to right. Configure f1, fo, and f3 with angle zero,
m, and zero, respectively (top of Figure . At time
t = mw the configuration is as shown at the bottom of
Figure [2l During interval [0, o] the line is illuminated
by f1 and fo, and during interval |7, 7+ «], by f2 and
f3. The result follows. O

Figure 2: Proof of Lemma

Theorem 3 If all floodlights belong to the same set
among Fy U Fy, Fy, F3,..., Fy_1, then o(P,F) =
27 /m, which is optimal. Otherwise, a(P, F') satisfies:

. 3 2
a(P,F) < mln{m, m_Q%} (1)

where Q@ denotes the number of odd numbers in the
set {my +my, ma,...,mp_1}.

Proof. Obviously (P, F) > 27/m in all cases. All
lights belong to the same set iff £k = 2, or k = 3
and m; = ms = 0. In both cases, illumination an-
gle @ = 27/m is sufficient. Assume first that k = 2
and let Fy = {f1,..., fm,} and Fo = {f{,..., f;..}.
Floodlight f; is configured with angle (i — 1)a for
1 =1,...,mq, and floodlight f!, with angle 7 — j«
for j = 1,...,my (see Figure [3). Then, at any time
t € [0,mic) P is covered by a member of F; and,
at any time ¢ € [mjq,27), by a member of Fy. As-
sume now that £ = 3 and m; = mg = 0. Then,
F=F={f1,..., fm} By configuring f; with angle
2iw/m, P is covered by F. This proves the optimal
result when all lights belong to the same set.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

.

fi fo p1 P2 p3 3

Figure 3: Two groups of floodlights Fi = {f1, fo} and

Fy = {f1, f2, fs} = {fs, fa, fs}, where m1 = 2 and my =
3, and the configuration with angle o = 27/5.

If neither of the two cases above occurs, we con-
figure the floodlights to satisfy inequality as fol-
lows. We consider the case m; = m;, =0 and m; =1
(i =2,...,k—1) separately because the result follows
immediately from [2], since our problem is equivalent
to illuminating the whole z-axis. In this case m = Q

and a(P, F) = 37/m = min{3Z, WWZLQJ} which is
3

also optimal.

For the remaining cases, we can only obtain
an upper bound on the optimal illumination an-
gle. We proceed as follows. Pair the elements of
F into N = |Mfme] 4 |Z2| 4 4 [TEL] =
mTfQ pairs (f1,1,f1,2), (f2,1,f2,2), ~-~,(fN,1,fN,2)
so that the elements of each pair belong to a
same set among Fy U Fy, Fo, F3,..., Fr_1. Group
the remaining @ floodlights into M = L%J

triples (f11, /12, f13)s-- - (Far1s far 20 Faus) (leaving

_ 2 —
at most two ungrouped). Let a = mat202]
21\&%. We now schedule the floodlights as fol-

lows. Configure f; 1 and f; 2 with angles (i — 1) and
7+ (i — 1), respectively, for i = 1,..., N; and con-
figure f}, fjo, and f;3 with angles (N +j — 1)a,
(N+j—1a, and 7+ (N + j — 1)a, respectively, for
j =1,...,M. Finally, arbitrarily configure the re-
maining floodlights (at most two). The correctness of
this configuration follows from lemmas [1] and O

3 Many points and two lights

In this section we consider the case of two floodlights
f1 and fo, i.e., m = 2. Let py,...,p, denote the ele-
ments of P. Assume w.l.o.g. that line £(f1, f2) is hor-
izontal and that f; is located to the left of fy. Given
any target point p; (i = 1,...,n), let §; € [0,7) de-
note the angle at p; in the triangle Ap; f1 fo. If there
are points from P on both sides of the line £(f1, f2),
then we define two angles 31 and 8~ as the maximum
of 8; over all points p; above and below £(f1, f2), re-
spectively (see Figure. Otherwise, all the points of
P are on the same side of ¢(f1, f2) and we define two
angles, Bmaz and Bpmin, as the largest and smallest 6;
over all points p;, respectively (see Figure .

Theorem 4 (Two floodlights) For m =2, n > 2:
(1) If there are points of P on both sides of ¢(f1, f2)
then (P, F) =7+ ﬁf’%ﬁ_

(2) If all the points of P lie on one side of £(f1, f2)
then (P, F) = + @

(a) (b)
Figure 4: ,6+ and 8. |(b)| frmax and Bmin.

Proof. First, we prove part (1) of the theorem. We
configure floodlights f; and fs initially as follows. Let
Afi1Bfs be the quadrilateral such that angle Zf; Afs
is equal to BT, angle Zf,Bf; is equal to 8~, and
points f; and f; are symmetric with respect to the
line ¢(A, B) as shown in Figure

Figure 5: m Initial position. General position.

Since f; and fs rotate at unit speed, it always holds
that Zf1 Afo = 7 and ZfoBf; = B~ (see Figure[5h)).
Furthermore, the region not illuminated by the lights
is always a subset of the interior of the union of the tri-
angles A fiAfs and A foBf1 (see Figures [5bfand ,
and it never contains points of P by the definition of
Bt and S7. It remains to show that any illumination
angle smaller than 7 + W%f is not feasible.

Suppose that, initially, floodlight f;,i = 1,2 covers
angles in the interval [oy;, 5;]. First we show that these
intervals cover all possible directions in [0, 27]. If, to
the contrary, a direction ¢ is not covered by [ay, 81| U
[aa, B2], then there is a rotation such that p; is not
illuminated, where p; is the point above the z-axis
and Zfop;fi = BT, a contradiction. Therefore, the

Continuous surveillance of points by rotating floodlights

floodlight intervals overlap as shown in Figure [6al

Figure 6: The floodlight intervals.

We show now that the overlapping interval [aa, /1]
has length at least 5. Suppose to the contrary that it
is smaller than 8. Consider the rotation by the angle
~ such that the fa-ray of floodlight fy passes through
the point p; defining 8% (see Figure . Then the
aq-ray of floodlight f; will not cover p; since the an-
gle between the two rays is less than 3%. Therefore p;
is not covered if the rotation angle is slightly smaller
than v, a contradiction. Similarly, the overlapping
interval [aq, B2] has length at least 5. If the illumi-
nation angle is « then 2a > 27 + 87 + 3;. The claim
of part (1) follows.

To prove part (2) of the theorem we configure flood-
lights f; and f, at the beginning as follows. Let
Afi1Bfs be a quadrilateral such that Zf1Afo = Bmin
and ZfoBf1 = Bmaz and points fi and fo are sym-
metric about line ¢(A, B) as shown in Figure The
argument is similar to the proof of part (1) since the
points A and B move along arcs shown in Figure [Ta]
The uncovered part is either a region below C f1 B fo D,
shown in Figure [Ta] or the wedge XY Z, shown in
Figure In any case the area between the two arcs
defined by Bmnmin and Bmas is always illuminated.

The optimality of angle w+ w can be shown
similarly to the proof of part (1). O

4 Many lights and two points

Let p; and ps denote the elements of P and f1,..., fi
denote the elements of F. Let 0; (i = 1,...,m) de-
note the angle by which line £(f;, p1) has to be rotated
clockwise with center f; to become line ¢(f;, p2). As-
sume w.l.o.g. that 6; <0, < ... < 6,,.

Lemma 5 If n =2 then o(P,F) < 2T + %.

Proof. It suffices to prove that for a = 3—:{ + %
the m floodlights can be configured properly. Con-
figure f1 arbitrarily and, for i = 1,...,m — 1, con-
figure f;4+1 to start illuminating point py at the time
fi stops illuminating it. Since o > 27/m then ps is

Figure 7: The floodlight intervals.

always illuminated. Observe that p; is illuminated
at some time by both f; and f; 1 since 6; < 6;41.
Then the time spam in which p; is illuminated by
fi and not by f;1+1 is equal to o + 6; — 0;41. Since
Z;T:ll(a—i— 0; —0iv1) + « = ma+ 60, — 0,, = 27 then
p1 is always illuminated. O

One can build examples, as the following one, in which
01 < 0., and « is the theoretical minimum (i.e. a =
27 /m), showing that a = 2% + 9"’7717_91 is not always
optimal. Let m = 8 and (91, 92, 037 94, 05, 06; 97, 98) =
(5 0 55,505 ?jf, %‘) Then f1,..., fs can be con-
figured with a = 2w/m so that p; is illuminated in

the (circular) order fi, fs, fs, f2, fa, f5, fo, fz and p2
in the order fﬁa f17 f7a f37 f2a fSa f47 f5' Thusa it be-
comes interesting to decide whether a(P, F) = 27/m
when 01, ...,0,, are all multiples of 27/m.

Acknowledgements. The problem studied here was in-
troduced and partially solved during the VI Spanish Work-
shop on Geometric Optimization, June 2012, El Rocio,
Huelva, Spain. The authors would like to thank other
participants for helpful comments.

References

[1] J. Bose, L. Guibas, A. Lubiw, M. Overmars, D. Sou-
vaine, and J. Urrutia. The floodlight illumination
problem. Int. J. Comp. Geom., 7:153-163, 1997.

[2] E. Kranakis, F. MacQuarie, O. Morales, and J. Urru-
tia. Uninterrupted coverage of a planar region with ro-
tating directional antennae. In ADHOC-NOW, pages
56-68, 2012.

[3] K. Sugihara, I. Suzuki, and M. Yamashita. The
searchlight scheduling problem. SIAM J. Comput.,
19(6):1024-1040, 1990.

[4] J. Urrutia. Art gallery and illumination problems. In
Hdbk. of Comp. Geom., pages 973-1027, 2000.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Some results on open edge guarding of polygons

Antonio L. Bajuelos*!, Santiago Canales?, Gregorio Hernandez 3, Mafalda Martins**!, and Inés Matos*$

1

!Universidade de Aveiro & CIDMA, Portugal
2Universidad Pontificia Comillas de Madrid, Spain
3Universidad Politécnica de Madrid, Spain

Abstract

This paper focuses on a variation of the Art Gallery
problem that considers open edge guards. The “open”
prefix means the endpoints of an edge where a guard
is are not taken into account for visibility purposes.
This paper studies the number of open edge guards
that are sufficient and sometimes necessary to guard
some classes of simple polygons.

Introduction

The well known Art Gallery problem studies the mini-
mum number of guards that are needed to fully cover a
polygon P, that is, the number of guards from which
every point of P is visible. Ideally, guards may be
placed anywhere on P but usually they are restricted
to vertices of the polygon or its edges. In the first case
such guards are called vertex guards and in the sec-
ond edge guards. Moreover, a point guard is a guard
that can be placed anywhere on the polygon. Lee et
al. [3] proved that finding the minimum number of
guards to fully cover a polygon without holes is NP-
hard for all three variations of guards. Toussaint con-
jectured that | %] edge guards are sufficient to cover
any simple polygon of n vertices, except for small val-
ues of n. Later, Shermer [4] proved that |3%] edge
guards are sufficient to cover any simple polygon, ex-
cept for n = 3,6, 13 where an extra edge guard might
be needed. Shermer actually proved a combinatorial
result: any triangulation of a polygon with n vertices
can be dominated by ?1’—8 edge guards.

In this paper guards are assumed to be placed along
open edges of a polygon, that is, the endpoints of any

*Research supported by FEDER funds through
COMPETE-Operational Programme Factors of Com-
petitiveness, CIDMA and FCT within project PEst-
C/MAT/UI4106/2011 with COMPETE number FCOMP-
01-0124-FEDER-022690.

TResearch supported by ESF EUROCORES programme Eu-
roGIGA - ComPoSe IP04 - MICINN Project EUI-EURC-2011-
4306.

fResearch also
SFRH/BPD/66431,/2009.

$Email: ipmatos@Qua.pt. Research also supported by FCT
grant SFRH/BPD/66572/2009.

supported by FCT grant

edge are not taken into account for visibility purposes.
Therefore, a point p is covered by an edge e if p is vis-
ible from some interior point of e. As shown in Figure
1, open edge guards can see considerably less polygon
area than the usual edge guards, and are therefore an
interesting topic of research on their own.

(a) (b)

Figure 1: (a) The area covered by the open edge guard
v is shown in grey. (b) The area covered by the closed
edge guard uv is shown in grey.

Open edge guarding is a variation of the Art Gallery
problem that was first introduced by Viglietta [6] as
a way to guard 3D polyhedra. This work was built on
by Benbernou et al. [7] and Téth et al. [5]. The latter
studied open edge guards and proved that there are
polygons that need at least | %] guards to be covered,
and that | 5| are always sufficient.

This article is structured in the following way. Sec-
tion 1 introduces the concept of open edge guards and
presents results on the number of guards that cover or-
thogonal and spiral polygons. Some results related to
the Fortress problem on simple and orthogonal poly-
gons are also presented. The paper concludes with
Section 2.

1 Open edge guards

Given a simple polygon P, Gog(P) is the min-
imum number of open edge guards that fully
cover P and let Gog(n) = min{Gogr(P)
P is a polygon of n vertices}. Consequently, this sec-
tion is devoted to calculate Gog(n) for different
classes of polygons.

Results on open edge guarding of polygons

1.1 Orthogonal polygons

Bjorling-Sachs [1] proved that 3%"‘*] closed edge

guards are sufficient and sometimes necessary to fully
cover an orthogonal polygon. This section shows that
| 4] open edge guards are sometimes necessary and al-
ways sufficient to fully cover an orthogonal polygon.

Given an orthogonal polygon P with n vertices, the
edges of P can be divided into four categories: north,
south, west and east edges. North edges see the in-
terior of the polygon below them, south edges see it
above them, east edges see it to their left and west
edges see it to their right. Each of these four sets rep-
resents a group of open edge guards that completely
covers P. In order to see this, choose any point p of P.
From p, it is always possible to draw vertical segments
that will hit a north edge if it goes up from p and a
south edge if it goes down. The reasoning for the hor-
izontal directions is similar. Therefore, the smallest
of these four sets of edges proves the upper bound:
any orthogonal polygon can be covered by |%] open
edge guards. Furthermore, there is an example of an
orthogonal polygon that needs | %] open edge guards
to be fully covered. Such polygon is very similar to
the one depicted in Figure 2, but where each spike
only hides one point since there are no holes. These
two bounds prove the following theorem.

Theorem 1 Any orthogonal polygon with n vertices
can be covered by | % | open edge guards, and in some
cases this number is necessary.

Observe that this result essentially holds for orthog-
onal polygons with holes, and the upper bound can be
obtained in the same way it was explained above. In
Figure 2 there is an example of a polygon with holes
that needs [5| — 1 open edge guards to be fully cov-
ered, since each marked point is seen by a different

i Uﬁ

Figure 2: A polygon with holes that needs [%| — 1
open edge guards to cover it, n = 44.

1.2 Spiral polygons

This section studies open edge guarding of spiral poly-
gons, which will also be called spirals when it eases
the reading of the text. According to a previous work,
| 22 | closed edge guards are sufficient and sometimes
necessary to cover spiral polygons [8].

1.2.1 Tight bound on the number of open
edge guards

In the example in Figure 3(a), each point marked on
the polygon needs a different open edge guard to cover
it. Since this spiral has only one possible triangula-
tion and there is one of these points per four trian-
gles, this polygon needs [”7_21 open edge guards in or-
der to be fully covered. Therefore, Gog(n) > [2:2].
This lower bound can be rewritten as [2], and it is
proven below that this bound is tight.

(a) (b)

Figure 3: (a) No two of the marked points can be
covered by the same open edge guard. (b) The two
red open edge guards cover the whole spiral.

The boundary of each spiral can be decomposed
into a sequence of consecutive reflex vertices (called
a reflex chain) and a sequence of consecutive convex
vertices (called a convex chain). The proof that any
spiral can be covered by L%j open edge guards uses
induction on the number of edges of the polygon.

The base case comprehends four cases. When the
spiral has four, five or six edges it is easy to see that
one open edge guard covers the whole polygon. Spi-
rals with seven edges can be covered by two open edge
guards, since it suffices to place the guards on the
edges of the convex chain that are intersected by the
extensions of the first and last edges of the reflex chain
(see Figure 3(b)).

For the inductive step, suppose | open edge
guards are sufficient to cover any spiral of n’ vertices
with n’ < n edges, n > 7. Let P be a spiral with
n > 7 vertices, whose reflex chain is formed by the
vertices {ry,rs,...,7x}. Now extend the edge 7175
until it intersects some edge of the convex chain. Let
v be the rightmost endpoint of the edge of the convex
chain just intersected as shown in Figure 4(a). The
proof is now divided into four cases depending on the
number of edges of the convex chain from c¢; to v:
(a) five or more than five edges, (b) four edges, (c)
three edges and (d) two edges. For case (a), suppose
the convex chain from c¢; to v has at least five edges.
Then draw the diagonal between r; and cs5, the fifth
vertex of the convex chain. In this way, the spiral
is partitioned into two spiral polygons: P’ that has
six edges and so can be guarded with one open edge
guard and P” with n —4 edges. For case (b), suppose
the convex chain from ¢; to v has four edges as shown

24

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Figure 4: (a) The convex chain from ¢; to v is formed by six edges. (b) The convex chain from ¢; to v is formed
by four edges. (c) The convex chain from ¢; to v is formed by three edges: the first reflex vertex visible from v

is ro; (d) the first reflex vertex visible from v is r;.

in Figure 4(b). Then draw the diagonal between 79
and ¢4, the fourth vertex of the convex chain. This
partitions the spiral into two spiral polygons: P’ that
has six edges and therefore can be guarded with one
open edge guard and P with n — 4 edges.

In case (c) the convex chain from ¢; to v has three
edges and the situation is slightly different. As shown
in Figures 4(c) and 4(d), draw the diagonal between
v and the first visible reflex vertex starting from ry
(note that r9 can be such a vertex). This procedure
partitions the spiral into two polygons: P’ that can
be guarded with one open edge guard and P” with at
most n — 4 edges.

Finally, case (d) in which the convex chain from
c1 to v has only two edges. In this case, draw the
diagonal from v to the first visible reflex vertex after
ro. If there are no visible reflex vertices left, then the
reflex chain is over and an open edge guard placed on
the second edge of the convex chain covers the whole
spiral (see Figure 5(a)). If there is one visible reflex
vertex then draw the diagonal as before, which will
partition the spiral into two polygons: P’ that can be
guarded with one open edge guard and P” with at
most n — 4 edges (see Figure 5(b)).

(a)

Figure 5: The convex chain from ¢; to v has two edges.
(a) There is no reflex vertex visible from v besides rs.
(b) The first reflex vertex visible from v is ry4.

All the four cases described above end with a poly-
gon P” that has at most n — 4 edges, which means
the inductive hypothesis can be applied. Therefore,
P’ can be covered by L%J = [2H] — 1 open
edge guards. Since polygon P’ is covered exactly by

one open edge guard, the whole spiral is covered by

L"T'HJ open edge guards and this concludes the proof.

Theorem 2 Any spiral polygon with n vertices can
be covered by L"THJ open edge guards, and in some
cases this number is necessary.

1.2.2 Placing the minimum number of open
edge guards

This section presents an algorithm to place the min-
imum number of open edge guards that cover a spi-
ral polygon P. The main idea of the algorithm is to
build two sets simultaneously: G, which is the set of
open edge guards, and H = {hq, ha,...} that is the
set of points that guarantees G is of minimum size.
The points that form set H are placed on the poly-
gon in such a way that each open edge guard can see
only one of them and is therefore associated with it.
Consequently, |G| = |H|. Let {r1,ra,...,r5} be the
reflex chain and {cy,ca, ..., ¢y—} the convex chain of
P. Moreover, let {c1,¢2,...,Cnk, "k, k=1, --,T1} b€
the sequence of n vertices of a spiral polygon P. The
steps of the algorithm to place the minimum number
of open edge guards to cover P are depicted in Figure
6 and explained in the following.

Figure 6: (a) Finding an edge of the convex chain that
covers point hy. (b) Finding an edge of the convex
chain that covers point hs.

Set G is empty to start with. Let hy € P be a point
very close to ¢q, which has to be covered. Draw the
ray c¢;r; that will intersect some edge of the convex
chain that sees point h;. Let such edge be denoted
by (e1,ez) and assign G — {(e1, ez)}. Secondly, find

Results on open edge guarding of polygons

the last reflex vertex r; that can be seen from ep and
consider point hs, which is very close to r; along the
edge (rj,7j4+1). Then draw the ray 7;7;1; that will
intersect some edge of the convex chain that sees point
ho. Let such an edge be denoted by (es, e4) and assign
G — G U{(es,eq)}. Repeat this last step until all
reflex vertices and ¢, _j are guarded.

This algorithm selects the edges €;€;11 of the con-
vex chain that will be part of set G, which fully covers
any spiral polygon since it totally covers its convex
chain.

Lemma 3 The algorithm described in this section
builds a set H of points interior to P such that
Gor(P) = |H|.

Theorem 4 The algorithm described in this section
places the minimum number of open edge guards
needed to cover a spiral polygon in O(n) time.

Proof. Let G be the set of open edge guards built
by the algorithm to cover spiral polygon P and H
the set of points of P in which each point is cov-
ered by a different guard. That is, the set of points
that are placed in such way that the According to
Lemma 3, Gog(P) > |H| but since |H| = |G| then
Gor(P) > |G| and therefore G is a minimum set of
open edge guards. Regarding the time complexity,
each edge of the convex chain is only processed once
whilst analysing the rays W . In the same way,
each edge of the reflex chain is checked once to find
the last reflex vertex that is visible from the chosen
edges. Consequently, each vertex of the spiral polygon
is analysed just once by the algorithm and therefore
it runs in linear time. (|

1.3 Fortress problem

This section is devoted to another variation of the
Art Gallery problem called the Fortress Problem. In-
stead of guarding the interior of a simple polygon, the
Fortress Problem variation focuses on monitoring the
exterior of a polygon. Choi et al. [2]| proved that the
exterior of any simple polygon can be covered by f%}
closed edge guards and that these guards are neces-
sary to cover the exterior of convex polygons. In the
case of open edge guards, this problem is trivial since
it is easy to see that every edge will be needed as a
guard to cover the exterior of a convex polygon.

The natural following step is to study orthogonal
polygons. Again, Choi et al. [2] proved that the ex-
terior of any orthogonal polygon can be covered by
| 4] +1 edge guards and that this number can be nec-
essary. The proof of the following theorem is omitted,
but it is based on the technique of dividing the edges
according to their orientation, as introduced in Sec-
tion 1.1. The lower bound is given by the orthoconvex
polygon depicted in Figure 7.

Theorem 5 The exterior of any orthogonal polygon
with n wvertices can be covered by 5§ + 2 open edge
guards, and in some cases this number is necessary.

 ma

Figure 7: Orthoconvex polygon that needs 5 +2 open
edge guards to be covered.

2 Final remarks

We studied other classes of polygons, such as mono-
tone polygons, as well as other geometric configura-
tions. There are monotone polygons that need |%]
open edge guards in order to be fully covered and we
believe this bound is tight. Furthermore, this bound
is proved for open mobile guards, which can patrol
edges and diagonals of a polygon. This type of cover-
age has also been studied for other polygons.

References

[1] I. Bjorling-Sachs. Edge guards in rectilinear polygons.
Comput. Geom. Theory Appl., 11(2):111-123, 1998.

[2] A. Choi and S. Yiu. Edge guards for the fortress prob-
lem. Journal of Geometry, 72:47—64, 2001.

[3] D. Lee and A. Lin. Computational complexity of art
gallery problems. IEEE Transactions on Information
Theory, 32(2):276-282, 1986.

[4] T. Shermer. Recent results in art galleries. Proceedings
of the IEEE, 80(9):1384-1399, 1992.

[6] C. D. To6th, G. T. Toussaint, and A. Winslow. Open
guard edges and edge guards in simple polygons. In
A. Marquez, P. Ramos, and J. Urrutia, editors, Com-
putational Geometry, volume 7579 of Lecture Notes in
Computer Science, pages 54—64. Springer Berlin Hei-
delberg, 2012.

[6] G. Viglietta. Guarding and Searching Polyhedra. PhD
thesis, University of Pisa, 2012.

[7] G. Viglietta, N. Benbernou, E. D. Demaine, M. L. De-
maine, A. Kurdia, J. O’'Rourke, G. T. Toussaint, and
J. Urrutia. Edge-guarding orthogonal polyhedra. In
23" Canadian Conference on Computational Geome-
try, 2011.

[8] S. Viswanathan. Tight bounds for the number of
edge guards for spiral polygons. Journal of Geome-
try, 51:178-186, 1994.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Guarding the vertices of thin orthogonal polygons is NP-hard

Ana Paula Tomas™*

DCC & CMUP, Faculdade de Ciéncias
Universidade do Porto, Portugal

Abstract

An orthogonal polygon of P is called “thin” if the dual
graph of the partition obtained by extending all edges
of P towards its interior until they hit the boundary
is a tree. We show that the problem of computing a
minimum guard set for the vertices of a thin orthogo-
nal polygon is NP-hard either for guards lying on the
boundary, or on vertices or anywhere in the polygon.

Introduction

The classical art gallery problem for a polygon P asks
for a minimum set of points G in P such that every
point in P is seen by at least one point in G (the guard
set). Many variations of art gallery problems have
been studied over the years to deal with various types
of constraints on guards and different notions of visi-
bility. In the general visibility model, two points p and
q in a polygon P see each other if the line segment pg
contains no points of the exterior of P. The set V(v)
of all points of P visible to a point v € P is the visibil-
ity region of v. A guard set G for a set S C P is a set
of points of P such that S C U,egV (v). Two points
v; and v; are equivalent for the visibility relation
if V(UL) ns = V(Uj) ns. If V(Uj) ns c V(Uz) ns
then v; strictly dominates v;, and v; can replace v;
in an optimal guard set of S. Guards that may lie
anywhere inside P are called point guards whereas ver-
tex guards are restricted to lie on vertices and bound-
ary guards on the boundary. Combinatorial upper
and lower bounds on the number of necessary guards
are known for specific settings (for surveys, refer to
e.g. [8, 10]). The fact that some art gallery problems
are NP-hard [5, 9] motivates the design of heuristic
and metaheuristic methods for finding approximate
solutions and also the study of more specific classes
of polygons where some guarding problems may be
tractable [1, 2, 3, 6]. In this paper, we address the
problem of guarding the vertices of orthogonal poly-
gons, which is known to be NP-hard for generic or-

*Email: apt@dcc.fc.up.pt. Research partially supported
by the European Regional Development Fund through the
programme COMPETE and by the Portuguese Government
through the FCT — Fundagao para a Ciéncia e Tecnologia un-
der the project PEst-C/MAT /UI0144/2011.

thogonal polygons [4]. We show that the problem is
NP-hard also for the family of thin orthogonal poly-
gons, which consists of the orthogonal polygons such
that the dual graph of the corresponding grid parti-
tion gy (P) is a tree. Iy (P) is obtained by adding
all horizontal and vertical cuts incident to the reflex
vertices of P (see Fig. 1). Our proof is inspired in [4]

A

e

(a) (b) (c)

Figure 1: Orthogonal polygons, grid partitions and
dual graphs: (a) Iy (P) and its dual graph in gen-
eral; (b) a thin orthogonal polygon; (c) a thin orthog-
onal polygon that is a path orthogonal polygon.

although the need to obtain thin orthogonal polygons
led to novel aspects in the construction. The class
of thin orthogonal polygons contains the class of thin
polyomino trees introduced in [1], for which the au-
thors conjecture that the guarding problem under the
general visibility model has a polynomial-time (exact)
algorithm. To the best of our knowledge, this prob-
lem is open. In [12], we give a linear-time algorithm
for computing an optimal vertex guard set for any
given path orthogonal polygon (for which the dual
graph of IIyy (P) is a path graph), and prove tight
lower and upper bounds of [n/6] and |n/4]| for the
optimal solution for the subclass where all horizontal
and vertical cuts intersect the boundary at Steiner
points. Since the thin grid orthogonal polygons be-
long to this class, our work extends results previously
known for the spiral thin grid orthogonal polygons
and the MINAREA grid orthogonal polygons [6] (for
which the minimum vertex guard sets have exactly
[n/4| and [n/6] guards) and somehow explains why
the MINAREA grid orthogonal polygons were consid-
ered representative of extremal behaviour [11]. The
result that supports our proof allows us to conclude
that a minimum guard set for the vertices of a path
orthogonal polygon can be found in linear-time.

Guarding the vertices of thin orthogonal polygons is NP-hard

In rest of the paper, we show that computing a
minimum guard set for the vertices of a thin orthogo-
nal polygon (GVTP) is NP-hard, either for boundary
guards, vertex guards or point guards.

1 Hardness for boundary guards

Theorem 1 GVTP for thin orthogonal polygons is
NP-hard for boundary guards.

For the proof, we define a reduction from the
vertex-cover problem in graphs (VC) to GVTP with
boundary-guards. VC, known to be NP-complete, is
the problem of deciding whether a graph G = (V, E)
has a vertex-cover S of size |S| < k, for k integer. A
vertex-cover of GG is a subset S C V such that for each
edge (u,v) € E, either u € S, or v € S, or both.

The thin orthogonal polygon we construct for a
given graph G = (V,E) is a large square with |E|
tiny d-gadgets attached to its bottom. In Fig. 2 we
sketch this construction and in Fig. 3 we present the
double gadget (d-gadget) defined for the proof.

u

Figure 2: From VC to GVTP with boundary guards:
the representation of G = ({u, v, w}, {(u,v), (u,w)});
the edges of G are mapped to the points uv and uw
(that will be replaced by tiny d-gadgets) and the ver-
tices are mapped to the segments u, v and w.

We define the side-length of this square to be LA,
with L = 1 + 2|V| + 3|E| and A = 10L. Consider-
ing V = {vy1,v2,...,v,} sorted, we denote by F; the
subset of all edges (v;,v;) € E such that i < j, also
sorted by increasing value of j. In the construction we
follow these orderings: for each i, we represent v; by a
segment of length A on the top edge of the square and
the edges in E; as middle points of |E;"| consecutive
segments of length 2A on the bottom edge, placed
between the projections of v; and v;11, and with sep-
aration gaps of length A between each other. The
square is implicitly divided into L slabs of length A,
and we leave the first slab empty and an empty slab
between consecutive items.

B
B

-

Figure 3: A sketch of the d-gadget =;; defined for the
edge (v;,v;). The vertices on the left side are labelled
from N; to Nig in CW order and on the right side
are labelled from M; to Mig in CCW order. B = Ny3
and A = My, are the two distinguished vertices.

The d-gadget associated to the edge (v;,v;) € E;,
denoted by Z;;, is defined as follows. Let O;; be the
point that represents the edge (v;,v;) and A;B; and
A;B; the segments associated to v; and v;. Together
with O;;, these segments define two visibility cones
with apex O;;. By a slight perturbation, we can
decouple the two cones, and move the new apexes
to the distinguished vertices (B and A) of a tiny d-
gadget Z;;. The structure of this gadget will fix seg-
ment A; B; (resp. A;B;) as the portion of the bound-
ary of the polygon that A (resp. B) sees above line X
(i.e, above the gadget). We use VC instead of the
minimum 2-interval piercing problem used in [4] in
order to be able to control the aperture of visibility
cones and also the structure of the thin orthogonal
polygon obtained in the reduction. Some of the ver-
tices of a d-gadget can only be guarded by a local
guard (i.e., a guard below line X), for instance, the
vertices Mg, M12, Mg, M7 and M5 on its right part
and Nig, N12, Ng, N7 and N5 on the left part. For
every d-gadget, at least three local boundary-guards
will be needed to guard these vertices and no three
such guards can see both A and B if they see all these
vertices. Moreover, one can always locate three local
boundary-guards that see all the gadget vertices other
than A (namely, at Ng, N1 and Mg) or other than B
(namely, at Ng, M7 and Mg). Another guard is re-
quired to guard the unguarded vertex but it does not
need to be local. As we will see, this guard can be
located on the portion of the top edge of the polygon
seen from the unguarded vertex.

We define the coordinates of the vertices of Z;;
w.r.t. a cartesian system Ro,; with origin at O;;. By
construction, the x-coordinates of the points A;, B;
and O;; w.r.t. a cartesian system fixed at the bottom
left corner of the large square are given by

ac;li = (2i— 1+3Zk<i|Elj|)A
rp = Ty +A
x’ow_ = ol +2A + 3A |E N {(vi,v50) : § < 5}

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

and, consequently, if we define z; and z; as z; =
(zo,, — *g,)/A and z; = (2, — xp,)/A, then,
w.r.t. the cartesian system Ro,;, we have

Bi = (—l‘iA, LA) Bj = ((IJ + I)A, LA)

for integers x; > 2 and x; > 2. Then, we define A and
B as the intersection points of the supporting lines of
0;;A; and O;;B; with the line y = —4L, that is, as
A = (4z; + 4,—4L) and B = (—4x; — 4,—4L). So,
— —

the rays AA; and BB, share the supporting lines of
the initial rays O;;A; and O;;B;. The aperture of
the visibility cone C4 = cone(A, A;B;) is determined
by the vertices M; and Mi3. We selected M; as the
intersection of A—A; with the line y = —2L and M3
as the intersection of E with the line y = —3L.
Therefore, My = (2x;+ 2, —2L) and M;3 = (7;, —3L),
with 7, = 3x; + 3 + AA+4’ because the straight lines
AA; and AB; are given by the following equations.

L
AA;y = xi+1z
~L(A +4) ALA
ABZ =
Y s A+) +4" T 2 (At4)+4

Similarly, the vertices Ny and Ni3 determine the
aperture of the visibility cone Cp = cone(B, A;B;),
s

being N7 = (—2z; — 2, —2L) the intersection of BB;
with y = —2L and N3 = (7;, —3L) the intersection

————
of BA; with y = —3L, with 7 = —3z; — 3 — 2.
The coordinates of the vertices of Z;; are

Ms = (2z; + 1,—4L) M4 = (2x1 + 1 3L)

M5 = (2.’1,'“ —3L) (2.’1,'“ —6L)

M7 = (22; +1,—6L) = (2x; +1,—5L)

Mg = (7’1‘7 —5L) MIO = (Tz; 4L)

A= (da; + 4 —4L) Mo = (4x; + 4,-3L)

M13 - (T’La)

M5 = (7L, —2L)
M17 == (2.’1% + 2 L)

(
M14 - (TZ;)
Mg = (7TL,—-L)

Mg = (23% +2,0)

with the Ny, = (—ax; —3,7) iff M}, = (ax;+5,7), for
1 < k < 18. Therefore, the coordinates of the vertices
can be defined by rational numbers represented by
pairs of integers bounded by a quadratic polynomial
function on the size of the graph.

We can prove that: the dual graph of the grid par-
tition of the resulting polygon is a tree; Mg, Mo,
Mg, My, Ms, and Nig, N12, Ng, N7 and N5 require
local guards; the boundary of Z;; imposes no restric-
tion on the propagation of the corresponding visibility
cones C4 and Cp; the unique point on the boundary
of Z;; that sees both A and Ny is M; (similar for B,
Mg and Ni); the three local guards Ng, N1 and Mg

jointly see all the gadget vertices other than A (simi-
lar for Ng, M7 and Mg and B). Lemma 2 states the
final result we need to conclude the proof and can be
shown as Lemma 2.2. of [4].

Lemma 2 The thin orthogonal polygon P that is 0b-
tained can be guarded by 3|E| + k boundary guards if
and only if the there is a vertex-cover of size k for the
instance graph G = (V, E).

2 Hardness for vertex guards

Theorem 3 GVTP is NP-hard for thin orthogonal
polygons with vertex guards.

For the proof, we can adapt the previous construc-
tion, following the idea of [4], as sketched in Fig. 4.

J<m. - jj

\B\mi/ -

[EA] W

Figure 4: The reduction from VC to GVTP with
vertex guards for G = ({u,v,w}, {(u,v), (u,w)}). Ear
gadgets are attached to the right endpoints of the seg-
ments. Each ear gadget requires a local guard on a
vertex of the shaded region (to guard Zs).

We consider the polygon obtained previously and
attach a tiny ear gadget to the right endpoint of each
line segment A; B;, for each v; € V. The local vertices
of the ear gadget attached to Bj, w.r.t. the cartesian
system fixed at the bottom left corner of the large
square, can be defined as

Zy = ((#f+1)A, L(A+1)+1)
Zz = ((#f+1)A+1, L(A+1))
Zy = ((#f+1)A+L, L(A+1))

and ((zf + 1)A + L, L(A 4+ 1) + 1). The separation
slabs guarantee that the dual graph of Iy (P) for
the new polygon P is still a tree, as required. The ear
gadgets are defined in such a way that the vertex A of
Ei; cannot see any vertex of an ear-gadget except for
B;. Otherwise, A would see points on the boundary
of P arbitrarily closed to B; but to the right of B;,
which is impossible by the definition of the visibility
cone C4. The height of the ear gadget prevents B from

Guarding the vertices of thin orthogonal polygons is NP-hard

seeing any local vertex of the ear-gadget attached to
A;Bj. For each j > 2, it is sufficient to guarantee

that, for all Z;;, the intersection point of the ray B—B;
with the vertical edge incident to the vertex labeled
Z3 is below Z3. This holds for all 7 if it holdsfo_r)B in
the rightmost d-gadget Z;;, since the rays BB, are
sorted by slope around B;.

Each ear-gadget needs a local guard that must be
located in one of the vertices of the shaded region
and none of these vertices sees a local vertex of a d-
gadget. This means that these guards cannot replace
any guard located in a segment. Since any guard lo-
cated on a segment can move to the segment right
endpoint to become a vertex-guard, without loss of
visibility, we can adapt the proof of Lemma 2 to show
Lemma 4.

Lemma 4 The thin orthogonal polygon P that is ob-
tained can be guarded by |V |+3|E|+k boundary guards
if and only if the there is a vertex-cover of size k for
the instance graph G = (V, E).

3 Hardness for point guards

Theorem 5 GVTP is NP-hard for thin orthogonal
polygons with point guards.

For the proof, we construct a reduction from the
minimum line cover problem (MLCP), as in [4].
MLCP is NP-hard [7]. Given a set £ = {l1,...,1,}
of lines in the plane, MLCP is the problem of finding
a set of points of minimum cardinality such that each
line [€ L contains at least one point in that set.

Without loss of generality, we consider that £ con-
tains neither vertical nor horizontal lines. The poly-
gon constructed for the reduction is obtained by at-
taching single-gadgets (called s-gadgets) to a bounding
box B(L) that contains all intersection points of pairs
of lines in £ in its interior. The idea of this construc-
tion is sketched in Fig. 5.

Ms Mia m

oY |:»\ = Mgl M

Figure 5: The reduction from MLCP to GVTP with
guards anywhere. Each tiny box on the bottom rep-
resents an s-gadget (note that not all lines intersected
the bottom edge of the dashed bounding box). On the
right, an s-gadget in detail (the vertices are labelled
from M; to My, in CCW order, A = Mj;).

In order to guarantee that a thin orthogonal poly-
gon is obtained, we define a new type of s-gadget,
sketched on Fig. 5, where M; and M3 reduce the
visibility cone C4 to the line L4. Moreover, we had
to restrict the locations of s-gadgets to the bottom
edge of B(L), in contrast to [4]. This can be done be-
cause, for a sufficiently large bounding box, all lines
will intersect the bottom edge of B(L), as there are no
horizontal lines in £. At least a local guard is needed
for each s-gadget. As for the d-gadgets, taking into
account the relative positions of intersections of the
lines with the bottom line (i.e., of vertices M;), and
their slopes, we can define the vertices of the tiny s-
gadget in such a way that Mg sees Mo and M7, and
all local vertices except for A. We can conclude that
the vertices of P can be guarded by n + k guards if
and only if there is a cover for £ of size k.

References

[1] T. Biedl, M. T. Irfan, J. Iwerks, J. Kim and J. S. Mit-
chell, Guarding polyominoes, in: Proc. SoCG 2011,
ACM, 2011, 387-396.

[2] A. Bottino and A. Laurentini, A nearly optimal al-
gorithm for covering the interior of an art gallery,
Pattern Recognition 44 (2011), 1048-1056.

[3] M. C. Couto, P. J. de Rezende, and C. C. de Souza,
An exact algorithm for minimizing vertex guards on
art galleries, Int. T. Oper. Res. 18 (2011), 425 — 448.

[4] M. J. Katz and G. S. Roisman, On guarding the ver-
tices of rectilinear domains, Computational Geometry
— Theory and Applications 39 (2008), 219-228.

[5] D. T. Lee and A. K. Lin, Computational complexity
of art gallery problems, IEEE Transactions on Infor-
mation Theory 32 (1986), 276-282.

[6] A. M. Martins and A. Bajuelos, Vertex guards in
a subclass of orthogonal polygons, Int. J. Computer
Science and Network Security, 6 (2006), 102-108.

. . ,

[7] N. Megiddo and A. Tamir, On the complexity of
locating facilities in the plane, Oper. Res. Lett. 1
(1982), 194-197.

[8] J. O’'Rourke, Art Gallery Theorems and Algorithms,
Oxford University Press, 1987.

[9] D. Schuchardt and H. Hecker, Two NP-hard problems
for ortho-polygons, Math. Logiv. Quart. 41 (1995),
261-267.

[10] J. Urrutia, Art gallery and illumination problems, in:
J.-R. Sack and J. Urrutia (eds), Handbook on Com-
putational Geometry. Elsevier, 2000.

[11] A. P. Tomas, A. Bajuelos and F. Marques, On visi-
bility problems in the plane — solving minimum ver-
tex guard problems by sucessive approximations, in:
Proc. Int. Symp. Artificial Intelligence and Mathe-
matics (ISAIM), Florida, 2006.

[12] A. P. Tomés. Guarding path orthogonal polygons,
DCC&CMUP, Univ. Porto, 2013 (in prep).

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Solving common influence region queries with the GPU

Marta Fort and J.Antoni Sellarés*

Departament Informatica, Matematica Aplicada i Estadistica. Universitat de Girona.

Abstract

In this paper we propose and solve common influ-
ence region queries. We present GPU parallel algo-
rithms, designed under CUDA architecture, for ap-
proximately solving the studied queries. We also pro-
vide and discuss experimental results showing the ef-
ficiency of our approach.

Introduction

Common influence region queries are related to the
capacity of two sets of facilities of different type, com-
petitive and collaborative, of attracting customers.
Solutions to common influence region queries help de-
cision makers to develop competitive-collaborative op-
portunities.

Papers [2, 3, 1] deal with a related problem
which tries to maximize the area of the Voronoi
region of a new non-weighted facility. Fort and
Sellarés [4] present an algorithm for optimizing k-
nearest /farthest influence regions of a set of non-
weighted facilities.

The advancement in GPUs (Graphics Processing
Units) hardware design, together with CUDA (Com-
pute Unified Device Architecture), make them attrac-
tive to solve problems which can be treated in parallel
as an alternative to CPUs. General-Purpose comput-
ing on GPUs (GPGPU) is playing an increasing role
in scientific computing applications, which range from
numeric computing operations to data mining or geo-
metric processing, where the potential of the GPU for
delivering real performance gains on computationally
complex, large problems is demonstrated.

By working towards practical solutions, since ex-
act algorithms to solve the common influence region
queries are hard to implement and quite slow in prac-
tice, we explore a GPU parallel approach, designed
under CUDA architecture, for solving the queries ap-
proximately. We also provide and discuss experimen-
tal results obtained with the implementation of our
algorithms that show the efficiency and scalability of
our approach.

*Email:(mfort,sellares) @imae.udg.edu.
Authors research supported by TIN2010-20590-C02-02.

1 Preliminaries

1.1

Let R = {R1, -, Ry} be a partition of the domain
D. We associate with each region R; a non-negative
number w;, called the weight of R;.

The weighted area of a region

We define the weighted area of the region R C D,
denoted w(R), as:
w(R) = Z w; (RN Rj),

j=1,m

where (R N R;) denotes the area of the subregion
RN R;.

1.2 CUDA architecture

CUDA is a parallel computing architecture that
makes GPUs accessible for computation like CPUs.
The CUDA processors, which can be executed in par-
allel, are referred as threads, and each thread exe-
cutes the instructions contained in the so called ker-
nels in parallel. Each thread computation is indepen-
dent from the others, however, there exist some read-
modify-write atomic operations called atomic func-
tions. They read and return the value stored in a
memory position, operate on it and store the result
without allowing, during the whole process, any other
access to that memory position. These operations al-
low the users to obtain global results when several
threads access to the same memory position. For in-
stance we can obtain a global sum, maximum or min-
imum in a specific position by using them.

Several types of memories can be used, data stored
in global memory are accessible by every thread and
are visible from the CPU, global memory is where
more data can be allocated, but is the slowest access
time memory. Shared memory and registers are the
fastest memory, shared memory can be accessed by all
the threads of the same block, and registers store the
local variables of the threads. The number of accesses
to memory are reflected in the execution times of the
algorithms. Thus they are provided in the complexity
analysis, v read or written values to global memory
are represented by 79 and w9, and to shared memory
they are denoted by 7} and w;.

Common influence region queries

2 Influence regions

Let S be a set of n points included in a bounded
domain D of the Euclidean plane. Each point s € S
is associated with a positive real weight ws > 0. The
weighted distance ds(q) from an arbitrary point ¢ € D
to the point s € S is defined as ds(q) = (1/ws) d(s, q),
where d(p, q) denotes the Euclidean distance between
points p, q.

The k-influence region of a point s € S, denoted
Ix(s,S), is the set of points of D having s among
their k-nearest points in S. For any point ¢ € D,
denote by ng (g, S) the weighted distance from ¢ to its
k-th nearest point in S, i.e. the weighted distance to
the point of S that ranks number k in the ordering
of the points by increasing weighted distance from gq.
We have:

Ii(s,5) = {q € D[ds(q) <ni(q,9)}-

From the definition follows that the 1-influence region
of a site s is its 1-Voronoi region, and that Ix(s,S) C
Ik—i—l (S, S)

A k-influence region is bounded by bisectors of
pointsin S. In general, k-influence regions need not to
be convex, nor simply connected, nor even connected.
Two k-influence regions may share disconnected edges
(see Figures 1 a) and b)).

2.1 Common influence regions

Let P and @ be finite disjoint sets of n and m weighted
points, respectively, within the bounded domain D of
the Euclidean plane.

The (k, k")-Common Influence Region of p € P, g €
@, denoted Cy 1 (p,q, P,Q), is the set of points of D
having p among their k-nearest points in P and at the
same time having ¢ among their k’-nearest points in
Q:

Ck,k’ (pa q, P7 Q) = Ik(pv P) N Ik’(qv Q) .

In Figure 1 ¢) we can see an example of a (5,2)-
common influence region painted in green.

a) b) . c)

Figure 1: a) 5-influence region, b) 2-influence region, c)
(5,2)-common influence region.

2.2 Common influence region queries

Let P and @ be finite disjoint sets of n and m weighted
points, respectively, within the bounded domain D of

the Euclidean plane, and R be a weighted partition
of D. We study the following queries:

Feasible pairs query. Given fixed non-empty sets
P’ C P and Q' C @ and a real positive number Wy,
find all pairs (p,q), p € P’ and ¢ € @', such that the
weighted area w(Cy 1 (p, q, P, Q)) > Wo.

Feasible partners query. Given fixed non-empty
sets P/ C P and Q' C Q and a real positive number
W, find all points p € P’, such that for each q € Q’
the weighted area w(Cy i (p,q, P, Q)) > Wh.

The parameters k, k', Wy, Iy should be chosen by
an expert, according to the localization of p with re-
spect the points of Q" and the cardinality of Q’, during
an iterative what-if analysis process.

To obtain w(Cyw(p,q,P,Q)) = w(Ik(p, P)n
I (q, Q)), we can first compute the overlay intersec-
tion between It (p, P), I/ (¢, Q) and the regions of the
weighted partition R. Since each maximal connected
region of the resulting intersection is contained in a
region of R, it has univocally associated a weight.
Consequently, the weighted area w(Cy 1 (p,q, P, Q))
can be written as a sum of functions that depends on
the location of p and ¢. Since computing the maximal
connected regions together with their weighted area
is difficult, it is also difficult computing the weighted
area of a common influence region and solving com-
mon influence region queries. This has motivated us
to explore an alternative GPU parallel approach, de-
signed under CUDA architecture, for approximately
solving common influence region queries.

3 Solving common influence re-
gion queries using CUDA

The weighted areas of the common influence regions
are estimated by using a discretization of the domain
D. An axis-parallel rectangular grid of size H x W
is superimposed on the domain D defining a set S of
r points corresponding to the geometric center of the
grid cells which are weighted according to the domain
partition P. As it is obvious, the bigger the size of
the used grid the more accurate the obtained common
influence region. The weighted area is estimated by
summing up the weights of all the points of S con-
tained in the common influence region. Notice that,
depending on the domain weighted partition, small
changes in the common influence region can produce
big changes in its weighted area.

Solving the defined queries requires an initial step
consisting in computing the k-nearest neighbor dis-
tance from each point of S to the points in P and the
k' nearest neighbor to the points in Q. Notice that
even though the queries subsets P’ and Q' are used,

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

the k and k’-neighbor distances are always referred to
P and Q.

3.1 k-nearest neighbor distance com-
putation

We start by computing the weighted distance of each
point s € S to its k-th nearest neighbor in P, consid-
ering all the points in parallel. With this aim, we have
extended the CudaKNN algorithm described by Liang
et al. [5] to handle the weighted case. The algorithm
computes for each p € P the weighted distances to
all the points in S using shared memory and making
the threads in a block cooperate to determine, after
exploring all the point in P, the k-nearest neighbors
of s. We transfer the points of S and P from the CPU
to the GPU, then we compute the k-weighted nearest
distance of each point in S to P and store all them in
global memory in a 1D array np, of size 7.

In the same way, we also transfer the points of S
and @ from the CPU to the GPU, compute the k'-
weighted nearest distance of each point in S to @ and
store them in a 1D array ng,, of size r.

3.2

Given P’ C P and Q' C Q of size n’ and m’ respec-
tively, and assuming that the k and k’-nearest neigh-
bor distances from each point of S to P and @ have
been computed, we explain how the proposed queries
can be solved.

Our approach for solving the feasible pairs and the
possible partners queries follow a very similar proce-
dure.

Influence region queries resolution

Feasible pairs query

The solution of the feasible pair query is reported
giving the number of feasible pairs and the list con-
taining them. In order to solve it we consider n'm/
threads, an integer to store the number of feasible
pairs and an 1D-array of size n'm’ to store the fea-
sible pairs. Each thread estimates the weighted area
Wp,q = W(Cri(p,q, P,Q)) of one pair (p,q). In the
case that w, 4 gets the minimum required value Wy,
the number of feasible pairs is incremented by one,
and the pair is stored in the first empty position of
the feasible pairs array.

The weighted area wy, 4 is estimated by considering
all the points s € S, computing the distances d,(s)
and d,(s) and comparing them with ng(s, P) and
ny (s, Q) which are the ones stored in np, and ng,, .
Thus s € Ci i (p,q, P,Q) whenever dy(s) < np,(s)
and dy(s) < ngq,,(s). In such a scenario, where all
threads check all the points in S, shared memory
should be used. The B threads in a block cooperate
loading the space points and their neighbor distances
from global to shared memory. This requires using
three shared memory arrays of size B per block: S*

which stores B weighted space points, and np, , and
nak, storing their corresponding k¥ and k’-neighbor
distances to P and @, respectively. The i-th thread of
the block reads from global memory the point s; € S
and its corresponding k and k' nearest neighbor dis-
tances, and stores them in the i-th position of S*® and
np, and nZka respectively. When all the threads
in the block have finished loading this information,
the first B points of S can be analyzed. Then each
thread determines which of these points are contained
in its corresponding common region Cy i/ (p,q, P, Q)
and accordingly accumulates their weights in a regis-
ter. Once all the threads of the block have checked
all the already loaded points, the next B points of S
and their distances are loaded to shared memory and
analyzed. We keep on proceeding similarly until all
the points in S have been handled, and consequently
Wpq has been estimated.

In order to obtain correct results it is important
that the threads in a block wait each other in some
critical points. In fact, two synchronization points
are needed, one after transferring the corresponding
weighted point of S with its two associated distances
and the other when all the already stored points have
been checked, just before starting transferring new
information to shared memory. Otherwise there is
no guarantee that all the threads in the block have
finished with their tasks. The implementation has to
be carefully done when 7, the number of points in S, is
not a multiple of B, the number of threads in a block,
to avoid accesses to non-existent memory positions,
but guaranteing that all the points of S are loaded to
shared memory.

Feasible partners query

To solve this query we use an array fp, of size n/,
which is used as a boolean array. At the end of the
process, positions containing a 1 correspond to the
points of P’ having all the points of Q' as feasible
partners.

After initializing the array f, with ones, we proceed
as before estimating the weighted common influence
areas of all the m/n’ pairs in P’ X Q'. When a thread
finishes estimating its corresponding weight w,,, it
checks wether w,, < Wy, and in such a case, it sets
fp[p] to 0. Thus, only for those points p achieving the
minimum influence value for all the points ¢ € Q' we
will have f,[p] =1 at the end of the process.

The number, n’f, and the list, f, of feasible partners
can be obtained by performing a prefix sum on the
array fp, which is stored in ps. After allocating an
array of size n;, n' threads are considered, each thread
checks wether its point of P’ is a feasible partner of
@', by looking at its corresponding position of f,. If
it is so, the point of P’ is stored in f in the position
given by ps.

Common influence region queries

3.3 Complexity analysis

Computing simultaneously for the r points of S the k-
neighbor distances with respect to the set of n points
by using the CudaKNN algorithm [5] requires O(rnB)
total work, where B is the number of threads per
block. The computation is done in three different
steps, that have O(r), O(B) and O(k + n/B) oper-
ations per thread, respectively. Thus, the initial step
in our case requires O(r(n + m)B) total work.

Solving the feasible pairs query requires n'm’
threads performing O(r) operations each, leading to
O(rn'm’) total work. Concerning memory accesses, in
the worst case O(ry,,../,. g W1y 5T e FWhs)
accesses are required. Finally, the global memory
needed is 3r +n' + m/ + n'm’ + 1, while 3B floats
per block are required in shared memory.

The differences between solving the feasible pairs
query and the feasible partners one, before finding
the list of feasible partners, do not change the work
per thread neither the global work nor the memory
accesses. However, the global memory requirements
are reduced to 3r + 2n’ + m’. Finding the list f only
increases the global memory requirements in n’ + n’f

4 Experimental Results

In this section, we present several experimental results
obtained with the implementation of our algorithms.
In all the experiments the points of P and @ are ran-
domly distributed in the domain and their weights are
randomly obtained integers between 1 and 15. They
are based on the weighted domain partition presented
in Figure 2. The points of the domain are painted
in a purple color gradation, the darker the color the
smaller the density value.

Figure 2: Domain weighted partition according to the
population density.

In Figure 3, we provide the solution of a feasible
partners query. Figure 3 a) shows the sets P, Q, P’
and @, that have 100, 100, 25 and 10 points, respec-
tively. Points of sets P’ and Q' are represented by
grey squares and green triangles, and the points of P
and @ not in P’ and Q’, by red squares and blue trian-
gles, respectively. The orange squares of Figure 3 b)
are the points of P’ conforming the solution of the
feasible partners query defined by P, Q, P’, Q' for

k = k' = 15, when the minimum required influence
value is 20.

b)

Figure 3: a) Points of the sets P, @, P’, Q’. b) Solutions
of the feasible partners query.

For a grid of size 400 x 400, n = 500, n’ = 50,
m = 200, m’ = 25, k = 20 and k¥’ = 20, the running
times needed to solve a feasible pairs query and a fea-
sible partners query are 12 and 16 milliseconds. Us-
ing the CPU sequential version of the algorithms the
times become 347 and 351 miliseconds, respectively.
In the CPU version, the feasible partners query can
be solved in 62 miliseconds if point p € P’ is set as
a not feasible partner at the first ¢ € @’ for which
w(Cr i (p,q, P,Q)) < Wy. This can not be done in
the GPU, because threads cooperate transferring in-
formation to shared memory.

References

[1] O. Cheong, A. Efrat, and S. Har-Peled, Finding a guard
that sees most and a shop that sells most, Discrete Com-
put. Geom. 37(4) (2007), 545-563.

[2] M. Denny, Solving geometric optimization problems us-
ing graphics hardware, Comput. Graph. Forum 22 (2003),
no. 3, 441-452.

[3] F. K. H. A. Dehne, R. Klein, and R. Seidel, Mazimizing a
Voronoi region: the convez case, Int. J. Comput. Geome-
try Appl. 15(5) (2005), 463-476.

[4] M. Fort and J.A. Sellarés, GPU-Based Influence Regions
Optimization, ICCSA (2012), 253-266.

[5] S.Liang, Y. Liu, C. Wang, L. Jian, A CUDA-based parallel

implementation of k-nearest neighbor algorithm, IEEE’09
(2009), 291-296.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Reporting flock patterns on the GPU

Marta Fort, J.Antoni Sellarés, and Nacho Valladares™

Departament Informatica, Matematica Aplicada i Estadistica. Universitat de Girona.

Abstract

In this paper we study the problem of finding flock
patterns in a set of trajectories of moving entities. A
flock refers to a large enough subset of entities that
move close to each other for a given time interval. We
present a parallel approach, to be run on a Graph-
ics Processing Unit, for reporting maximal flocks. We
also provide experimental results that show the effi-
ciency and scalability of our approach.

1 Introduction

A trajectory is a sequence of sampled time-stamped
point locations describing the path of a moving entity
over a period of time. Assuming that the movement
of an entity between two consecutive positions is done
at constant speed and without changing direction, its
trajectory is modelled by the polygonal line, that can
self-intersect, whose vertices are the trajectory points.
In this paper we study the flock pattern [1, 2, 3],
that identifies a group of entities moving close to-
gether during a given time interval (see Figure 1).

. L L =
Figure 1: Example of two flocks.

The increasing programmability and high compu-
tational rates of Graphics Processing Units (GPUs),
together with CUDA (Compute Unified Device Archi-
tecture) and some programming languages which use
this architecture, make them attractive to solve prob-
lems which can be treated in parallel as an alternative
to CPUs. GPUs are used in different computational
tasks where a big amount of data or operations have
to be done, whenever they can be processed or done
in parallel. Some recent works show that demanding
algorithms in different fields can take advantage of the
GPU parallel processing [4, 5, 6].

*Email:(mfort,sellares,ivalladares) @imae.udg.edu.
Authors research supported by TIN2010-20590-C02-02.

In this paper, we present an efficient parallel GPU-
based algorithm, designed under CUDA architecture,
for reporting maximal flocks. The experimental re-
sults obtained with the implementation of our algo-
rithm show the significance of the presented approach
according to its performance and scalability.

2 The flock pattern

Let E = {eq,...,en—1} be a set of n moving entities.
The trajectory T; of the entity e; is a sequence of 7
points in the plane T; : ef, ..., el _;, where eg denotes
the position of e; at time ¢; with 0 < j < 7. We
assume that the positions are sampled synchronously
for all the entities, and that entity e; moves between
two consecutive positions €}, e}, | with constant speed
and without changing direction. Consequently, the
trajectory T; is described by the polygonal line, which
may self-intersect, whose vertices are the trajectory
points.

Flocks identify groups of entities whose trajectories
are close together during a minimum period of time.
Formally, according to [2], given a set E of entities,
a minimum number of entities ¢ € N, a number of
time-steps 6 € N, a time interval I? = [t;,t;45-1],
and a distance € € R:

Definition 1 A flock f(d, s, €) in a time interval Ij‘s,
consists of at least p entities such that for every dis-
crete time step tp € Ij‘-;, there is a disk of radius € that
contains all the u entities.

The number of reported or determined flocks is a crit-
ical issue that can adversely affect the response time
and the proper interpretation of the final results. For
a time-step ty € I]‘S there may be several circles with
radius € that yield a flock with the same subset of enti-
ties of F/, so we consider that two flocks are different if
they involve two different subsets. Since there can be
©(n?) combinatorially distinct ways to place a circle
of radius € among n points in the plane, at each time-
step there can be ©(n?) flock candidates involving dif-
ferent subsets of entities [9]. An algorithm having as
output the position of the entities involved in a flock,
would have an output size of ©(n?) per time-step.
Moreover, it is easy to observe that a set of entities
could be present in many flocks, and even one single
entity can be involved in several flocks. For example, a
flock of p+1 entities contains p+1 flocks of p entities.

Reporting flock patterns

To overcome this problem, as in [3], instead of finding
all the existent flocks, we are interested only in max-
imal flocks, so that the entities of one flock may not
be a subset of the entities of another flock. Even in
the case of finding maximal flocks, at every time-step
there may still asymptotically be ©(n?) flock candi-
dates, although in many real situations the number of
candidates decreases considerably.

Definition 2 A maximal flock mf (9, i, €) in the time
interval Ij‘-s, is a maximal flock f(d,u,¢€) in If with
respect to the subset inclusion.

We will denote ./\/l? the family of maximal flocks in
the time interval I j" , and M? the family of all maximal
flocks, that is, the flocks of M?, forj=0,...,7— 1.

2.1 Characterization

Vieira et al. [3] prove that, for each pair of entity lo-
cations, there exists two such disks. Thus, 2n? disks
per time step must be tested. Since we are interested
in those flocks that are maximal, we prove that keep-
ing just one of the two disks is enough. Consequently,
only n? disks per time step must be tested, thus the
number of tests is reduced by half.

The following lemma, similar to one presented in
[3], allows us to bound the number of disks to be
tested in each time step.

Lemma 3 Let P be a set of n points and D’ be a disk
of radius r that covers a subset P' C P, |P'| =k < n.
There exist another disk D" of radius r such that: a)
has at least two points p;,p; € P’ on its boundary; b)
covers a superset P of P!, P C P”" C P; ¢) it is
located at the right side of points p;,p;.

3 Reporting flock patterns

In this paper study the problem of reporting the fam-
ily M?% of all maximal flocks. To report M°, we
must find the family M? in the time interval I]‘-5, for
7=0,...,7—1.

3.1 Computing the family /\/lg

Next, we describe the two main steps of the algorithm
used to compute the family M‘; in the time interval
I,

First step. At each time step t; in the time inter-
val If, we compute the family F; of potential flocks
containing at least p entities. Each family F; is ob-
tained by using the characterization given in Lemma
3. Next, we find the maximal sets of each family F;.
Abusing of notation, we still denote F; the obtained
subfamily of potential maximal flocks. At the end
of the step, we have the array of families of poten-
tial maximal flocks F? = [F;,..., Fj4s-1] in the time
interval I j‘-s .

Second step. We first compute the family Z9 ob-
tained intersecting the § families of potential maxi-
mal flocks in]-"; That is, Ij‘? contains the sets which
are the intersection of § sets, one of each family F;
in 9. Finally, we find the subfamily of maximal sets
of If that contain at least u elements. The obtained
subfamily is the desired M‘;.

4 GPU implementation

In this Section, we describe how to implement the
different, steps of the algorithm that computes M?,
when GPU parallel techniques are used.

4.1 The multi-grid structure ¢

We denote by E; = {e,...,e" '} the set of locations
of the entities of F at time step t;, i € {0,...,7 —
1}. In [3], a single grid is used to perform quick disk
range searching queries over each set F;. Instead of
using a grid for each time step, we build a multi-grid
structure, denoted G, in parallel in the GPU, that
allows us to search simultaneously in each one of the
J sets of E}S =[Ej,...,Ejys-1].

The multi-grid structure contains & regular grids,
where the edges of the grid cells have length €. Each
grid j contains the set of points corresponding to Fj.
In order to maximize the parallel performance, the
top-right corner is defined so that the grid is a square,
that is, it has the same number of rows and columns
(see Figure 2).

The multi-grid structure G is composed of 7 arrays
allocated in the GPU global memory. In Figure 2 we
can see an example for § = 3. The bottom-left and
the top-right corners of each grid are stored in the
array bs of size 0, where bs[j] stores the two corner
points of the grid containing £;. The number of cells
per row (or per column) of each grid is stored in ¢y
and its prefix sum is stored in ps. Both arrays are
integer arrays of size 6.

To represent the § grids, we use the array of inte-
gers c¢s, whose size depends on the size of the different
grids which directly depend on the distribution of the
points. For a given grid cell, we store in the corre-
sponding c¢s position the number of points contained
on that cell. The array ps of the same size of ¢s is ob-
tained as the prefix sum of ¢5. Note that, for a better
understanding, in Figure 2 the arrays cs and ps are
showed as several 2D grids, but in the GPU memory
they are stored one 1D array each, by storing one grid
after the other starting from left to right and from top
to bottom, thus, the first grid corresponds to the time
step t; and the last one of the time step ¢;15. With
this structure we can easily access, in a parallel way,
to any element of the § grids, by using the fact that
the set of points of a cell w starts at position ps|w]
of es, and is stored in cs[w] consecutive positions of
es. In each es position we store the two floats of the

20

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

corresponding location. Finally, é5 is an integer array
of size nd containing at position j the entity id of the
es[7] location.

¢ fo|1{0|0]0

Ps 212

oot | W
| ot | W
ot

6

to ty ta to t1 to

2]a]1]

DBE
. o[l

Figure 2: Example of multi-grid G for § = 3.

N

es | 3] vb] p2l wi] w3]] 3| 3] 8]

o OO EOEDE0)

=
S

=

We construct the G structure in parallel as follows.

We allocate CPU arrays ¢5', ps , b of size §, and p’
and €5’ of size nd. While we load the input P into p’
the arrays ¢5', ps and b} are accordingly filled. Then
cs, Ps, bs and p are allocated in GPU memory and
the ¢5', ps’, b and p’ values are transferred to GPU
memory to Cs, ps, bs and p respectively.

Then, ¢s and ps are allocated in the GPU memory
according to ¢s and ps values. Additionally, the ar-
rays es and e are allocated with size nd also in GPU
memory. Because GPU has no dynamic memory we
have to construct G in two steps.

First, we fill ¢s by counting the number of points
contained in each cell. This is done in parallel by
launching a kernel with nd threads, that is, a thread
per point and per time step. Each thread idx reads its
plidz] value and determines its position in the grid by
using its position on the plane, the grid corresponding
to the time step which the point belongs to, and the c;
and ps arrays. The corresponding ¢s position is incre-
mented in 1. Because many threads may correspond
to the same c5 position we use atomic operations to
ensure no thread interferences.

Once c¢;5 is computed, ps is obtained as the prefix
sum of ¢s and we allocate an auxiliary array v with the
same size of cs, initialized to zeros. Now, we launch
a parallel kernel with nd threads where each thread
idx reads its p[idz] value, determines its position w in
the grid and stores p[idz] at es[ps[w] + v[w]]. Every
time a thread stores its associated point into es the
corresponding v value is incremented in one by using
an atomic operation.

4.2 Finding potential flocks

The computation of the array of potential flocks .7-";-s of
a given interval If is done in two main steps. First, we

21

need to find the center of the disks which are obtained
applying the characterization given in Lemma 3, and
second, we need to report the entities contained in
those disks. Additionally, because GPUs do not have
dynamic memory, we split the process in several steps.

First, we allocate an array of integers D, of size nd
to count how many disks there exist. This is done in
parallel by launching a kernel with nd threads, that
is, a thread per point within IJ‘»S. Using the struc-
ture G each thread idx goes through its neighbors
and counts the number of points which are at dis-
tance < 2e. The results are stored in D.[idx]. Be-
cause this is computed in parallel, each disk will be
reported twice, once for each of the two points defin-
ing the disk. In order to avoid this, we force threads
to check those points whose entity id is bigger than
itself. Then, D, of size nd, is computed as the pre-
fix sum of D, and the array D is allocated with size
D, [nd—1]+ D.[nd —1], where we will store the centers
of disks. The same process is repeated, but, instead of
counting, each thread reports the center of the disk.
Let us recall that only the right disk per paired point
has to be reported.

In the second step, we actually report the poten-
tial flocks. To do this we use G to perform the range
searching queries, using the values of the array D as
the center of the queries with radius e. Note that,
because in order that the regular grid structure works
for range searching queries, we must be able to locate
any point within the grid. It may happen that some
disk centers were placed outside the grid for a given
time step. Thus, before we perform the range search-
ing queries we have to reconstruct G so that the center
of the disks were contained in G. We could modify G,
but it is faster to rebuild it than to modify it.

To count the number of points contained on each
disk we first allocate P, the array of integers of size
equal to the total number of disks reported which is
D,nd—1]+D.[né—1], initialize it to zeros and launch
a kernel with one thread per disk. Each thread ¢dz
reads the center of its disk D[idz], locates D[idz] on
the grid and checks the distance between the center
of the disk and the points of its cell neighbors. Each
thread counts how many points are at distance < € to
its disk center, and if there are at least p the number
is stored in P.[idz]. Finally, we compute P, as the
prefix sum of P,.

If there is at least one disk per time step with at
least p entities, we continue to report the potential
flocks. The last position of P, plus the last position
of P. gives us w, the size of the array used to store the
potential flocks. Thus, the array P is allocated as an
integer array with size w and is filled in parallel using
a thread per disk. The process is the same as before
but this time, instead of counting, each thread stores
in P the entities contained inside each disk.

Note that, P, P, and P denote a structure contain-

Reporting flock patterns

ing § families of sets. This is the array of potential
flocks]-']‘-5, that is, 0 families of sets containing the po-
tential flocks of § consecutive time steps starting at
time step t;. We denote F; the family of potential
flocks of the time step ¢;.

The last step is to reduce each F; €]-";5 so that it
only contains the sets which are maximal, with respect
to the partial order induced by the subset relation in
each family. To this end, we use the parallel algorithm
of Fort et al. [7]. When the process finishes, we have
in 79 the maximal potential flocks with y or more
entities at each time step of the interval I?.

4.3 Reporting M’ flocks

We want to report all the flocks M]‘-S for all I]‘-S,j =
[0,...,7 —¢]. Thus, we could perform the same algo-
rithm over each [;5 , but many information computed
for a given time step within a time interval can be
reused for the following time intervals. The idea is
to compute the potential flocks for a given interval
and compute their intersections in a way that we can
reuse the information for the next time interval. To
this aim we proceed as follows.

We start at the interval I and we compute JF.
Then, in order to obtain ME =Fs_1NFs_aN---NFo
we start at F5_1 and we intersect F5_o N JF5_1. Next,
we intersect Fs5_3NFs_oNFs_1 and so on. After each
intersection, we compute the maximal sets for each
resulting intersection discarding those sets which are
non maximal or containing less than p entities. When
we are done, we add, to M?, the family MY, which
contains the flocks of .

For the following time steps, instead of recomput-
ing all the potential flocks and all the intersections, we
reuse the previous computations. If for a given time
step t;, a family of potential flocks Fj,j < k < j+0dis
not inside the array]-'J‘s, we compute J f . s5_1- That is,
instead of computing the potential flocks of one single
time step we compute them in J intervals. Then, we
perform the corresponding intersections. This tech-
nique does not decrease the number of intersection we
have to do, but, in practice, the § families we intersect
in each step are smaller than the ones containing the
potential flocks, leading to faster results. We repeat
the process until j =7 — 6.

The intersection process is also performed in paral-
lel using the GPU algorithm presented by Fort et al
in. [8].

5 Experimental results

The experimental results are obtained using an In-
tel Core2 CPU 6400 with a Nvidia GTX 480. We
split the running time into 2 main steps, the potential
flocks reporting process and the intersection process.
The accumulated value, corresponding to the columns
height, gives the total running time of the algorithm.

The algorithm has been tested with a data set ex-
tracted from [10], that consists of 145 trajectories of
2 school buses around Athens metropolitan area in
Greece with a total of 66,096 time steps.

The results (Figure 3) shows that when we vary e
while we maintain 4 = 5 and § = 10, the number of
flocks reported increases as long as we increase €. The
most affected part is the intersection process. This is
because the more flocks we report the more intersec-
tions we have to compute. When the parameter p is
varied, while ¢ = 1200 and 6 = 10, the condition to
form flock is more restrictive. Thus, the number of
flocks decreases and, consequently, the running times
too.

Trucks dataset Trucks dataset

mReport Potential M Intersection ~Number of flocks mReport Potential i Intersection ~Number of flocks

9 1400 7 1600

e 1200 ,

N
A\
-
g8
g

1000 2

Time (s)
PN wR VO N

Time (s)
O Y

400
200
o NN e BN EEN [
S OSSO o EEE e m--,
BT AT N RS 4 6 8 10 12 14 16 18 20
€ u

@
3
3
Number of flocl
@
3
3
Number of

400
200

Figure 3: Running times varying e and pu.

References

[1] J. Gudmundsson, M. J. van Kreveld, B. Speckmann, Effi-
cient Detection of Patterns in 2D Trajectories of Moving
Points, GeoInformatica 11 (2) (2007) 195-215.

[2] M. Benkert, J. Gudmundsson, F. Hiibner, T. Wolle, Report-
ing flock patterns, Computational Geometry 41 (3) (2008)
111-125.

[3] M. R. Vieira, P. Bakalov, V. J. Tsotras, On-line discovery
of flock patterns in spatio-temporal data, in: D. Agrawal,
W. G. Aref, C.-T. Lu, M. F. Mokbel, P. Scheuermann,
C. Shahabi, O. Wolfson (Eds.), GIS, ACM, 2009, pp. 286—
295.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Kriiger, A. E. Lefohn, T. J. Purcell, A survey of
general-purpose computation on graphics hardware, Com-
puter Graphics Forum 26 (1) (2007) 80-113.

[5] N. Coll, M. Fort, N. Madern, J. A. Sellarés, Multi-visibility
maps of triangulated terrains, International Journal of Ge-
ographical Information Science 21 (10) (2007) 1115-1134.

[6] M. Fort, J. A. Sellarés, N. Valladres, Computing popular
places using graphics processors, in: Proc. SSTDM’10 in
cooperation with IEEE ICDM’10, IEEE Computer Society,
2010, pp. 233-241.

[7] M. Fort, J.A. Sellaés, N. Valladares, Finding extremal sets
on the GPU (Submitted).

[8] M. Fort, J.A. Sella¢s, N. Valladares, Intersecting two fami-
lies of sets on the GPU (Submitted).

[9] J. Gudmundsson, M. van Kreveld, B. Speckmann, Efficient
Detection of Motion Patterns in Spatio-Temporal Data
Sets, in: D. Pfoser, I. F. Cruz, M. Ronthaler (Eds.), GIS,
ACM, 2004, pp. 250-257.

[10] Y. Theodoridis, R-Tree
http://www.rtreeportal.org (2011).

portal,

22

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Parallel constrained Delaunay triangulation

Narcis Coll and Marité Guerrieri*

Geometry and Graphics Group. Universitat de Girona

Abstract

In this paper we propose a new GPU method able to
compute the 2D constrained Delaunay triangulation
of a planar straight line graph consisting of points and
segments. The method is based on an incremental
insertion, taking special care to avoid conflicts during
concurrent, insertion of points into the triangulation
and concurrent edge flips.

Introduction

The constrained Delaunay triangulation (CDT) is one
of the fundamental topics in Computational Geom-
etry and it is used in many areas such as terrain
modelling, finite element method, pattern recogni-
tion, path planning, etc. A CDT of a planar straight
line graph (PSLG) can be constructed in the follow-
ing way: begin with an arbitrary triangulation of the
PSLG points; examine each PSLG segment in turn to
see if it is an edge; force each missing PSLG segment
to be an edge; then flip non-locally Delaunay edges
until all edges are locally Delaunay with the provision
that PSLG segments cannot be flipped. There are
two ways to force a PSLG segment to be an edge of
the triangulation. The first consists of deleting all the
edges it crosses, then inserting the segment and retri-
angulating the two resulting polygons (one from each
side of the segment). The second approach consists of
iteratively flipping the edges that crosses the segment
until the segment is an edge. Qi et al. [2] presented a
GPU method for computing the CDT of a PSLG. This
method has three phases. The first phase computes
the Delaunay triangulation of the PSLG points, while
the second inserts the PSLG segments into the tri-
angulation using edge flipping and the third flips the
remaining non-locally Delaunay edges. Experimental
results show that the method achieves a significant
speedup with respect to the best CPU methods. How-
ever, since the Delaunay triangulation is constructed
using a digital Voronoi diagram computed on a uni-
form grid, the method needs a huge memory space to
allocate the grid and is less efficient when the distri-
bution of the input points is far from being uniform.

*Email: (coll,mariteg)@imae.udg.edu. Authors research

supported by TIN2010-20590-C02-02.

23

Our approach of computing the CDT on the GPU ex-
tends the method presented in [1] by simultaneously
inserting points and segments into the triangulation.

1 Our approach

Our algorithm is based on an iterative process that
finishes when all PSLG elements (points and seg-
ments) are inserted into the Delaunay triangulation
and no edge needs to be flipped. In each iteration as
many elements as possible are inserted with the con-
dition that only one point can be inserted into one
single triangle. Each iteration is divided into four
steps: location, where the triangle containing every
non inserted point is determined; insertion, where at
most one point per each triangle is inserted; marking,
where some edges of the triangulation are marked to
be a segment or marked to be flipped because they
are crossed by a segment or they are non-locally De-
launay; and flipping, where some of the marked edges
are flipped thus avoiding conflicts between them.

Let n be the number of points and m be the number
of segments. In order to use the GPU’s resources as
efficiently as possible the following arrays allocated in
the global memory are used:

Points. Positions (z,y) in 2D. Its first three posi-
tions corresponds to the three vertices of a large aux-
iliary triangle that contains all points. Size n + 3.

Segments. Indices to Points. Each two consecutive
indices correspond to a segment. Size 2m.

Inserted-P. Binary flags to determine whether a
point has been inserted or not. Size n + 3.

Inserted-S. Binary flags to establish whether a
segment has been inserted or not. Size m.

Triangles. Indices to Points. Each three consec-
utive indices correspond to a triangle. Position zero of
this array corresponds to the auxiliary triangle. Size
3(2n+1).

Neighbours. Indices to Triangles. Each three
consecutive indices correspond to the current neigh-
bours of the triangle. Size 3(2n + 1).

FutureNeighbours. Indices to Triangles. Each
three consecutive indices correspond to the neigh-
bours that the triangle will have after executing a
point insertion or a flip which affects its current neigh-
bours. Size 3(2n + 1).

Parallel constrained Delaunay triangulation

ContainingTriangle. Indices to Triangles to
record which triangle contains a point, in the case
that the point has not been inserted, or otherwise, a
triangle incident to the point. Initially, all points are
contained in the auxiliary triangle. Size n + 3.

PointToInsert. Indices to Points to record which
the next point to be inserted in each triangle is. Size
2n + 1.

Flip. Flags (0, 1, 2, 3) to discern whether an edge
has to be flipped or not. Each three consecutive flags
corresponds to a triangle. Flag 0 indicates the edge
is not a segment and does not have to be flipped.
Flag 1 indicates the edge is not a segment and has to
be flipped because it is non-locally Delaunay. Flag 2
indicates the edge is a segment and does not have to be
flipped. Flag 3 indicates the edge is not a segment and
has to be flipped because it is crossed by a segment.
Size 3(2n + 1).

EdgeToFlip. Flags (0,1,2,3,4,5,6) to record, for
each triangle, which is the edge that will be flipped
(0,1,2), or no edge will be flipped (3) or the edge that
will be flipped by an adjacent triangle (4,5,6). In the
latter case, it is necessary to subtract 4 to determine
the edge that really will be flipped. Size 2n + 1.

Next we explain in detail each step of the algorithm.

1.1 Location step

For each point p the triangle ContainingTriangle[p]
is updated as follows: If point P=Point[p| has not yet
been inserted into the triangulation (Inserted[p] =
0), a walking process is launched until the triangle
t that really contains P is reached. If P lies on an
edge, t is taken as the triangle adjacent to the edge
with the lowest index. Then, ContainingTriangle[p]
is updated with ¢ and VertexToInsert[t] is updated
with p. Note that VertexToInsert[t] can be updated
simultaneously by distinct processors. In this manner,
VertexTolInsert[t] contains the last point reaching ¢.

1.2 Insertion step

For each triangle ¢, the point of index
p =VertexToInsert[t] is inserted into the tri-
angulation as follows: Let p; =Triangles[3t + 1
(i = 0..2) be the vertex indices of the triangle .
Triangle t will be triangulated to triangle ¢ with
vertex indices pg, p1 and p, triangle 2p + 1 with
vertex indices p1, p2 and p, and triangle 2p 4+ 2 with
vertex indices p2, po and p. To properly determine
the neighbours of these three new triangles, this step
needs to be subdivided into two parts.

In the first part, for each triangle ¢ with a point
to be inserted p, the future neighbours of the trian-
gles Neighbours([3t + 1] and Neighbours[3t + 2] are
updated according to the insertion of p in .

In the second part, for each triangle ¢, if ¢ has
a point p to be inserted, the arrays Triangles,
Neighbours and Flip corresponding to the triangles

t, 2p+ 1 and 2p + 2 are updated according to the in-
sertion of p in t. Otherwise, the neighbours of ¢ are
simply updated with the triangles previously stored
in FutureNeighbours[3t..3t + 2].

foreach p < n+ 3 do
if Inserted [i] = 0 then
t =ContainingTriangle[p];
P =Point[p];
Found=tfalse;
while Found=false do
[Py, P1, P»] = Points[Triangles[3t..3t + 2][;
if P contained in some segment PjPjq1
and Neighbours[3t + j[<t then
Found=true; t=Neighbours[3t + j];
else if P contained in triangle PoP1 P>
then Found=true;
else
C=(Po+ P+ P)/3;
Seek for j such that segment Cp
intersects segment P;Pj1;
t =Neighbours[3t + j];

/* in parallel */

Containing Triangle[p]=t;
| VertexTolnsert [t]= p;

Algorithm 1: LOCATION

foreach t < 2n + 1 do
p=VertexTolnsert|[t];
if i # —1 then foreach j =1..2 do
t'=Neighbours[3t + j];
j'=opposite(j);
FutureNeighbours[3t' + j']=2p + j;

/* in parallel */

Algorithm 2: INSERTION. PART 1.

foreach t < 2n + 1 do
p=VertexTolnsert|[t];
if i # —1 then
Inserted-P[i]=1,;
[po, p1, p2]=Triangles|3t..3t + 2];
[no, 1, n2]=FutureNeighbours|[3t..3t 4 2];
[fo, f1, f2]=Flip[3t..3t + 2];
Triangles|3t..3t + 2]=[po, p1, p);
Triangles[3(2p + 1)..3(2p + 1) + 2]=[p1, p2, p;
Triangles[3(2p + 2)..3(2p + 2) + 2]=[p2, po, p;
Neighbours|[3t..3t + 2]=[no, 2p + 1, 2p + 2];
Neighbours[3(2p + 1)..3(2p + 1) + 2]=
[TL1, 2p + 2,t];
Neighbours[3(2p + 2)..3(2p + 2) + 2]=
[n2,t,2p +1J;
Flip[3t..3t + 2]=[fo, —1, —1];
Flip[3(2p + 1).3(2p + 1) + 2|=[f1, 1, ~1;
Flip|3(2p + 2)..3(2p + 2) + 2|=[f2, —1, —1];
else
Neighbours[3t..3t + 2]=
FutureNeighbours[3t..3t + 2];

Algorithm 3: INSERTION. PART 2.

/* in parallel */

3(
3(

24

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

1.3 Marking step

In this step the edges corresponding to a PSLG
segment and the candidate edges to be flipped are
marked. An edge can be a candidate due to being
crossed by a segment or being non-locally Delaunay.
Accordingly, this step is subdivided into two parts:

In the first part, for each non inserted segment s
whose both endpoints have already been inserted into
the triangulation, if the endpoints of s are connected
by an edge, this edge is marked as constrained. Oth-
erwise, a walking process starting from the first end-
point is launched until a flippable edge crossed by s
and not flipped in the previous flipping step is found.
Then, this edge and its opposite edge are marked to
be flipped. The same is done starting from the other
endpoint.

foreach s < m do

if Inserted-P[s]=0 and
Inserted-P[Segments[2s]]=1 and
Inserted-P[Segments[2s + 1]]=1 then

for 7 =0..1 do

if j =0 then

[¢0,1]=Segments|2s..2s + 1];

else [i1,i0]=Segments|2s..2s + 1];

[Po, P1]:P0ints[i0..i1];

starting from ContainingTriangle|io] seek
for the triangle of index ¢ incident to o
intersecting segment Py P;;

if P is a vertex of t then

j=edge of t connecting Py and Pi;
t'=Neigbours|3t + j];

j'=opposite(j);

Flip[3t + j]=Flip[3t' + j']=2;
Inserted-P[s]=0;

else

Found—false;

while Found=false do
j=edge of t intersecting segment

Py Py
if j is flippable and different to
EdgeToFlipft] then
Found=true;
t'=Neigbours|3t + j];
j'=opposite();
Flip[3t + j]=Flip[3t’ + j']=3;
else
L t=Neigbours[3t + j];

/* in parallel */

Algorithm 4: MARKING. PART 1.

In the second part, for each triangle ¢ not crossed
by any segment (Flip[3¢] mod 2+F1lip[3t + 1] mod
2+F1ip[3t + 2] mod 2=0) the non constrained edges
that are non Delaunay are marked to be flipped.

1.4 Flipping step

During this step, at most one edge of each triangle ¢
is flipped. To avoid conflicts between concurrent flips,

25

foreach t < 2n+ 1 do /* in parallel */
if 37 (Flip[3t + k] mod 2) = 0 then for

j=0.2do
if Flip[3t+ j]# 2 and no Delaunay(j) then
Flip[3t + j]=1;

Algorithm 5: MARKING. PART 2.

this step needs to be subdivided into three parts.

In the first stage, a marked edge whose opposite
edge is the only marked edge in its triangle ¢’ is sought.
If this edge exists, let nc be the number of marked
edges of t. Then, if nc > 2 or (nc=1and ¢t < t) the
edge is stored in EdgeToFlip[t].

In the second stage, if ¢ has an edge to be flipped
(EdgeToF1lip[t]< 2), the future neighbours of the tri-
angles adjacent to the quadrilateral determined by the
edge are updated accordingly to the future flip of the
edge. Otherwise, if the opposite edge of an edge j of
t is to be flipped, 4 + j is stored in EdgeToFlip[t].

In the third stage, if ¢ has an edge to be
flipped (EdgeToFlip[t]< 2), the arrays Triangles,
Neighbours and Flip corresponding to the triangles
t and t’ are updated according to the flip. Otherwise,
if any adjacent triangle has an edge to be flipped, the
array Neighbours is updated.

foreach t < 2n+ 1 do

EdgeToFlip[t]=3;

ne=>"r_,(Flip[3t + k] mod 2);

if nc > 0 then

J=0;

Found=false;

while j < 2 and no Found do

if Flip[3t+ j/=1 then

t'=Neigbours|3t + j[;

Jj'=opposite(j);

ne' =33 _o(Flip|3t' + k| mod 2);

if Flip/3t' + j']=1 and nd’ =1 and

(nc>2or (nc=1andt<t')) then
EdgeToFlip[t]=j;

L Found=true;

/* in parallel */

| J++

Algorithm 6: FLIPPING. PART 1.

2 Results

The algorithm was implemented using OpenCl on
a computer equipped with an Intel(R) Pentium(R)
D CPU 3.00GHz, 3,5GB RAM and a GPU NVidia
GeForce GTX 580/PCI/SSE2. Each one of the al-
gorithm’s parts was written in a kernel. The algo-
rithm was executed ten times on two different models
(Chairs32x32 and Holland4x4) and compared with
Triangle [3], one of the most popular computational
geometry software. The model Chairs32x32 is formed
by 1024 copies of the model showed in the Figure

Parallel constrained Delaunay triangulation

foreach t < 2n+1 do /* in parallel */
if EdgeToFlip[t|< 2 then
j=EdgeToFlip[t]; j1=j + 1 mod 3;
n=Neighbours[3t + j1]; njl=opposite(j1);
FutureNeighbours[3n + njl|=t';
t'=Neighbours|3t + j|; j'=opposite(j);
j1’=35"+ 1 mod 3;
n’=Neighbours|3t’ + j1']; nj1’=opposite(j1’);
FutureNeighbours[3n’ + nj1’]=t;
else
for j=0..2 do
t'=Neighbours|3t + j;
if EdgeToFlip[t'|[< 2 and
Neighbours/Edge ToFlip[t' ||=t then
EdgeToFlip[t|=4 + j;

Algorithm 7: FLIPPING. PART 2.

foreach t < 2n +1 do /* in parallel */
if EdgeToFlip[t]< 2 then
j=EdgeToFlip[t];
t'=Neighbours|3t + j|; j'=opposite(j);
j1=j 4+ 1 mod 2; j2=j + 2 mod 2;
j1’=35" +1 mod 2; j2'=35" + 2 mod 2;
p2=Triangles|3t + j2|; p3=Triangles[3t' + j2];
Triangles[3t + j1]=p3; Triangles[3t’ + j1']|=p2;
ContainingTriangle[p3]=t;
ContainingTriangle[p2]=t’;
nl=FutureNeigbours[3t + j1]J;
n2=FutureNeigbours[3t + j2];
nl’=FutureNeigbours|3t' + j1'];
n2'=FutureNeigbours|3t’ + j2];
Neigbours[3t + j]=n1’; Neigbours|3t + j1]=t';
Neigbours[3t + j2]|=n2;
Neigbours[3t' + j']=n1;
Neigbours[3t’ + j1']|=t;
Neigbours|3t' + j2'|=n2’;
FutureNeighbours[3t..3t 4 2]=
Neighbours|3t..3t + 2];
FutureNeighbours|3t'..3t" + 2]=
Neighbours|3¢'..3t" + 2];
if Flip[3t + j/=3 then EdgeToFlip[t]=j1;
else EdgeToFlip|t]=3;
else if EdgeToFlip[t]= 3 then

Neighbours([3t..3t + 2]=

FutureNeighbours|3t..3¢ + 2];

else
j=EdgeToFlip[t]-4; j1=j + 1 mod 2;
if Flip[3t + j]=3 then EdgeToFlip[t|=j1;
else EdgeToFlip[t]=3;
for j=0..2 do if Flip[3t + j[# 2 then
Flip[3t + j]=0;
Algorithm 8: FLIPPING. PART 3.

1 arranged in a 32 by 32 array, while the model
Holland4x4 is formed by 16 copies of the model
showed in the Figure 2 arranged in a 4 by 4 array.
The mean running times are presented in Table 1.
Our future task is to study the performance of our
algorithm versus [2]. However, our approach does not

make use of the huge memory space needed by [2] to
store the required digital Voronoi diagram.

Chairs32x32 | Holland4 x4
Num. Vertices 1444864 1015344
Num. Segments 739328 1007488
Mean time (ms) 4028 2306
Triangle (ms) 12835 10254

Table 1: Behaviour of the proposed algorithm.

B s Al 2
PG A L o
S s e
FAT e

Figure 2: Cell of the model Holland4 x4

References

26

[1] N. Coll, M. Guerrieri, Parallel Delaunay triangulation
based on Lawson’s incremental insertion, in: Proceed-
ings of the XIV Spanish Meeting on Computational
Geometry, CRM Documents, 8, Centre de Recerca
Matematica, Bellaterra (Barcelona), 2011, 169-172.

[2] M. Qi, T. Cao, T. Tan, Computing 2D constrained
Delaunay triangulation using the GPU, in: Proceed-
ings of the ACM SIGGRAPH Symposium on Inter-
active 3D Graphics and Games, 13D ’12, ACM, New
York, NY, USA, 2012, 39-46.

[3] http://www.cs.cmu.edu/ quake/triangle.html.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Metaheuristic approaches for the Minimum Dilation Triangulation
problem

Maria Gisela Dorzan*!, Mario Guillermo Leguizamon®?, Efrén Mezura-Montes*?, and Gregorio Hernandez$?

! Universidad Nacional de San Luis - Argentina
2Universidad Veracruzana - México
3Universidad Politécnica de Madrid - Espafia

Abstract

We focus on the development of approximated algo-
rithms to find high quality triangulations of minimum
dilation because the complexity status of the Min-
imum Dilation Triangulation problem for a general
point set is unknown. We propose an operator to
generate the neigborhood which is used in different
algorithms: Local Search, Iterated Local Search, and
Simulated Annealing. Besides, an algorithm called
Random Local Search is presented where good and
bad solutions are accepted using the previous men-
tioned operator. We use the Sequential Parameter
Optimization method for tuning the parameters of the
SA algorithm. We compare our results with the only
available algorithm found in the literature that uses
the obstacle value to sort the edges in the construc-
tive process. Through the experimental evaluation
and statistical analysis, we assess the performance of
the proposed algorithms using this operator.

Introduction

Different measures are adopted to design optimal tri-
angulations. The most popular are the weight, stab-
bing number, area, and dilation. Although the us-
age of approximated approaches to solve complex op-
timization problems is common nowadays, this last
measure has not been used as selection criterion when
optimizing triangulations by using metaheuristic algo-
rithms [10].

Let S be a finite planar point set, T a triangulation
of § and u,v two points in S. There are two distance
metrics: the Euclidean distance between v and v, |uv|,

*Email: mgdorzan@unsl.edu.ar. Research supported by
CONICET and Research Project No. 22/F014

TEmail: leguiQunsl.edu.ar. Research supported by Labora-
torio de Investigaciéon y Desarrollo en Inteligencia Computa-
cional (LIDIC)

fEmail: emezura@uv.mx. Research supported by CONA-
CyT bilateral project No. 164626.

$Email: gregorio@fi.upm.es. Research supported by ESF
EUROCORES programme EuroGIGA - ComPoSe I1P04 -
MICINN Project EUI-EURC-2011-4306

27

and the length of the shortest path between u and v
with in the triangulation T, distr(u,v). The dilation
between v and v with respect to T is the ratio between
the shortest path and the Euclidean distances between
u and v, and is defined as Ar(u,v) = %ﬁ"w

The maximum over all the dilations between pairs
of points in T' is called the dilation of T' (or stretch
factor) and is represented by A(T'). The best possible
dilation of any triangulation of S is the dilation of S
and is denoted by A(S). Thus, we have

A(T) = nax Arp(u,v) and A(S) = Ij%lfréA(T)

The triangulation T whose dilation is the dilation
of S, ie. A(T*) = A(S), is called minimum dila-
tion triangulation of S. Note that there are several
triangulations of minimum dilation for a given set of
points.

Computing the minimum dilation triangulation for
a set of points in the plane is listed as an Open Prob-
lem in Eppstein’s survey [6], i.e., no polynomial algo-
rithm that can build it is known and no proof that
the problem is NP-hard is shown. Neither the greedy
nor the delaunay triangulation algorithms generate
the minimum dilation triangulation of a planar point
set, as shown in Figure 1. Therefore, one approach is
to use metaheuristic techniques for obtaining approx-
imate solutions to the optimum.

(a) GT (b) DT (c) MDT
Figure 1: A point set for which the MDT neither is

the GT nor the DT.

Metaheuristic approaches for the MDT problem

1 Approximated algorithms for
the MDT problem

A set of simple techniques is presented because, to the
best of the authors’ knowledge, there are no works in
the literature where the MDT problem is approached
using metaheuristics. We present the general overview
of the studied algorithms: Greedy [5], Local Search
[1, 11], Tterated Local Search [9], Simulated Anneal-
ing [3, 7], and Random Local Search describing their
features and parameters. For all the algorithms the
solution space £ is represented by all possible trian-
gulations of a set S of n points in the plane. Annxn
matrix of ones and zeros is used to represent a possi-
ble solution. A 1 at position (7,7) means that there
is an edge connecting points ¢ and j, otherwise a 0 is
placed. The objective function, f : & — R, assigns a
real value to each element of £. For each F € &£, the
function f is defined as the maximum dilation among
all pairs of points in F.

Greedy Algorithm (G-MDT) It starts with an
empty solution Sol and inserts edges until a triangu-
lation for a given set of point S is generated. Let A
be the set of all possible edges that have not been in-
serted in Sol, u,v € S and e = uv € A. If the dilation
of the points u and v determines the dilation of the
solution, i.e., Agy(u,v) = A(Sol), then the edge e is
inserted in the solution Sol. This reduces the dilation
of the points w and v to 1 because dist(u,v) = |uv|
and consequently decreases the dilation of the solu-
tion Sol. The insertion is performed whenever the
new edge to insert produces no intersections with the
edges already inserted.

Local Search Algorithm (LS-MDT) Tt starts
from a random initial solution and then iteratively
moves to a neighbor solution. These moves are per-
formed by applying an operator looking for a better
solution. If a better solution is found, it replaces the
current solution by the new one and it continues the
process until it can not improve the current solution.
When no improved solutions are present in the neigh-
borhood, local search is stuck at a local optimal so-
lution. The moves in the search space are performed
using the retriang() operator that works as follows.
Let a,b € S, if the dilation of the points a and b de-
termines the dilation of the current solution Sol, i.e.,
Agoi(a,b) = A(Sol) (see Figure 2(a)), then a and b
are joined by an edge. The egdes intersected by ab
are deleted and the region delimited by these edges
(see Figure 2(b)) is retriangulated in a greedy way.
The edge whose points have the higher dilation is in-
serted at each step if it does not intersect with the
edges previously added and if a complete triangula-
tion is not achieved (see Figure 2(c)). Therefore the

current solution is improved because its dilation has
been reduced. Due to the behavior of this operator
only a single neighbor is obtained.

S

(c

Figure 2: retriang() operator. In (a), Age(a,b) =
A(Sol) is shown in dashed style. In (b), the edge ab
is added and the dashed edges intersected by ab are
deleted. The grey region is retriangulated in a greedy

way (c).

Iterated Local Search Algorithm (ILS-MDT)
First, a local search is applied to an initial random
solution and yields a local optimum using the LS-
MDT algorithm. At each iteration, a perturbation of
Sol is carried out and then, a local search is applied
to the perturbed solution Sol’. This process iterates
until the number of perturbations is less than 50 and
the current solution is improved, always keeping the
best solution found so far Solpest. The perturb(Sol)
procedure is performed by the perturbation operator
where n/5 random local retriangulations over random
selected points of S are performed worsening the cur-
rent solution, i.e., a point b € S is randomly chosen
and all the points adjacent to b form the grey region
that has to be retriangulated. The edges belonging to
the region are deleted and then this region is retrian-
gulated in a random way. The edges of the region are
inserted at random if they do not intersect with the
edges previously added and if a complete triangula-
tion is not achieved.

Simulated Annealing Algorithm (SA-MDT)
From an initial solution, it executes a number of iter-
ations where a neighbor of the current solution Sol is
generated in each one of them. The moves that im-
prove the cost function are always accepted. Other-
wise, the neighbor Sol’ is selected with a given prob-
ability that depends on the current temperature 7.
This probability is usually called acceptance function
and it is evaluated according to p(T, Sol, Sol') = e~ T

28

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

where § = f(Sol') — f(Sol). M(Ty) moves are per-
formed for each temperature Tj. Finally, the value of
T}, is decreased at each algorithm iteration k. The al-
gorithm continues this way until the termination con-
dition is met.

We use two operators to obtain the neighborhood of
a solution: 1) Local random retriangulation (RR) as
used in the perturbation operator in ILS-MDT algo-
rithm; 2) Local greedy retriangulation (GR) is similar
to the RR described above, but the edges are inserted
in a greedy way. A point b € S is randomly chosen
and all the points adjacent to b are recovered. Then
the grey region that forms the adjacent points to b
is retriangulated using at each step the edges whose
points have the higher dilation (if it does not inter-
sect with those previously added). The scheduling of
application for these operators is as follows. GR is
performed g times and RR is performed r times. We
considered g € {4,6,8} and r = 2 as will be described
later in the next section.

Due to the complexity involved in tuning the pa-
rameters of metaheuristic techniques, we used Sequen-
tial Parameter Optimization (SPO) [2] for tuning the
parameters required by SA. All SPO-tuning exper-
iments for the SA-MDT algorithm were performed
with the following settings: 50 sequence steps, 5 new
design points in each step, up to 2 repeats per design
point, and 7 initial design points. Random Forest was
used as a fast surrogate model building tool. Latin
hypercube sampling was chosen as the generator of
design points. We obtained better results with T}
moves at each temperature (M (7)) = 1)), using lo-
cal retriangulation interleaving with ¢ = 8 and r = 2
and with a initial temperature equal the maximum
length of the paths in the initial solution.

Random Local Search Algorithm (RLS-MDT)
Initially, the proposed SA algorithm used the operator
retriang() to move in the solution space. We observed
that such algorithm converged too early to suboptimal
regions (the best solution was achieved during the first
temperature value). Therefore we proposed another
operator for the SA algorithm to avoid this condition
of premature convergence. On the other hand, the re-
sults obtained with operator retriang() were encour-
aging with the LS and ILS algorithms. Therefore, we
propose a new algorithm; we called it Random Local
Search algorithm, which starts with a random initial
solution. mazFEvals = 2n evaluations are performed,
accepting good and bad solutions. This mechanism
allows to explore and exploit the search space, always
keeping the best solution found so far Solpes:. We
consider the operator retriang() but the retriangula-
tion of the region is calculated in a random manner
because better results were obtained that way.

29

2 Experimental Evaluation and
Statistical Analysis

We generated 20 problem instances, each one is called
n-i, where n = {40, 80,120, 160,200} is the size of
the instance and ¢ is the number of the instance
(1 <4 < 4). The points are randomly generated,
uniformly distributed and for each point (z,y), the
coordinates z,y € [0,1000]. For stochastic algorithms
25 runs were carried out with different initial seeds
and different initial triangulations for each run.

Table 1 shows the best values obtained with the
proposed algorithms: G-MDT, LS-MDT, ILS-MDT,
SA-MDT, and RLS-MDT. The lowest dilations are
bolded. Xia proved that the dilation of the Delau-
nay triangulation of a set of points in the plane is
less than 1.998 [12]. All the results obtained by the
algorithms are less than 1.998 and the Delaunay trian-
gulation never obtains better results for the instances
considered (see the “DT” column). We compared our
results with those obtained with the algorithm pro-
posed in [8]. We called it OV-MDT because it com-
putes the Obstacle Value of the edges for approximat-
ing the minimum dilation triangulation. We used the
Java-applet available at the Geometry Lab site at the
University of Bonn (www.geometrylab.de) to obtain
the results. For some instances the applet did not
produce a result giving an error and halting the exe-
cution of the algorithm. It should be noted that the
applet yielded results after several days of execution
(see the “OV-MDT” column). The G-MDT algorithm
obtained solutions of poor quality even for the small-
est instances. The RLS-MDT algorithm obtained the
lowest, (best) dilations for all problem instances (ex-
cept for one instance of 120 points). We observed
that the OV-MDT algorithm did not obtain better
results than RLS-MDT. Although in some instances
equal best values were obtained by some algorithms,
the RLS-MDT algorithm showed to be less complex
and faster than the other algorithms.

As all samples had a non-Normal distribution
(Kolmogorov-Smirnov test) we used non-parametric
statistical tests to evaluate the confidence on the sta-
tistical results provided by the algorithms. In order
to carry out a comparison which involved results from
more than two algorithms Kruskal Wallis test was
used for multiple comparisons with independent sam-
ples [4]. We used the post-hoc Tukey test to find
which algorithms’ results are significantly different
from one another. These tests are well-known and
they are usually included in standard statistics pack-
ages (such as Matlab, R, etc.). After applying the
Kruskal Wallis test, we observed that there was al-
ways a significant difference between the algorithms
(1.e-16 < p-value < 0.0015) being this difference much
larger when considering sets with more points. The
ILS-MDT and RLS-MDT algorithms had similar per-

Metaheuristic approaches for the MDT problem

Instance DT OV-MDT | G-MDT | LS-MDT | ILS-MDT | SA-MDT | RLS-MDT
40-1 1.31871 132.863 1.37203 130.959 1.29467 1.29467 1.29467
40-2 1.37491 1.36881 1.37491 1.36881 1.36881 1.36881 1.36881
40-3 1.32268 1.32268 1.36026 1.32268 1.32268 1.32268 1.32268
40-4 1.35391 1.32330 1.34919 1.32330 1.32330 1.32557 1.32330
80-1 1.33034 1.32363 1.39394 1.32363 1.32363 1.40844 1.32363
80-2 1.40500 135.181 1.38199 1.35339 1.32418 1.50331 1.32418
80-3 1.37791 1.30519 1.36180 1.34065 1.31457 1.37791 1.30519
80-4 1.42547 134.239 1.39362 1.33176 1.31583 1.47561 1.31583
120-1 1.37428 1.34442 1.42386 1.35398 1.34825 1.72082 1.34442
120-2 1.33973 131.194 1.37778 1.31194 1.30366 1.65921 1.31194
120-3 1.37724 134.016 1.43027 1.40314 1.31985 1.74912 1.29786
120-4 1.38529 1.33600 1.39972 1.35152 1.34272 1.68163 1.33600
160-1 1.34365 1.31050 1.43076 1.35236 1.33384 1.95530 1.31050
160-2 1.35409 NA 1.33260 1.36463 1.33260 1.97896 1.33260
160-3 1.35797 133.278 1.37723 1.37178 1.36352 1.87574 1.32995
160-4 1.37922 1.34941 1.37922 1.37922 1.35037 1.87033 1.34941
200-1 1.35751 NA 1.42220 1.41867 1.35751 2.08064 1.35751
200-2 1.39512 NA 1.39512 1.36451 1.36350 2.06324 1.36350
200-3 141.962 NA 1.45763 1.40645 1.40645 2.09818 1.40645
200-4 1.36965 NA 1.40765 1.35499 1.35251 2.00110 1.35251

Table 1: Best results of DT, OV-MDT, G-MDT, LS-MDT, ILS-MDT, SA-MDT, and RLS-MDT algorithms.

formances for the whole set of instances because there
were no significant differences between these two al-
gorithms (using the Tukey test).

3 Conclusions

In this work four metaheuristic techniques were
implemented to find high quality triangulations
of minimum dilation. The set of instances
generated and used in the experimental evalu-
ation are available at the research project site
(www.dirinfo.unsl.edu.ar /bd2/GeometriaComp/)

After performing the experimental evaluation and
statistical analysis, we assessed the applicability of
the LS, ILS, SA, and RLS algorithms for the MDT
problem. The RLS-MDT and ILS-MDT algorithms
had similar competitive performances with respect to
the other algorithms in the problem instances consid-
ered. These algorithms achieved a dilation reduction
between 0.4% and 9.2% with respect to the greedy
strategy (GT-MDT). Although both algorithms be-
have similarly, the RLS-MDT algorithm required less
evaluations than ILS-MDT. It should be noted that
the existing algorithm (OV-MDT) yielded no results
for four of the instances considered as either it re-
turned an error or halted. The RLS-MDT algorithm
outperformed the OV-MDT algorithm in 50% of the
instances considered and obtained the same results in
the other instances.

References

[1] E. Aarts and J. Lenstra. Local Search in Combinato-
rial Optimization. John Wiley, 1997.

[10]

[11]

[12]

30

[2] T. Bartz-Beielstein. Ezperimental Research in Evo-
lutionary Computation: The New Ezperimentalism
(Natural Computing Series). Springer, 2006.

V. Cerny. Thermodynamical approach to the travel-
ing salesman problem: An efficient simulation algo-
rithm. Journal of Optimization Theory and Applica-
tions, 1985.

J. Derrac, S. Garcia, D. Molina, and F. Herrera. A
practical tutorial on the use of nonparametric statis-
tical tests as a methodology for comparing evolution-
ary and swarm intelligence algorithms. Swarm and
Evolutionary Computation, 1(1):3 — 18, 2011.

J. Edmonds. Matroids and the greedy algorithm.
Mathematical Programming, 1(1):127-136, 1971.

(3]

[4]

[5]
[6] D. Eppstein. Spanning trees and spanners. In J.-R.
Sack and J. Urrutia, editors, Handbook of Computa-
tional Geometry, chapter 9, pages 425—461. Elsevier,
2000.

S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimiza-
tion by simulated annealing. Science, 220:671-680,
1983.

A. Klein. Effiziente berechnung einer dilationsmini-
malen triangulierung. Master’s thesis, 2006.

O. Martin, S. Otto, and E. Felten. Large-step markov
chains for the traveling salesman problem. Complez
Systems, 5:299-326, 1991.

Z. Michalewicz and D. Fogel. How to Solve It: Mod-
ern Heuristics. Springer, 2004.

[7]

(8]
[9]

C. Papadimitriou. The complezity of combinatorial
optimization problems. PhD thesis, Princeton, NJ,
USA, 1976. AAIT704795.

G. Xia. Improved upper bound on the stretch factor
of delaunay triangulations. In Proceedings of the 27th
annual ACM symposium on Computational geometry,
SoCG 11, pages 264-273, New York, NY, USA, 2011.
ACM.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Three location tapas calling for CG sauce

Frank Plastria*!

'MOSI - Vrije Universiteit Brussel,Pleinlaan 2, B 1050 Brussels, Belgium

Abstract

Based on some recent modelling considerations in lo-
cation theory we call for study of three CG constructs
of Voronoi type that seem not to have been studied
much before.

Introduction

There is a strong interrelation and mutual ensemina-
tion between (continuous) location theory and com-
putational geometry. The first generates interest
into distance optimization problems with geometrical
interpretations, the second builds geometrical algo-
rithms for efficient solution to the first’s problems.
In this talk I will shortly present some recent work
stemming from location theory calling for study of
three novel (?) computational geometry constructs.

1 Mixed norm shortest paths

The fact that the distance measure may be different
from one region to another, contrary to the usual as-
sumption that distance is measured by a single norm,
has been acknowledged in only a few location stud-
ies. Parlar [14] considers the plane divided by a linear
boundary with at one side /5 and at the other side ¢;.
Brimberg et al [2] consider a bounded region with a
different norm inside and outside, focusing in partic-
ular on an axis-parallel rectangular city with ¢; inside
and /5 outside.

Brimberg et al. [1] and Zaferanieh et al. [19] con-
sider location in a space with two distinct £,, norms in
complementary halfplanes. The way to calculate the
distance in such a space was studied more in detail by
Franco et al [7].

Fathali and Zaferanieh [5] extend this work to in-
clude more general block norms. Fliege [6] consid-
ers differentiably changing metrics similar to Riemann
spaces.

Unfortunately part of this work is wrong. All au-
thors consider only two possibilities when calculating
distances: when the two points lie in the same half-
plane simply use the corresponding distance, and oth-

*Email: Frank.Plastria@vub.ac.be

31

erwise in two steps via the best possible point on the
separating line. Although this is true in some partic-
ular cases, e.g. the axis-parallel rectangular city case
evoked before (but without inflation factors), Parlar
already observed that in general when calculating dis-
tance in this naive way distance to a fixed point is
not continuous everywhere. Worse: triangle inequal-
ity may be violated. This clearly shows that such
distance calculation cannot be correct, but none of
the authors try to resolve this discrepancy.

What should rather be done is to consider shortest
path distance in the space, similar to what is done
in the so-called weighted (euclidean) region problem
well known in CG since the original paper of Mitchell
and Papadimitriou [10] (which depicts a clear coun-
terexample to the naive distance above): the length of
the shortest possible piecewise linear path using the
adequate measure (speed in that paper) in each piece.

For two halfspaces with arbitrary distinct norms or
gauges we studied more in detail the optimality condi-
tions when crossing the boundary, generalizing Snell’s
law in optics. This has nice geometric interpretation
and leads to a geometrical view on deriving such dis-
tances [16].

What turns out to be crucial is the comparison be-
tween the two norms along (the direction of) the sep-
arating line. As long as these are equal things remain
relatively simple and the naive assumption about dis-
tances is correct. However, when they differ things
change. One region is then ‘slower’ than the other
(as measured along the boundary line). And in such
a case some paths connecting two points within the
slowest region will consist of three pieces. They ‘hitch
a ride’ along the quicker boundary.

Thereby continuity of the distance is again guaran-
teed, but now convexity is partially lost, as illustrated
by the balls in the figure below. At right of the vertical
separation line we have the slower region in gray with
distance measure 441, at left the faster region with
norm ¢5. The figure shows balls of increasing mixed-
norm radius centered at the dot. For very small radius
we have the diamond-shaped ¢; ball. As soon as the
radius allows to reach the boundary a part of circular
shape arises at left due to two piece shortest paths,
which spills over with a linearly moving front at the
right corresponding to three piece paths. The white
line shows the set of meeting points where one-piece

Three tapas with CG sauce

and three-piece paths yield equal distance.

yd

slow: 4/,

It should be noted that Brimberg et al [2] correctly
prove convexity of the distance from a fixed point to
all points of the other region, but do not acknowl-
edge that this convexity (quite crucial for their sub-
sequent optimization approaches) does not extend to
the whole plane if the fixed point lies in the slower
region.

The linearly separated two-norm situation is of
course only the first step. For adequate description
of some reality one will have to consider a plane
split into cells each with their own norm or gauge
(for asymmetry). How to efficiently calculate shortest
path distances in such a context seems to be largely
open, apart from some work on approximations, see
Cheng et al. [3]. Correctly attacking location prob-
lems in such mixed norm spaces is another matter
all together. A first step will probably be to look at
Voronoi diagrams in such environments. Clearly a lot
of opportunities for CG.

Interesting applications may be found in fire-
fighting using models to simulate the quite different
ways fires spread in various circumstances, taking into
account vegetation like (ir)regularly spaced planta-
tions of varying types, influence of terrain inclination,
and weather conditions, such as winds and humidity,
and so forth.

2 Knapsack Voronoi diagrams

Let S be a finite set of sources s € R? with capacities
¢s > 0. Consider the location of a central point x
in the plane that should be connected to sufficiently
many of the sources to be able to supply given demand
D. The supply-weighted sum of distances should be

minimized, possibly together with some additional
costs f(z):

min Zwsd(s,x) + f(x) (1)

s€S
Zws > D (2)
ses
0<ws < ¢ (3)
r € R? (4)

This is a continuous single facility location-allocation
problem that I have been studying under several vari-
ants for f(z), most of the time consisting of fixed
weighted distances to demand point(s) [9, 17, 18, 15].

For any fixed location z finding the best allocation
W = (ws)ses for the supplies is a continuous knap-
sack problem, easily solved by taking sources s € S
at their full capacity ws = c¢s in non-increasing or-
der of distance d(s,z), until the demand D is met.
Only the last chosen source may contribute below its
capacity, and all further sources will not contribute
at all (ws = 0). There are only a finite number of
allocations W of such type possible.

For any fixed allocation W finding the correspond-
ing best site x amounts to solve a single facility
minisum location problem (Fermat-Weber problem)
which may be easily done by various methods of con-
vex optimization. And this x should then yield W as
optimal allocation.

It is therefore of interest to know the regions with
fixed allocation.

The planar subdivision corresponding to different
solutions to this knapsack problem is what I call a
Knapsack Voronoi diagram. In case all capacities are
equal ¢, we obtain a traditional k-th order Voronoi
diagram with k& = [D/c] , with additional splits of
some cells as soon as demand is not a multiple of ca-
pacity. When capacities differ the order & is not fixed
and we have new types of diagrams. In particular ver-
tices of the diagram may have from 3 up to 6 edges.
The following examples show how vertices with 5 or 6
edges may arise. Demand is always D = 8, but in the
first case ¢, = 10,¢, = 6,¢c. = 5, while in the second
cqo =4,¢, =6,c. = 5.

med(a,b)

as

32

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

medfa,b)

bsas

med(a,c)

b6 Co

med\b,c)

As long as the coefficients of the distances d(s,x)
in (1) are simply equal to ws the edges of the cor-
responding Knapsack Voronoi diagram remain linear
segments. But in some models such as the location
of an assembly station [18] additional factors appear
and then we need diagrams similar to multiplicatively
weighted Voronoi diagrams, where cells have circular
arcs as boundaries and may be disconnected.

This shows the interest of studying the properties
and efficient ways to calculate such diagrams, clearly
a task for CG.

More general constructs, such as multi-facility ver-
sions of previous location models may be considered
where the allocation problem for fixed location(s) of
the central facility(ies) to be located consists of a lin-
ear program with coefficients either fixed or depend-
ing only on the distances between sources and facility
site(s). Such an LP can generically have only a finite
number of optimal solutions, each corresponding to
certain linear inequalities between the distances, so
corresponding to (often empty) cells of a Voronoi-like
diagram. I do not know of any study of such struc-
tures.

3 Push-pull Voronoi diagrams
for points and polygons

Push-pull location problems try to find good sites
within a given region for facilities that at the same
time are far (pushed away) from some repelling points
r € R and close (pulled) to some other attracting
points a € A.

For euclidean distances Ohsawa [11] fully constructs
the set of efficient points for this biobjective maximin-
minimax problem. He shows that any such efficient
point must lie on the boundary of cells obtained by
intersecting the farthest-point Voronoi diagram w.r.t.
R with the closest-point Voronoi diagram w.r.t. A
within the given region. These line-segments may
then be projected into two-dimensional value-space
where an efficient CG boundary seeking technique fin-
ishes the job.

33

This work has been extended later first to rectangu-
lar distance ¢; in [13], then to partial coverage prob-
lems in [12].

A few years ago together with José Gordillo and
Emilio Carrizosa I studied [8] another similar push-
pull location problem where the set R consists of ex-
tensive facilities described as polygonal regions. But
instead of looking at the bi-objective problem that has
a continuum of efficient solutions, we were looking for
one particular solution that ‘best’ separates (if possi-
ble) R from A. Separation was measured in a support
vector machine way (see e.g. [4]) by maximizing the
difference 7% —r? where rp is the (euclidean) distance
to the closest r € R and r4 the farthest distance to
some a € A. In the feasible case where A may be
separated by a circle from all regions in R, i.e. when
this objective may be positive, this means geometri-
cally that we seek the largest area annulus enclosing
all points of A and not meeting R. In the non fea-
sible case the objective will always be negative and
we look for the smallest area annulus that contains or
overlaps all A and such that its ‘hole’ does not meet
R. These two cases are illustrated below; the annulus
is coloured as light gray.

=N

é)

(Unfeasible case)

For a site x we call ‘active’ any r closest to x (the
actual closest point(s) of this r is also called active)
and any a farthest from =z . We showed that generi-
cally three cases may arise at an optimal solution:

Three tapas with CG sauce

(1) there are 4 active elements with at least one of
each type, or there are 3 active elements with one a
and two r (in the nonconvex case possible twice the
same r with different active points) either (2) with
colinear active points, or (3) one active r active at a
vertex. Enumeration of all realizations of such cases
leads to an O(n®) algorithm.

However, these conditions are directly related to the
farthest point Voronoi diagram V4 w.r.t. A and the
closest point Voronoi diagram Vi w.r.t. the polygons
R. Tt is well known that edges of Vi are parts of
bisectors between two polygons, and these consist of
successive linear and parabolic pieces depending on
whether the active points of both polygons are of the
same type (a vertex or on an edge) or not. The points
where these pieces touch are called breakpoints.

Now Case (1) may be realized in three ways: either
as a vertex of V4 or as a vertex of Vi or as the point of
intersection between an edge of V4 and an edge of Vg.
Case (3) corresponds to a breakpoint of some edge of
Vi and case (2) happens at a finite number of points
easily constructed from Vg.

Therefore using the CG approach should lead to
much lower complexity. But this CG approach to the
problems remains to be done.

It should be noted that in an optimal solution to
a multifacility version of this push-pull problem all
sites will satisfy the same conditions, so the same set
of candidate sites arises, but now several of such sites
will have to be combined.

References

[1] J. Brimberg, H.T. Kakhki, G.O.Wesolowsky,
Location among regions with varying norms,
Annals of Operations Research 122 (2003), 87—
102.

[2] J. Brimberg, H. Kakhki, G. Wesolowsky, Locat-
ing a single facility in the plane in the presence
of bounded regions and different norms, Journal
of the Operational Research Society of Japan 48
(2005) 135-147.

[3] S. Cheng, H. Na, A. Vigneron, Y. Wang, Ap-
proximate Shortest Paths in Anisotropic Re-
gions, STAM Journal on Computing (2008) 38
802-824.

[4] N. Cristianini and J. Shawe-Taylor. An Intro-
duction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge
University Press, Cambridge, 2000.

[5] J. Fathali, M. Zaferanieh, Location problems in
regions with [/, and block norms, Iranian Jour-
nal of Operations Research 2 (2011) 72-87.

34

(6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Fliege, Efficient dimension reduction in
multifacility location problems, Shaker Verlag,
Aachen, 1997.

L. Franco, F. Velasco, L. Gonzalez-Abril, Gate
points in continuous location between regions
with different p norms, Furopean Journal of
Operational Research 218 (2012) 648-655.

J. Gordillo, F. Plastria, E. Carrizosa, Lo-
cating a semi-obnoxious facility with re-
pelling polygonal regions, working paper (2007)
30p. http://www.optimization-online.org/
DB_HTML/2007/04/1652.html

L. Kaufman, F.Plastria, The Weber problem
with supply surplus, Belgian Journal of Oper-
ations Research, Statistics and Computer Sci-
ence 28 (1988) 15-31.

J.S.B. Mitchell, C.H. Papadimitriou, The
weighted region problem: finding shortest paths
through a weighted planar subdivision, Journal
of the ACM 38 (1991) 18-73.

Y. Ohsawa, Bicriteria Euclidean location as-
sociated with maximin and minimax criteria,

Naval Research Logistics 47 (2000) 581-592

Y. Ohsawa, F. Plastria, K. Tamura, Euclidean
push-pull partial covering problems, Computers
& Operations Research 33 (2006) 3566—3582

Y. Ohsawa, K. Tamura, Efficient location for
a semi-obnoxious facility Annals of Operations
Research 123 (2003) 173-188

M. Parlar, Single facility location problem
with region-dependent distance metrics, Inter-
national Journal of Systems Sciences 25 (1994)
513-525.

F.Plastria, Up and downgrading the euclidean
1-median problem, in preparation (2013)

F.Plastria, Shortest paths using varying dis-
tance functions, in preparation (2013)

F.Plastria, M.Elosmani, On the convergence of
the Weiszfeld algorithm for continuous single
facility location-allocation problems, TOP 16
(2008) 388-406.

F.Plastria, M.Elosmani, Continuous location of
an assembly station, TOP First online (April
2011).

M. Zaferanieh, H. Kakhki, J. Brimberg, G.
Wesolowsky, A BSSS algorithm for the single
facility location problem in two regions with dif-
ferent norms, European Journal of Operational

Research 190 (2008) 79-89.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

On the barrier-resilience of arrangements of ray-sensors

David Kirkpatrick*!, Boting Yang'?, and Sandra Zilles*?

!Department of Computer Science, University of British Columbia, Vancouver, Canada.
2Department of Computer Science, University of Regina, Regina, Canada.

Abstract

Given an arrangement A of n sensors and two
points s and ¢ in the plane, the barrier resilience
of A with respect to s and ¢ is the minimum num-
ber of sensors whose removal permits a path from
s to t such that the path does not intersect the
coverage region of any sensor in A. When the
surveillance domain is the entire plane and sen-
sor coverage regions are unit line segments, even
with restricted orientations, the problem of de-
termining the barrier resilience is known to be
NP-hard [11,12]. On the other hand, if sensor
coverage regions are arbitrary lines, the problem
has a trivial linear time solution. In this paper,
we give an O(n?m) time algorithm for computing
the barrier resilience when each sensor coverage
region is an arbitrary ray, where m is the number
of sensor intersections.

1 Introduction

Barrier coverage is an important coverage concept
that arises in the analysis of wireless sensor net-
works [3]. Other notions of coverage try to quan-
tify the effectiveness of a collection of sensors in
detecting the presence of objects in a particular
surveillance region. Barrier coverage, motivated
by applications such as border control, measures
the effectiveness of detecting the movement of ob-
jects between, but not necessarily within, critical
regions. Given a sensor network, specified as an
arrangement 4 of sensors with associated cover-
age regions in the plane, and two points s and ¢,
we say that the sensor network provides barrier
coverage if it guarantees that any object moving

*Email: kirk@cs.ubc.ca.

TEmail: boting@cs.uregina.ca.

{Email: zilles@cs.uregina.ca.
Research support for all three authors is provided by the
Natural Sciences and Engineering Research Council of
Canada.

35

from point s to point ¢ must be detected by at
least one sensor.

If sensor regions are connected then determin-
ing barrier coverage amounts to asking if s and ¢
belong to the same face of the arrangement, which
is straightforward to check provided the sensor re-
gion boundaries are sufficiently simple. In order
to measure robustness of barrier coverage, Kumar
et al. [10] introduced k-barrier coverage that guar-
antees that any path from a point s to a point ¢
must intersect at least k distinct sensor regions.
They showed that for unit disk sensors (i.e., sen-
sors whose coverage regions are unit disks) dis-
tributed in a strip separating s and ¢, k-barrier
coverage can be determined efficiently by reduc-
tion to a maximum flow problem in the intersec-
tion graph of the disks.

Bereg and Kirkpatrick [2] introduced and stud-
ied the associated optimization problem, which
they called barrier resilience. This specifies the
minimum number of sensors whose removal per-
mits a path from point s to point ¢ such that
the path does not penetrate any of the remaining
sensor coverage regions. Bereg and Kirkpatrick
showed that there is a 3-approximation (or, un-
der mild restrictions concerning the separation of
s and ¢, a 2-approximation) algorithm for com-
puting the barrier resilience of unit disk sensors.
When the sensor coverage regions are arbitrary
line segments, Alt et al. [1] proved that the prob-
lem of determining barrier resilience is NP-hard
and APX-hard. In fact, even if all sensor coverage
regions are unit line segments in one of at most
two orientations, the barrier resilience problem re-
mains NP-hard [11,12]. The reader is referred to
the papers [3,5,8] for more information on barrier
coverage and related problems.

It is straightforward to see that if sensor cov-
erage regions are arbitrary lines, the barrier re-
silience problem has a linear time solution, since
the resilience of a given arrangement of lines is
just the number of lines that separate s and ft.

Resilience of ray-sensors

In this paper, we address the case where sensor
coverage regions are half-lines (or rays). We de-
scribe an O(n?m) time algorithm for computing
the resilience of an arbitrary arrangement of n
rays with m intersections. (Due to space con-
straints, proofs are omitted; full proofs will ap-
pear in an expanded version of the paper.)

2 Ray barriers and barrier
graphs

Let V be a set of n rays, specified by an endpoint
and a direction, in the plane. Suppose that we
are given a sensor network consisting of n sensors,
where the coverage regions of sensors correspond
to the rays in 17, and two points s and ¢ which are
not intersected by any of the rays in V. We con-
sider the problem of finding a subset U of rays in
V with the minimum cardinality such that there
is a path from s to t which does not intersect any
rays in ‘7\(7 . The cardinality of U is referred to as
the resilience of the sensor configuration (s, t, ‘7),
and U is a resilience set of (s,t,V).!

We say that a set V' € V forms a barrier for
(s, t, ‘7) if any path from s to ¢ intersects at least
one of the rays in V'. Thus a set U € V is a re-
silience set of (s, ¢, V) if and only if U is a smallest
subset of V with the property that 17\[7 does not
form a barrier. Our algorithm for computing a
resilience set uses a reformulation of the problem
as a graph problem. This reformulation is based
on the observation that if a set of rays forms a
barrier it must contain a subset consisting of two
rays that forms a barrier; we refer to such a subset
as a 2-barrier.

In order to substantiate this observation, we
introduce some helpful notation. For two points
a and b in the plane, we use ab to denote the
line segment with endpoints a and b, and use a to
denote a ray with endpoint a.

For the remainder of this paper, suppose, with-
out loss of generality, that the line containing st
is horizontal. (Accordingly, we will say “above
(resp., below) st” as an abbreviation for “above
(resp., below) the horizontal line supporting st”.)
For any ray ad € V, we assign a unique color as fol-
lows: (i) if @ intersects st and goes down we assign
it the color red (drawn as a solid ray in figures);
(ii) if @ intersects st and goes up we assign it the
color blue (drawn as a dashed ray in figures); and
(iii) if @ does not intersect st we assign it the color

INote that a configuration (s, , \7) does not necessarily
have a unique resilience set.

36

Vomx
%N

~x
S nx
s

Figure 1: (a): a red-blue 2-barrier; (b): a red-

black 2-barrier; (¢): a blue-black 2-barrier

(0)

Figure 2: (a): a sensor configuration (s, ¢, V); (b):
its associated barrier graph

black (drawn as a dotted ray in figures).

We first observe that certain pairs of intersect-
ing rays are guaranteed to form a 2-barrier (see
Figure 1).

Proposition 1 Let (s,t, ‘7) be a sensor config-
uration. A pair of intersecting rays {d, 5} cV
forms a 2-barrier if (i) one is red and the other
is blue, (ii) one is red and the other is black and
they intersect above st, or (iii) one is blue and the
other is black and they intersect below st.

Lemma 2 Let (s,t,V) be a sensor configuration
and V' < V. The set V' forms a barrier for
(s,t,V) if and only if there are two rays @,b e V'’
such that {@,b} forms a 2-barrier of one of the
types described in Proposition 1.

Lemma 2 motivates the reformulation of the re-
silience problem as a graph problem (see Lemma 3
below.) We say that a graph G = (V,E) is a
barrier graph of (s,t,V), denoted by G(V), if V
is the set of all endpoints in V, and {a,b} € E
iff the corresponding pair of rays {@,b} forms a
2-barrier (see Figure 2). It follows immediately
from Lemma 2 that barrier graphs are tripartite.

Note that we use the same notation for a ver-
tex in G(V) and an endpoint in V. When there
is no ambiguity, a vertex of G(V) is also re-
ferred to as an endpoint of a ray. We exploit the
vertex-endpoint duality to view G(V) as a vertex-
coloured embedded graph. This allows us to say,
for example, that any vertex that lies above st
must be red or black, and any vertex that lies
below st must be blue or black.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Lemma 3 For any sensor configuration (s,t, V),
a vertex set V. is a minimum size vertex cover of
G(V) if and only if the corresponding set of rays
V, is a resilience set of (s,t,V).

From Lemma 3, it is clear that we can find a
resilience set efficiently if there is an efficient al-
gorithm to compute a minimum size vertex cover
of the graph G(V). Unfortunately, the vertex
cover problem on general tripartite graphs is NP-
complete (there is a straightforward reduction
from the vertex cover problem for cubic planar
graphs, which is known to be NP-complete [6]).
In fact, Clementi et al. [4] have shown that the
minimum size vertex cover for tripartite graphs is
not even approximable to within a factor of 34/33,
unless P=NP.

Thus, we are motivated to look for additional
structure in instances of the tripartite vertex cover
problems that arise from barrier graphs. In some
settings, for example if all rays are parallel to one
of two different lines, the graph G(V) is easily
seen to be bipartite. It is well-known, by Konig’s
theorem [9], that, for bipartite graphs, construct-
ing a minimum size vertex cover is equivalent to
constructing a maximum size matching. Thus, we
can use the Hopcroft-Karp algorithm [7] to find
a minimum size vertex cover in such instances in
O(m+/n) time, where m is the number of edges in
G(V) .

To exploit the structure inherent in less re-
stricted instances, we first introduce some addi-
tional notation (see Figure 3). We denote by £,
the line passing through points s and v. Simi-
larly /4, denotes the line passing through points
t and w. A generic line through s (respectively,
t) is denoted £5_ (respectively, ¢;). Similarly, a
distinguished line through s (respectively, ¢) will
be denoted f44 (respectively, £y). With any line
ls_ (respectively, £,_) we associate the half-space,
denoted ¢, (respectively, /;) consisting of all
points to the left of ¢,_, or above £, in case {,_
is horizontal (respectively, all points to the right
of ¢;_, or above £;_ in case ¢;_ is horizontal).

Armed with this notation, we can capture two
additional properties of barrier graphs that can be
exploited in the efficient construction of optimal
vertex covers:

Lemma 4 Let G(V) be a barrier graph and sup-
pose that V, is any vertex cover of G(V). Then
there must exist lines lgy and liy, through s and
t respectively, such that V. contains all of the red
and blue vertices that lie in {5, U (7, .

37

L] st

‘gtw .

Figure 3: Lines (and associated half-spaces)
through s and ¢.

Lemma 5 Let ¢, and {;_ be arbitrary lines

through s and t respectively, and let RB denote
the set of red and blue vertices that lie in £, Ul .

Then the subgraph of the barrier graph G(V') that
is induced by the vertices in V\RB, is bipartite.

3 Algorithm

In this section, we present an algorithm for com-
puting resilience sets. Its correctness follows im-
mediately from Lemma 3.

Algorithm 1: RESILIENCE.

Input: Sensor configuration (s, t, V).
Output: A resilience set for (s, ¢, V).

1 build the vertex-coloured barrier graph G(V))
(described in Section 2)

2 return MIN-VERTEX-COVER(G(V))

As we have already noted, a minimum size ver-
tex cover of a bipartite graph can be found in
polynomial time [7]. So the basic idea of our al-
gorithm is to exploit this by forming a sequence
of subsets Uy, Us,... of V such that (i) for all 4,
G|(V\U;), the subgraph of G(V) induced on the
vertex set V\U,, is bipartite, and (ii) for some 4,
the minimum size vertex cover of G|(V\U;), to-
gether with the vertices in U;, forms a minimum
size vertex cover of G(V).

We know, by Lemma 4, that for any minimum
size vertex cover V, of G(V) there must exist lines
lsy and fpy, through s and ¢ respectively, such
that V. contains all of the vertices in RB, the set
of red and blue vertices that lie in (5 U (7. Fur-
thermore, the vertices of VC\EE must be a min-
imum size vertex cover of G |(V\]§§), otherwise

Resilience of ray-sensors

V. would not have minimum size. So our algo-
rithm simply tries all possibilities for £s4 and £y,
determines the associated set RB, finds a mini-
mum size vertex cover of G|(V\RB) (which, by
Lemma 5, is bipartite), and chooses, among all of
these possibilities, one that minimizes the size of
this vertex cover together with the set RB.

Algorithm 2: MIN-VERTEX-COVER of a bar-
rier graph.

Input: A barrier graph G(V)

Output: A minimum vertex cover of G(V).
1 RB « {red vertices in v}
VCiemp —
BIPARTITE-VERTEX-COVER(G |(V\]§§))
VCiest < VCiemp U RB

N

3
4 for every red vertex v do
5 for every red vertex w do
6 RB «
{red and blue vertices in /5, U £} }
7 VCtemp <«
BIPARTITE—VERTEX—COVER(G|(V\ET?))
8 if [V Ciemp| + |RB| < |V Chest| then
9 L VCyest — VCiemp U RB

10 return VCies:

As we have already noted, the correctness of
Algorithm RESILIENCE follows immediately from
Lemma 3. We now turn our attention to the cor-
rectness of our VERTEX COVER algorithm for bar-
rier graphs.

Theorem 6 The output of Algorithm 2 is a min-
imum size vertex cover of G(V').

It will be clear from the description of Algo-
rithm 2 that the problem of constructing a min-
imum size vertex cover of a barrier graph with n
vertices and m edges can be reduced to O(n?)
minimum size vertex cover subproblems on in-
duced subgraphs, each of which, by Lemma 5,
is bipartite. As previously noted, Konig’s the-
orem [9] states that, for bipartite graphs, con-
structing a minimum size vertex cover is equiv-
alent to constructing a maximum size matching.
Thus, we can use the Hopcroft-Karp algorithm
to find a minimum size vertex cover in each sub-
problem in O(m+/n) time [7], or O(n?m+/n) time
in total. We note, however, that it is possible to
implement Algorithm 2 to run in O(n?m) time,
by ordering the successive subproblems in a way
that they do not require independent solution; we

38

leave the details to an expanded version of this
paper.

References

[1] H. Alt, S. Cabello, P. Giannopoulos and C.
Knauer, Minimum cell connection and separation
in line segment arrangements, arXiv:1104.4618v2
[cs.CG], 2011.

[2] S.Bereg and D. Kirkpatrick, Approximating bar-
rier resilience in wireless sensor networks, Pro-
ceedings of the 5th International Workshop on Al-
gorithmic Aspects of Wireless Sensor Networks,
Lecture Notes in Computer Science, Vol. 5804,
pages 29-40, 2009.

[3] M. Cardei and J. Wu, Coverage in wireless sen-
sor networks, In M. Ilyas and I. Mahgoub, ed-
itors, Handbook of Sensor Networks: Compact
Wireless and Wired Sensing Systems, chapter 19,
pages 432-446, CRC Press, 2005.

[4] A. Clementi, P. Crescenzi, G. Rossi, On the
complexity of approximating colored-graph prob-
lems. Proceedings of the 5th International Con-
ference on Computing and Combinatorics, Lec-
ture Notes in Computer Science, Vol. 1627, pages
281-290, 1999.

[6] A. Chen, T. H. Lai and D. Xuan, Measuring and
guaranteeing quality of barrier-coverage in wire-
less sensor networks, Proceedings of the 9th ACM
international symposium on Mobile ad hoc net-
working and computing, pages 421-430, 2008.

[6] M. Garey and D. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

[7] J. E. Hopcroft and R. M. Karp, An n?® al-
gorithm for maximum matchings in bipartite
graphs, SIAM Journal on Computing, 2(4): 225
231, 1973.

[8] S. Kloder and S. Hutchinson, Barrier coverage
for variable bounded-range line-ofsight guards,
Proceedings of IEEE International Conference on
Robotics and Automation (ICRA’07), pages 391—
396, 2007.

[9] D. Konig, Grafok és matrixok, Matematikai és

Fizikai Lapok, 38:116-119, 1931.

S. Kumar, T. H. Lai, and A. Arora, Barrier cov-

erage with wireless sensors, Wireless Networks,

13(6): 817-834, 2007.

K.-C. Tseng, Resilience of Wireless Sensor Net-

works, Master thesis, University of British

Columbia, BC, Canada, 2011.

K.-C. Tseng and D. Kirkpatrick, On Barrier Re-
silience of Sensor Networks, Proceedings of the
7th International Workshop on Algorithmic As-
pects of Wireless Sensor Networks, Lecture Notes
in Computer Science, Vol. 7111, pages 130-144,
2011.

[10]

[11]

[12]

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Computing the stretch of an embedded graph

Sergio Cabello*!, Markus Chimanif?, and Petr Hlinény*3

!Department of Mathematics, FMF, University of Ljubljana, Slovenia
2Theoretical Computer Science, Department of Maths/CS, Osnabriick University, Germany
3Faculty of Informatics, Masaryk University, Brno, Czech Republic

Abstract

Let G be a graph embedded in an orientable surface
¥, possibly with edge weights, and denote by len(vy)
the length (the number of edges or the sum of the edge
weights) of a cycle v in G. The stretch of a graph em-
bedded on a surface is the minimum of len(«) - len(3)
over all pairs of cycles a and 3 that cross exactly once.
We provide an algorithm to compute the stretch of an
embedded graph in time O(g*nlogn) with high prob-
ability, or in time O(g*nlog®n) in the worst case,
where ¢ is the genus of the surface ¥ and n is the
number of vertices in G.

Introduction

Consider a graph G embedded on an orientable sur-
face X of genus g. What can be said about the crossing
number of G in the plane? Is it computable in poly-
nomial time? If it is not, can we obtain a reasonable
approximation in polynomial time? Unfortunately,
Cabello and Mohar [3] show that the crossing number
of such graphs is not computable in polynomial time,
even when ¥ is the torus. Djidjev and Vrt’o [4] show
that the crossing number of G is upper bounded by
O(gAn), where n is the number of vertices in G and A
is the maximum degree of G. This is an improvement
over the previous bound of O(CY9An), for some con-
stant C, by Borozky, Pach and Toth [1]. Under some
mild assumptions about the density of the embedding
of G, Hlinény and Chimani [5] give a (3 - 23972A2)-
approximation algorithm for the crossing number of
G. This last work is the main motivation for our re-
search.

Hlinény and Chimani [5] define the stretch of an

*Supported by the Slovenian Research Agency, program
P1-0297, project J1-4106, and within the EUROCORES Pro-
gramme EUROGIGA (project GReGAS) of the European Sci-
ence Foundation.

TThis research was conducted while being funded by a Carl-
Zeiss-Foundation juniorprofessorship, and partially supported
by EUROCORES Programme EUROGIGA (project GraDR)
of the European Science Foundation.

fSupported by the Czech Science Foundation, EURO-
CORES grant GIG/11/E023 (project GraDR).

39

embedded graph G as
str(G) = rniél{len(oz)len(ﬂ)},

«,

where «, 8 ranges over all pairs of cycles in G that
cross exactly once. Here, len(a) denotes the num-
ber of edges in v and a cycle is a closed walk in a
graph without repeated vertices. A precise definition
of what “crossing exactly once" means is given in Sec-
tion 1.2. The stretch plays a fundamental role in their
analysis of the algorithm. The concept of stretch can
be generalized to the case of positive edge-weighted
graphs in a natural way: take len(a) to be the sum
of the edge-weights along the cycle o. Henceforth we
will assume this more general definition of stretch.

It is worth noting that, if two cycles o and 3 are
crossing once, then they must be both (surface-)non-
separating. That is, cutting the surface along « or
does not disconnect the surface. This is so because
any cycle crosses a (surface-)separating cycle an even
number of times. Thus, when computing the stretch,
we can restrict our attention to pairs (o, 3) of non-
separating cycles.

In this paper we provide an algorithm to compute
the stretch of an embedded graph in time O(g*nlogn)
with high probability, or in time O(g*nlog?n) in the
worst case, where g is the genus of the surface 3 and
n is the number of vertices in G.

Overview of the approach. Let us provide an in-
formal overview of the main ideas. We show the fol-
lowing recursive property of the stretch: it is defined
either by the shortest non-separating cycle o* and one
other cycle crossing a* exactly once, or by the stretch
of surface obtained by cutting along a* and pasting
disks. We do not prove this claim directly, but using
a detour through another concept: odd-stretch.

The definition of odd-stretch resembles the defini-
tion of stretch, but we allow closed walks a and f,
instead of just cycles, and allow an odd number of
crossings, instead of exactly one crossing. It turns
out that the stretch and odd-stretch of a graph is the
same. However, working with the odd-stretch is eas-
ier because we only need to take care of the parity
of crossings and, when constructing new closed walks

Computing the stretch of an embedded graph

via exchange arguments, we do not need to take care
to construct cycles. Finally, we prove the aforemen-
tioned recursive property for the odd-stretch factor.

The eventual algorithm, given in Figure 1 is very
simple. However, there is a fine point we have to
take care of to obtain a polynomial-time algorithm.
Repeatedly cutting along shortest non-separating cy-
cles and pasting disks may give rise to an exponential
growth in the size of the graphs: at each cut we make
copies of the vertices along the cycle and thus the
number of vertices may nearly double at each itera-
tion. However, if at some iteration we get a shortest
non-separating cycle with more vertices than the orig-
inal graph, we can finish the recursive search. In this
way we avoid the potentially exponential growth in
the size of the graphs.

1 Odd-stretch

In this section we introduce the concept of odd-
stretch, which is a generalization of stretch. We first
discuss crossings for curves in general position and
then crossings for closed walks in a graph. Finally, we
define the odd-stretch, discuss some of its properties
and, eventually, show that the odd-stretch is the same
as the stretch.

1.1 Crossings of curves in general po-
sition

Two curves C and C' on a surface ¥ are in general

position if they have a finite number of intersections

and, at each intersection, they cross transversally. For

two curves C' = C(t) and C' = C’(t) in general posi-

tion, the set of crossings is

X(C,C" = {zex |3t st. x=Ct)=C"(t)}.

Two curves C and C’ in general position cross k times
if and only if k£ = |X(C,C")|. We will use the follow-
ing (intuitive) fact: the number of crossings between
two closed curves, modulo 2, is invariant under small
perturbations of any of the two closed curves.

1.2 Crossings of closed walks

Two closed walks o and 8 in G cross k times if and
only if: there are arbitrarily small perturbations of «
and [to general position that cross k times, and any
small enough perturbation of o and 5 has at least
k intersecting points. Moreover, we can always as-
sume that the crossings of the perturbations occur in
a neighborhood of the vertices. We denote by cr(«, f)
the number of crossings between a and .

For any closed walk «, the set of closed walks in
G that cross o an odd number of times satisfies the
so-called 3-path condition. The next lemma states

this in an equivalent way for easier use later on. This
property was already noted in [5].

Lemma 1 Let a be a closed walk and let v be a closed
walk crossing a an odd number of times. Let x and y
be two vertices on -y and let m be some walk from x to
y. Let v be the closed walk defined by concatenating
Yy = x| and 7. Let 4" be the closed walk defined by
concatenating y[x — y] and the reverse of w. Then
either ' or v cross a an odd number of times.

1.3 Odd-stretch of an embedded graph
The odd-stretch of an embedded graph G is

oddstr(G) = miél{len(a) -len(B)},

«,

where «, 8 ranges over all pairs of closed walks in G
that cross an odd number of times. We next remark
the two main differences with the previous stretch:
« and [iterate over closed walks, instead of cycles,
and the curves can cross an odd number of times,
instead of exactly once. A priori, the stretch and the
odd-stretch of an embedded graph are different. A
posteriori we can see that they are the same; this was
already noted in [5].

Lemma 2 The odd-stretch of G and the stretch of G
are the same.

2 Algorithm for computing the
stretch factor

We will use the following two properties:

Lemma 3 ([2]) Let G be a graph with m vertices em-
bedded in a surface of genus g.

o We can compute a shortest non-separating cycle
in time O(g*mlogm) with high probability, or in
time O(g*mlog® m) in the worst case.

e For any given mon-separating cycle «, we can
compute a shortest cycle of G that crosses o ex-
actly once in time O(gmlogm) with high proba-
bility, or in time O(gmlog® m) in the worst case.

Lemma 4 Let o be a shortest non-separating cycle
in G. For any two vertices x and y on o, o contains
a shortest path from x toy or from y and x.

The algorithm for computing the stretch of an em-
bedded graph is given in Figure 1. We first discuss its
time complexity and then its correctness.

Lemma 5 Algorithm COMPUTESTRETCH has time
complexity O(g*nlogn) with high probability, or
O(g*nlog? n) in the worst case, where n is the number
of vertices in G.

40

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Algorithm COMPUTESTRETCH

K 10. return str

Input: graph G embedded in surface &

Output: stretch of G

1. 1+ 1;

2. (Gl,El) — (G,Z),

3. str < oo;

4. while ¥; not the sphere and |V (G;)| < g-|V(G)| do
5. «; < shortest non-separating cycle in G;;

6. Bi < shortest cycle crossing «; exactly once;
7. str < min{str, len(o;) - len(5;)};

8. (Git1,Xiq1) < cut (G4, %;) along «; and attach disks to the boundaries;
9. 141+ 1;

~

)

Figure 1: Algorithm COMPUTESTRETCH to compute the stretch of an embedded graph.

Proof. Because of Lemma 3, in each iteration of
the while loop we need O(g?n;logn;) time whp, or
O(g?n; log? n;) in the worst case, where n; is the num-
ber of vertices in G; and g; is the genus of ;. Since
n; = O(gn) because of the condition for iterating the
while loop and g; < g, each iteration of the while loop
takes O(g?(gn)log(gn)) = O(gnlogn) time whp, or
O(g3nlog®n) time in the worst case. There are at
most g iterations of the while loop. O

Lemma 6 Let o be a shortest non-separating cycle
and let B be a shortest cycle crossing o exactly once.
Let G’ be the embedded graph obtained from G by
cutting along « and attaching a disk to the bound-
aries. The stretch of G is the minimum between

len(a) - len(B) and the stretch of G.

Proof. Let ¥ be the surface where G is embedded
and let X’ be the surface where G’ is embedded. Since
any two closed curves of G’ that cross an odd number
of times in X’ also cross an odd number of times in X,
it is clear that

str(G) < min{str(G),len(a) -len(8)}.

Thus, we have to argue the other inequality. If («,)
define the stretch of GG, then the other inequality is
obvious.

Let us consider next the case where («, 3) do not
define the stretch of G; it holds that str(G) <
len(a) - len(B). Let (v*,0*) be the pair of cycles that
define the stretch of G. If there are several such pairs,
we choose one such that cr(v*, a) +cr(c*, «) is mini-
mum. We distinguish 3 cases depending on the values
of cr(v*, @) and cr(o*, a):

Case cr(v*, o) = cr(c*, o) = 0. In this case, v* and
o* keep crossing once in ¥', and thus str(G) =
str(@).

Case cr(v*,a) =1 or cr(c*,«) = 1. This case can-
not actually happen. Let us assume that

41

cr(y*, @) = 1; the other case is symmetric. Since
~v* crosses « once and 3 is a shortest cycle cross-
ing « once, we have len(f) < len(v*). Using that
« is a shortest non-separating cycle we have

str(G) = len(vy*)-len(c*) > len(f) - len(a).

This implies that («,) actually define the
stretch of G.

Case cr(y*,a) > 2 or cr(c*,a) > 2. This case can-
not actually happen. Let us assume that
cr(v*,) > 2; the other case is symmetric. Let
x and y be two crossings of v* and « that are
consecutive along «. Because of Lemma 4, «
contains a shortest path between x and y. Let
7w denote this shortest path. We can use 7 and
~v* to construct two cycles v and +” that are
shorter and cross « fewer times than v*. Because
of Lemma 1, some % € {v/,7"} crosses o* an odd
number of times. The pair (¥, c*) contradicts the
choice of (v*,0%).

This finishes all cases. (Note that the second and
third cases are not mutually exclusive.)]

Lemma 6 shows correctness of the algorithm if the
condition |V(G;)| < g - |V(G)| is true for each i =
1,...,9. We next argue why we can finish the search
if at some iteration |V (G;)| > ¢ - |[V(G)|.

Lemma 7 If, for some i, a; has more than |V(G)]
vertices, then for any £ > 1

str(G) = min{len(;)-len(B;) |j=1,...,¢0—1}.

Proof. Assume, for the sake of this proof, that in
the algorithm COMPUTESTRETCH we drop testing the
condition |V (G;)| < g - |V(G)|. The algorithm then
makes exactly g iterations and computes cycles «;, 3;
for each j =1,..., 9. Because of Lemma 6 it holds

str(G) = min{len(a;)-len(B;) |j=1,...,9}.

Computing the stretch of an embedded graph

Ykl

Figure 2: Figure for the proof of Lemma 7.

Assume that, at some iteration, the shortest non-
separating cycle a; in G;, has more than |V (G)| ver-
tices. For each k < i, the cycle «; corresponds to a
closed walk Wy, in the graph G. Moreover, the walk
W)y, does not cross the cycle ay, for each k < i. Since
a; has more than |V(G)| vertices, W repeats some
vertex of G; = G. This means that W7 is not a cycle.

Let k£ be the maximum index, 1 < k < i such that
Wy is not a cycle in Gy; thus W41 is a cycle in Gy1.
Since W is not a cycle and W; is a cycle, the index
k is well defined. See Figure 2, left and center. Let v
be a vertex of G, that is repeated in Wj. Cutting Gy
through «ay, produces two copies o, and «}, of a. Let
v’ and v” be the corresponding copies of v. We can
form a closed walk W} in G}, by taking the subwalk
of Wy from the first appearance of v until the sec-
ond. This closed walk W,é crosses «ay, once. Therefore
len(Br) < len(W}) < len(W}) = len(oy;) < len(cy;) for
each j > i. We conclude that, for each j > i,

len(a;)-len(B;) > len(Bk)-len(c;) > len(By)-len(ag).
Since k < i < ¢ we conclude that
str(G) = min{len(a;) -len(B;) |j=1,...,4}

= min{len(e;) -len(B;) | j=1,...,£ —1}.

O

Theorem 8 Let G be a graph with n vertices embed-
ded in surface of genus g. We can compute the stretch
of G in time O(g*nlogn) with high probability, or in
time O(g*nlog® n) in the worst case.

Proof. The time bound follows from Lemma 5. For
the correctness, note that the while loop has the fol-
lowing invariant: at the start of iteration ¢, the vari-
able str stores the value

min({len(e;) -len(B;) | j=1,...,5— 1} U {oo}).

If [V(G;)| < g-|V(G)| for each iteration, then the
algorithm finishes with ¢ = g + 1, the surface ¥4 is

a sphere, and correctness follows from Lemma 6. If
at some iteration ¢ we have |V (Gy)| > g-|V(G)], then
there was some index ¢ < ¢ such that the cycle «; had
more than |V(G)| vertices. Correctness then follows
from Lemma 7. O

_ Acknowledgments. We are grateful to Daniel
Stefankovi¢ for some early discussions.

References

[1] K. J. Borozky, J. Pach, and G. Téth. Planar
crossing numbers of graphs embeddable in another
surface. Int. J. Found. Comput. Sci., 17(5):1005—
1016, 2006.

[2] S. Cabello, E. W. Chambers, and J. Erick-
son. Multiple-source shortest paths in embed-
ded graphs, 2013. Accepted to STAM J. Com-
puting. Preprint available at http://arxiv.org/
abs/1202.0314. Preliminary version at SODA
2007.

[3] S. Cabello and B. Mohar. Adding one edge to
planar graphs makes crossing number hard. In
Proc. SoCG 2010, pages 68-76, 2010. See http:
//arxiv.org/abs/1203.5944 for the full version.

[4] H. Djidjev and I. Vrt’o. Planar crossing numbers
of graphs of bounded genus. Discrete & Compu-
tational Geometry, 48(2):393-415, 2012.

[5] P. Hlinény and M. Chimani. Approximating the
crossing number of graphs embeddable in any ori-
entable surface. In Proc. SODA 2010, pages 918—
927, 2010.

42

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

An algorithm that constructs irreducible triangulations of
once-punctured surfaces

M. J. Chavez*!, S. Lawrencenko’?, J. R. Portillof!, and M. T. Villar8!

1Universidad de Sevilla, Spain
2Russian State University of Tourism and Service, Lyubertsy, Moscow Region, Russia

Abstract

A triangulation of a surface is irreducible if there is
no edge whose contraction produces another triangu-
lation of the surface. In this work we propose an al-
gorithm that constructs the set of irreducible trian-
gulations of any surface with precisely one boundary
component.

Introduction and terminology

We restrict our attention to the following objects:

e S =5, or Nj is the closed orientable surface S, of
genus g or closed nonorientable surface of nonori-
entable genus k. In particular, Sy and S are the
sphere and torus, N; and N, are the projective
plane and the Klein bottle (respectively).

e S — D is S minus an open disk D (the hole).
This compact surface is called the once-punctured
surface. We assume that the boundary 95 of S,
which is equal to D, is homeomorphic to a circle.

We use the notation ¥ whenever we assume the gen-
eral case - that is, ¥ € {S, S — D}.

If a (finite, undirected, simple) graph G is 2-cell
embedded in ¥, the components of ¥ — G are called
faces. A triangulation of ¥ with graph G is a 2-cell
embedding T : G — ¥ in which each face is bounded
by a 3-cycle (that is, a cycle of length 3) of G and any
two faces are either disjoint, share a single vertex,
or share a single edge. We denote by V = V(T),
E = E(T), and F = F(T) the sets of the vertices, the
edges, and the faces of T, respectively. Equivalently,
the triangulation T' of a surface can be defined as a
hypergraph of rank 3 or a 3-graph, with the vertex
set V(T) and the collection F(T') of triplets of V(T')
(called 3-edges, or triangles, of T') (see [4]).

By G(T') we denote the graph (V(T'), E(T)) of tri-
angulation T'. Two triangulations T; and T3 are called

*Email: mjchavez@us.es. Research supported by PAT FQM-
189

TEmail: lawrencenko@hotmail.com.

fEmail: josera@us.es. Research supported by PAI FQM-164

§Email: villarQus.es. Research supported by PAI FQM-164

43

isomorphic, denoted Ty = T5, if there is a bijection
a: V(T1) — V(Tp) such that uwvw € F(T7) if and only
if a(u)a(v)a(w) € F(Ty). Throughout this paper we
distinguish triangulations only up to isomorphism.

In the case ¥ = S — D let 9T, which is equal to
0D, denote the boundary cycle of T. The vertices and
edges of T are called boundary vertices and boundary
edges of T, respectively.

A triangulation of a punctured surface is irreducible
(term which is more accurately defined in Section 1)
if no edge can be shrunk without producing multiple
edges or changing the topological type of the surface.
The irreducible triangulations of ¥ form a basis for
the family of all triangulations of X, in the sense that
any triangulation of ¥ can be obtained from a member
of the basis by applying the splitting operation (intro-
duced in Section 1) a finite number of times. To have
such a basis in hand can be very useful in practical
application of triangulation generating; the papers [6]
and [19] are worth mentioning.

It is known that for every surface X the basis of
irreducible triangulations is finite (the case of closed
surfaces is proved in [2], [13], [12], and [7] and the
case of surfaces with boundary is proved in [3]). At
present such bases are known only for seven closed
surfaces and two once-punctured surfaces: the sphere
([14]), projective plane ([1]), torus ([8]), Klein bottle
([9] and [15]), S2, N3, and Ny ([16, 17]), the disk and
Mobius band ([5]).

In this paper we present an algorithm which is
designed as an application of some recent advances
on the study of irreducible triangulations of once-
punctured surface collected in [5]. Specifically, Lem-
mas 1-3 (in Section 1) are the main supporting the-
oretical results for the mentioned algorithm. As a
particular example, all the non-isomorphic combina-
torial types (293 in number) of triangulations of the
once-punctured torus are determined.

1 Previous results

Let T be a triangulation of . An unordered pair
of distinct adjacent edges vu and vw of T is called

An algorithm that constructs irreducible triangulations of once-punctured surfaces

a corner of T at vertex v, denoted by (u,v,w)
(=(w,v,u)). The splitting of a corner (u,v,w), de-
noted by sp(u,v,w), is the operation which consists
of cutting T open along the edges vu and vw and
then closing the resulting hole with two new triangu-
lar faces, v/v"u and v'v"w, where v/ and v” denote
the two images of vertex v appearing as a result of
cutting. Under this operation, vertex v is extended
to the edge v'v" and the two faces having this edge in
common are inserted into the triangulation; therefore
the order increases by one and the number of edges
increases by three.

If a corner (u,v,w) is composed of two edges vu
and vw neighboring around vertex v, sp(u,v,w) is
equivalent to the stellar subdivision of the face uvw.

Especially in the case {¥ = S — D,uv €
E(T), andv € V(T)}, the operation sp(u,v] of split-
ting a truncated corner {u,v] produces a single trian-
gular face uv'v”, where v'v"" € E(9(sp(u, v](T))).

Under the inverse operation, shrinking the edge
v'v”, denoted by sh)v'v”(, this edge collapses to a
single vertex v, the faces v'v”u and v'v"w collapse
to the edges vu and vw, respectively. Therefore
sp(u, v,w) o sh)v'v"{(T) = T. Tt should be noticed
that in the case {¥ = S — D, v'v" € E(9T)}, there
is only one face incident with v’v”, and only that sin-
gle face collapses to an edge under sh)v'v”’(. Clearly,
the operation of splitting doesn’t change the topolog-
ical type of ¥ if ¥ € {S, S — D}. We demand that
the shrinking operation must preserve the topological
type of ¥ as well; moreover, multiple edges must not
be created in a triangulation. A 3-cycle of T is called
nonfacial if it doesn’t bound a face of T. In the case
in which an edge e € E(T) occurs in some nonfacial
3-cycle, if we still insist on shrinking e, multiple edges
would be produced, which would expel sh)e((T) from
the class of triangulations. An edge e is called shrink-
able or a cable if sh)e((T) is still a triangulation of
>; otherwise the edge is called unshrinkable or a rod.
The subgraph of G(T') made up of all cables is called
the cable-subgraph of G(T).

The impediments to edge shrinkability in a trian-
gulation T of a punctured surface S — D are identified
in [2, 3, 1, 8]; an edge e € E(T) is a rod if and only if
e satisfies one of the following conditions:

(1) eis in a nonfacial 3-cycle of G(T'). In particular,
e is a boundary edge in the case in which the boundary
cycle is a 3-cycle.

(2) e is a chord of D -that is, the end vertices of e
are in V(0D) but e ¢ E(0D).

From now on, we assume that S # Sy and make
an agreement that by “non-facial 3-cycle” we mean a
non-null-homotopic 3-cycle whenever we refer to con-
ditions (1) and (2). Therefore, an edge e is a rod pro-
vided e occurs in some non-null-homotopic 3-cycle,
and e is a cable otherwise. Especially, the boundary
edges of stellar subdivided faces are now regarded as

cables unless they occur in some non-null-homotopic
3-cycles. The convenience of this agreement is that
once a rod turns into a cable in the course of any
splitting sequence, it always remains a cable under
forthcoming splittings.

A triangulation is said to be irreducible if it is free
of cables or equivalently, each edge is a rod. For in-
stance, a single triangle is the only irreducible trian-
gulation of the disk Sy — D.

Let T be an irreducible triangulation of a punctured
surface S — D where S # Sy. Let us close the hole in
T by restoring the disk D add a vertex, p, in D, and
join p to the vertices in dD. We thus obtain a triangu-
lation, T, of the closed surface S. In this setting we
call D the patch, call p the central vertex of the patch,
and say that T is obtained from the corresponding
triangulation T* of S by the patch removal.

Notice that T may be an irreducible triangulation
of S but not necessarily. Using the assumption that
T is irreducible and the fact that each cable of T
fails to satisfy condition (1) (in the strong non-null-
homotopic sense), it can be easily seen that in the
case T™ is not irreducible, all cables of T have to be
entirely in D U 0D and, moreover, there is no cable
which is entirely in 9D whenever the length of the
boundary cycle 0D is greater than or equal to 4. In
particular, we observe that each chord of D (if any) is
a rod in T because it meets condition (2), and is also
a rod in T because it meets condition (1). We now
come to a lemma which is to be stated shortly after
some necessary definitions.

A vertex of a triangulation R of S is called a pylonic
vertex if that vertex is incident with all cables of R. A
triangulation which has at least one cable and at least
one pylonic vertex is called a pylonic triangulation.

A triangulation may have a unique cable and there-
fore two pylonic vertices. However, if the number of
cables in a pylonic triangulation R is at least 2, R has
exactly one pylonic vertex.

Lemma 1 Suppose an irreducible triangulation T of
a punctured surface S — D (S # Sp) is obtained from
the corresponding triangulation T* of S by the patch
removal. If T* has at least two cables, then either the
central vertex p of the patch is the only pylonic vertex
of T*, or else the length of OD is equal to 3.

Let =, = Z,,(S) denote the set of triangulations of
a fixed closed surface S that can be obtained from an
irreducible triangulation of S by a sequence of exactly
n repeated splittings.

In the following result, by the “removal of a vertex
v” we mean the removal of v together with the inte-
riors of the edges and faces incident with v and by
the “removal of a face” we mean the removal of the
interior of that face.

44

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Lemma 2 FEach irreducible triangulation T of S — D
(S # So) can be obtained either

(i) by removing a wvertex from a triangulation in
EO = Eo(S), or

(i1) by removing a pylonic vertex from a triangulation
i 2y UEU---UZg, where the constant K is
provided by [3] (whenever a pylonic triangulation
occurs), or

(iii) by removing either of the two faces containing
a cable in their boundary 3-cycles provided that
cable is unique in a triangulation in = (whenever
such a situation occurs), or

(iv) by removing the face containing two, or three, ca-
bles in its boundary 3-cycle provided those two,
or three, cables collectively form the whole cable-
subgraph in a triangulation in 21 UEs (if such a
situation occurs).

Lemma 3 If a triangulation of S has at least two ca-
bles but has no pylonic vertex, then no pylonic vertex
can be created under further splitting of the triangu-
lation.

2 Sketch of the algorithm

In this section triangulations are considered to be
hypergraphs of rank 3 or 3-graphs. Let T be a 3-
graph with V' = V(T) and F = F(T) the sets
of the vertices and the triangles of 7. This 3-
graph can be uniquely represented as a bipartite
graph Br = (V(Br), E(Br)) in the following way:
V(Br) =V(T)UF(T), uv € E(Br) if and only if the
vertex u lies in the triangle v in 7.

The algorithm input is the set Z of irreducible tri-
angulations of a closed surface S # Sy. The output
of the algorithm is the set of all non-isomorphic com-
binatorial types of irreducible triangulations of the
once-punctured surface S — D.

The first step is the generation of the set =1 U =5
from the set Z. Next, every 3-graph T € =1 U =y
is then represented by their corresponding bipartite
graph Bp. This has been implemented with the com-
putational package Mathematica ([18]).

The second step consists of discarding all duplicate
bipartite graphs and then, all duplicate triangulations
in £y UE, will be discarded. That is, the obtention of
all non-isomorphic triangulations, denoted =y UZ; re-
spectively, which is implemented with the computing
packages Nauty (and gtools, [10], [11]).

Next, all pylonic vertices in g{ Ué; are detected and
operations (i)—(iv) described in Lemma 2 are applied
to obtain irreducible triangulations (using Mathemat-
ica).

45

If =5 has no pylonic triangulation, immediately pro-
ceed to the final step: Discard all duplicate triangula-
tions by using Nauty and gtools. Otherwise generate
Z3 and apply the preceding steps to Z3. Repeat this
procedure to process Z4, =5, ... until no pylonic tri-
angulation is left in the current Z,,; then the process
terminates and a required output is produced.

The validity of this procedure is justified by Lem-
mas 1 - 3 along with the results of [3]. In particular,
the finiteness of the procedure is deduced from the
upper bound [3] on the number of vertices in an irre-
ducible triangulation of S — D. In particular, that up-
per bound implies (along with Lemma 3) that Z,, does
not have a pylonic triangulation for any n > K + 1,
where K = 945 for S; and K = 376 for N;. In reality
K is much less than these values. By computer ver-
ification (and also by hand) we have checked that in
fact K =1 for Sy, and K = 2 for Nj.

Let us now mention two examples.

Firstly, this algorithm has been implemented for the
set of two irreducible triangulations of Ny ([1]). The
algorithm gives a set of 6 irreducible triangulations of
the M6bius band, N1 — D, which is precisely the same
as that obtained by some of the authors of this work
in [5], although by using no computational package.

Secondly, we introduce the details of the torus case,

Si.

Example: the once-punctured torus

Input: The set of 21 irreducible triangulations of Sy
(as they are labelled in [8]).

e Z,(51) has 433 non-isomorphic triangulations:
232 of them have no pylonic vertex, 193 have
an only pylonic vertex and 8 have two pylonic
vertices.

e =5(57) has 11612 non-isomorphic triangulations,
none of them is a pylonic triangulation.

e Operations described in Lemma 2 provide:
(i) 184 triangulations; only 80 of them are non-
isomorphic.
(ii) 209 triangulations; only 203 of them are
non-isomorphic.

(iii) 16 triangulations, 10 of them are non-
isomorphic.

(iv) O triangulations.

Output: 293 non-isomorphic combinatorial types of
irreducible triangulations of the once-punctured torus
S1 —D.

3 Final conclusion

It is clear that this algorithm can be implemented for
any closed surface whenever its basis of irreducible

An algorithm that constructs irreducible triangulations of once-punctured surfaces

triangulations is known. In a future contribution we
hope to present the set of irreducible triangulations of
the once-punctured Klein bottle, No — D.

References

1]

2]

3]

[4]

[5]

[6]

7]

8]

19]

[10]
[11]

[12]

(13]

[14]

[15]

[16]

D. Barnette (D. W. Barnette). Generating the trian-
gulations of the projective plane. J. Comb. Theory,
Ser. B, 33, (1982), 222-230.

D. W. Barnette, A. L. Edelson. All 2-manifolds have
finitely many minimal triangulations. Isr. J. Math.,
67, (1989), No. 1:123-128.

A. Boulch, E. Colin de Verdiére, A. Nakamoto. Ir-
reducible triangulations of surfaces with boundary.
Graphs and Combinatorics DOI 10.1007/s00373-012-
1244-1, 2012.

J. Bracho, R. Strausz, Nonisomorphic complete tri-
angulations of a surface. Discrete Math. 232, (2001),
11-18.

M. J. Chavez, S. A. Lawrencenko, A. Quintero, M. T.
Villar. Irreducible triangulations of the Mébius band.
Preprint 2013.

L. Giomi, M. J. Bowick. Elastic theory of defects in
toroidal crystals. Fur. Phys. J. E., 27, (2008), 275—
296.

G. Joret, D. R. Wood. Irreducible triangulations are
small. J. Comb. Theory, Ser. B, 100, (2010), No.
5:446-455.

S. A. Lavrenchenko (S. Lawrencenko). Irreducible tri-
angulations of the torus. J. Sov. Math., 51, No. 5
(1990), 2537-2543; translation from Ukr. Geom. Sb.
30, (1987), 52-62.

S. Lawrencenko, S. Negami. Irreducible triangula-
tions of the Klein bottle. J. Comb. Theory, Ser. B,
70, No. 2 (1997), 265-291.

B. McKay, Practical Graph Isomorphism. Congressus
Numerantium, 30, (1981), 45-87.

B. McKay, nauty User’s Guide
http://pallini.di.uniromal.it/

(Version 2.4)

A. Nakamoto, K. Ota. Note on irreducible triangu-
lations of surfaces. J. Graph Theory, 20, (1995), No.
2:227-233.

S. Negami. Diagonal flips in pseudo-triangulations on
closed surfaces. Discrete Math., 240, (2001), No. 1-
3:187-196. 2001.

E. Steinitz, H. Rademacher, Vorlesungen dber die
Theorie der Polyeder unter Einschluss der Elemente
der Topologie. Berlin: Springer, 1976. [Reprint of the
original 1934 edition.]

T. Sulanke. Note on the irreducible triangulations of
the Klein bottle. J. Comb. Theory, Ser. B, 96, No.
6, (2006), 964-972.

T. Sulanke. Generating irreducible triangulations
of surfaces, preprint, 2006, arXiv:math/0606687v1
[math.CO].

[17] T. Sulanke. Irreducible triangulations of low genus

surfaces, preprint, 2006, arXiv:math/0606690v1

[math.CO].

[18] Wolfram Research, Inc. Mathematica Version 8.0

(Wolfram Research, Inc.) Champaign, Illinois 2010.

[19] Y. Zhongwey, J. Shouwei. STL file generation from

46

digitised data points based on triangulation of 3D
parametric surfaces.Int. J. Adv. Manuf. Technol. 23,
(2004), 882-888.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

On the enumeration of permutominoes

Ana Paula Tomas™*

DCC & CMUP, Faculdade de Ciéncias
Universidade do Porto, Portugal

Abstract

Although the exact counting and enumeration of poly-
ominoes remain challenging open problems, several
positive results were achieved for special classes of
polyominoes. We give an algorithm for direct enumer-
ation of permutominoes [12] by size, or, equivalently,
for the enumeration of grid orthogonal polygons [19].
We show how the construction technique allows us to
derive a simple characterization of the class of convex
permutominoes, which has been extensively investi-
gated recently [4]. The approach extends to some of
its subclasses, namely to the row convex and the di-
rected convex permutominoes.

Introduction

The generation of geometric objects has applications
to the experimental evaluation and testing of geo-
metric algorithms. No polynomial time algorithm
is known for generating polygons uniformly on a
given set of vertices. Some generators employ heuris-
tics [1, 6] or restrict to certain classes of polygons, e.g.,
monotone, convex or star-shaped polygons [18, 20].
Numerous related problems have also been extensively
investigated, as the exact counting or enumeration
of polyominoes [9]. These remain challenging open
problems in computational geometry and enumera-
tive combinatorics. A polyomino is an edge-connected
set of unit squares on a regular square lattice (grid).
Polyominoes are defined up to translations. In this
paper, we give an algorithm for the enumeration of
permutominoes by size, or, equivalently, for the enu-
meration of grid orthogonal polygons (see Fig. 1).
Polyominoes are usually enumerated by area (i.e.,
number of cells). The direct enumeration of polyomi-
noes is a computational problem of exponential com-
plexity. An overview of the main developments con-
cerning direct and indirect approaches is given in [3].
Jensen’s transfer-matrix algorithm [13] — an indirect

*Email: apt@dcc.fc.up.pt. Research partially supported
by the European Regional Development Fund through the
programme COMPETE and by the Portuguese Government
through the FCT — Fundacao para a Ciéncia e Tecnologia un-
der the project PEst-C/MAT/UI0144 /2011, and project JEDI
(PTDC/EIA/66924/2006).

47

@ pra b oah b ¢ A b a’b"
a b '3 ;
— o oy
? o ¢ < ¢ < c ¢ b a”

T

Figure 1: Permutominoes of size 1, 2, and 3 (i.e., with
4, 6, and 8 vertices) and their horizontal partitions.

method — is currently the most powerful algorithm for
counting fixed polyominoes. Exact counts are known
for polyominoes that have up to 56 cells [3, 14]. As
far as we can see, Jensen’s algorithm cannot, be easily
adapted for counting permutominoes.

1 Background

A polygon is called orthogonal if its edges meet at
right angles. If r is the number of reflex vertices of
an n-vertex orthogonal polygon, then n = 2r 4+ 4
(e.g. [16]). Grid orthogonal polygons (grid ogons)
were introduced in [19] as a relevant class for gener-
ation. A grid ogon is an orthogonal polygon without
collinear edges, embedded in a regular square grid,
and having exactly one edge in each line of its mini-
mal bounding square. They were addressed more re-
cently under the name of permutominoes [4, 8, 12],
because they correspond to polyominoes that are de-
termined by a suitable pair of permutations having
the same size. All polyominoes we will consider are
simply-connected and, similarly, all polygons are sim-
ple and without holes. A permutomino that is given
by permutations of {1,2,...,r + 2}, for r > 0, is said
to have size r + 1. The size is the width of its min-
imal bounding square. The topological border of a
permutomino of size r 41 is a grid ogon with r reflex
vertices, and so, it has n = 2r + 4 vertices in total.
In this paper, we give an algorithm for the enu-
meration of all permutominoes by size, based on the
INFLATE-PASTE' technique introduced in [19]. Every

!'Demos at http://www.dcc.fc.up.pt/~apt/genpoly

On the enumeration of permutominoes

grid n-ogon P results from a unit square by apply-
ing INFLATE-PASTE r times, where r = (n —4)/2 is
the number of reflex vertices of P. INFLATE-PASTE
glues a new rectangle to a grid ogon to obtain a new
one with 1 more reflex vertex. The rectangle is glued
by PASTE to an horizontal edge incident to a convex
vertex, say v, must be contained in a region that we
called the free neighbourhood of v (Fig. 2), and is fixed
to v. This region, denoted by F'SN (v), consists of the

Figure 2: INFLATE-PASTE: (a) gluing a rectangle to v
(b) FSN(v) is the shaded region (c) the rectangle is
defined by v and the center of a cell of F'SN(v).

external points that are rectangularly visible from v
and belong to the quadrant with origin v that con-
tains the horizontal edge incident to v (two points a
and b are rectangularly visible if the axis-aligned rect-
angle that has a and b as opposite corners does not
intersect the interior of the polygon). The INFLATE
operation keeps the grid regular: the grid lines are
shifted, if needed, to insert two new horizontal and
vertical lines for the new edges (Fig. 3).

Figure 3: Two applications of INFLATE-PASTE: the
center of the inflated cell becomes a convex vertex of
the polygon created at each step.

In [19], FSN(v) was called the free staircase neigh-
borhood of v. Actually, F.ISN(v) is a Ferrers diagram,
with origin at v, and hence it can be given by a se-
quence of integers, each integer representing the num-
ber of cells that form each row of the diagram. Any
cell in F'SN(v) could be used for growing the polygon
using v. Therefore, for the example given in Fig. 2,
we could produce 9+7+6+4+4+3+2 = 35 distinct
grid ogons using the selected vertex.

2 Direct Enumeration

ECO was introduced in [2] as a construction paradigm
for the enumeration of combinatorial objects of a given
class, by performing local transformations that in-
crease a certain parameter (the size) of the objects.

In this section we propose a direct enumeration pro-
cedure for grid ogons (i.e., permutominoes) using
INFLATE-PASTE. It is based on the existence of a
unique depth-first generating tree for each n-ogon,
once we fix the order for visiting the horizontal par-
tition. One possibility is to define it as the order in-
duced by a clockwise walk around the polygon, start-
ing at its southwest vertex, as in Fig. 4. The bottom

-

7
5 8 H
14
4
.6 \
[&) 7
CW order
2

1

Figure 4: The unique generating tree for the repre-
sented grid ogon. Vertices 1, 2, 3 and 4 in the polygon
are the ones that could still be expanded in our enu-
meration method, and should be visited in this order.

line (i.e., the horizontal line that contains the SW-
vertex) is never moved upwards, but polygons can
move freely along it. Fig. 1 shows how permutomi-
noes can be generated by our method. The vertices
marked with a cross would be no longer available for
expansion.

PermuTOoMINOENUM(P,S,G,no,r)
if r = 0 then return fi
MakeEMpTY(T7S)
while not IsEmpTY(S) do
v:=PoP(S) /*vis (vg,vy) */
epy(v) := the horizontal edge of P that contains v
if IsConvex(v,P) then
for C in FreeNeighbourhood(v, P, G) do
(p, q) := the southwest corner of C
INFLATEGRID(p,q,G)
w1 = (p+ Lvy); w2 == (p+ Lg+ 1);
w3 = (Vg,q + 1)
PasTERECTANGLE(V, [w1, w2, w3], P)
if w1 € InTERIOR(epp(v)) then
Pusu({w2,ws},S,P)
else Pusu({w1, w2, ws},S,P) fi
OutpuTPoLYGON(P,ng + 2)
PermutoMiNOENUM(P,S,G,no + 2,1 — 1)
CuTRECTANGLE(v, (w1, w2, ws], P)
DerLaTEGRID(p + 1,9 + 1,G)
done
fi
Pusu(v,TrS);
done
while not IsEmpTv(TrS) do
Pusu(Por(TrS),S)
done

Here, P is the initial polygon, G a representation
of the grid lines, S a stack that contains the con-
vex vertices of P that are available for expansion,
ng the number of vertices of P and r the maximum
number of reflex vertices of the polygons. PERMU-
TOMINOENUM enumerates recursively all descendants

48

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

of P that have up to ng + 2r vertices. If initially
P :={(1,1),(2,1),(2,2),(1,2)} (w.r.t. the standard
2D cartesian coordinate system and given in CCW-
order), S := {(1,2),(2,2)}, and ng = 4, then the al-
gorithm will enumerate and count all grid ogons that
have up to 2r + 4 vertices.

In contrast to other existing methods for the enu-
meration of polyominoes, PERMUTOMINOENUM, for
permutominoes, does not need to keep an exponen-
tial number of state configurations in order to count
them correctly. Each permutomino is generated ex-
actly once and, hence, there is no need to check for
repetitions. Nevertheless, the running time of the al-
gorithm is dominated by the number of permutomi-
noes generated (and thus it is exponential).

An algorithm for enumerating the convexr permu-
tominoes by size was published recently [10]. Its run-
ning cost is proportional to the number of permutomi-
noes generated. It is quite easy to design a specialized
version of our algorithm for enumerating convex per-
mutominoes with identical complexity. Actually, as
we will see, for convex permutominoes the free neigh-
bourhoods are linear (rectangles of width 1) and only
the two topmost convex vertices can be active.

3 Convex Permutominoes

Although the exact counting and enumeration of poly-
ominoes remain challenging open problems, several
positive results were achieved for special classes of
polyominoes [5, 7, 15], namely for the class of con-
vex polyominoes and some of its subfamilies (e.g.,
directed-convex polyominoes, parallelogram polyomi-
noes, stack polyominoes, and Ferrers diagrams). The
larger class of row-convex (resp. column-convex) poly-
ominoes was considered also [11]. A polyomino is said
to be row-convez (resp. column-convez) if all its rows
(resp. columns) are connected, i.e., the associated or-
thogonal polygon is y-monotone (z-monotone). A
polyomino is said to be convez if it is both row-convex
and column-convex. These classes, which satisfy con-
vexity and/or directness conditions, have been studied
using different approaches and are fairly well charac-
terized, for some parameters, e.g., area and perime-
ter [5]. The corresponding classes of permutominoes
have been addressed recently [4, 8].

The analysis of the transformations performed by
INFLATE-PASTE during the application of PERMU-
TOMINOENUM allow us to derive simple characteri-
zations and exact countings for such classes of per-
mutominoes. Fig. 5 shows all n-vertex convex per-
mutominoes for n = 4,6, 8, each one embedded on a
grid. Only the two topmost convex vertices may be
active for INFLATE-PASTE (so, L and R stand for left
or right). Crossed vertices are inactive in the follow-

ing transformation steps: “u” means that the vertex

49

Rewriting 12 2 1 (=1)
1i2i2i2i1; 11i2i210}

(=1 or greater)
11212707

Figure 5:
size.

Enumerating convex permutominoes by

would be discarded in PERMUTOMINOENUM as well
(due to uniqueness conditions) and “c” means that
the resulting permutomino would not be convex. The
sequence of {0, 1,2}* displayed on the grid top row is
the expansion key of the corresponding permutomino.
Each element of the key gives the number of active
convex vertices that see a certain grid cell (in Fig. 5,
each counter is in its cell). Here, see means that the
cell belongs to the free neighborhood of the vertex.
For all the remaining empty cells, the counter is 0
and, thus, we omitted it. If we add up the elements
of the expansion key of a given convex permutomino,
we get the number of convex permutominoes that it
yields immediately in PERMUTAMINOENUM. In this
way, the expansion keys provide an exact encoding
of the structural features that are relevant for count-
ing convex permutominoes according to the number
of vertices. Actually, it is the key as a whole that
matters but not the particular cells associated to each
counter. By analysing INFLATE-PASTE in the scope
of PERMUTAMINOENUM, we may conclude that the
expansion key of any convex permutomino with r > 0
reflex vertices must be of one of the following forms:

127"+1 1

1270, for1 <j<r-—1,
0271, for 1 < j <r—1, and
0270, for 1 <j <r—2.

INFLATE-PASTE operations acting on convex permu-
tominoes can be seen as rewrite rules. Each rule
rewrites the key of a convex permutomino with r — 1
reflex vertices to the key of one of the convex per-
mutominoes derived from it, having one more reflex
vertex, for » > 1. The rewrite rules are:

1271 LR qortly

121 =L 19270, for1<j<r

1271 =B 0271, for1 <j<r

1270 =L 120, for 1 <j<j <r—1
12770 =R 120+, for 1 <j' <r—1
12770 =R 02i0, for1<j<j <r—1

On the enumeration of permutominoes

0211 B 0271, for 1 <j<j <r—1
0211 =L 020"t for1<j <r—1

0211 =L 020, for 1 <j<j <r—1
02’0 LR 0290, for 1 <j<j <r—2

where L (left) and R (right) identify the topmost ver-
tex selected. For rules with annotation “L, R”, both
vertices can be selected, one at a time. Figs. 6-8 il-
lustrate the idea underlying these rules.

3]

Figure 6: Rewriting 12”1 using the rewrite rules
1271 —L 127+11 and 1271 B 127+1q,

Figure 7: Rewriting 1270 using (a) 127’0 —f
12/'+10 and (b) arule 127'0 —% 0270, for 1 < j < j'.

Figure 8: Rewriting 027'0 using (a) 027°0 —% 0270
and (b) 0270 —® 0270, for some 1 < j < j5'.

The correctness and completeness of this rewrite
system can be checked easily by case-analysis, taking
into account the conditions on convexity.

Proposition 1 Let Agzﬁ be the mumber of convex

permutominoes of the class a2’ 3 with r reflex ver-
tices, for o, € {0,1}, 1 < j <r+1andr > 0.

Then, A"

01 = Agfj)',o’ for all r and j (symmetry by
reflection w.r.t. V-azis) and Ag)j 5 18 inductively de-

fined as follows.

(0) _
A1,1,1 = 1
() (r—1)
A17,T+1,1 = 2A17:r,1 s Jorr >1
r—1
(r) _ (r—1) (r—1) .
Ao = ALY+ DD Al g fori<j<r
j/=max(1,j—1)
—1 —2
AN o 2T AlrD 2r Alr=h) 1<j<r=1
0,5,0 Z 1570 T Z 0,00 for1<j<r—

i'=3 i'=j

The number of convex permutominoes of size n is
given by sequence A126020, in [17]. A closed for-
mula for this number is given in [8]. In a similar way,
we may deduce the recurrences for row-convex permu-
tominoes and the simpler classes of bargraphs, stacks,
and Ferrers diagrams.

References

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

50

[1] T. Auer and M. Held, Heuristics for the generation of
random polygons, in: Proc. CCCG’96, 1996, 38-43.

[2] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pin-
zani, ECO: a methodology for the enumeration of
combinatorial objects, J. Differ. Equ. Appl. 5 (1999),
435-490.

[3] G. Barequet and M. Moffie, On the complexity of
Jensen’s algorithm for counting fixed polyominoes,
J. Discrete Algorithms 5 (2007), 348-355.

[4] P. Boldi, V. Lonati, R. Radicioni, and M. Santini,
The number of convex permutominoes, Information
and Computation 206 (2008), 1074-1083.

[5] M. Bousquet-Mélou, Bijection of convex polyominoes
and equations for enumerating them according to
area, Discrete Appl. Math. 48 (1994), 21-43.

[6] M. Damian, R. Flatland, J. O’Rourke, and S. Ra-
maswami, Connecting polygonizations via stretches
and twangs, Theory of Computing Systems 47 (2010),
674-695.

[7] E. Deutsch, Enumerating symmetric directed convex
polyominoes, Discrete Math. 280 (2004), 225-231.

[8] F. Disanto, A. Frosini, R. Pinzani, and S. Rinaldi, A
closed formula for the number of convex permutomi-
noes, Electron. J. Combin. 14 (2007), #R5T.

[9] S. Golomb, Polyominoes, Princeton U. Press, 1994.

E. Grazzini, E. Pergola, and M.Poneti, On the ex-
haustive generation of convex permutominoes, Pure
Mathematics and Applications 19 (2008), 93-104.

D. Hickerson, Counting horizontally convex polyomi-
noes, J. Integer Sequences 2 (1999), Article 99.1.8.

F. Insitti, Permutation diagrams, fixed points and
Kazhdan-Lusztig R-polynomials, Annals of Combi-
natorics 10 (2006), 369-387.

I. Jensen, Enumerations of lattice animals and trees,
J. Stat. Phys. 102 (2001), 865-881.

I. Jensen, Counting polyominoes: a parallel imple-
mentation for cluster computing, in: Proc. ICCS’03,
LNCS, vol. 2659, Springer, 2003, 203—-212.

A. Del Lungo, E. Duchi, A. Frosini, and S. Rinaldi,
On the generation and enumeration of some classes of
convex polyominoes, Electron. J. Combin. 11 (2004),
#R60.

J. O’Rourke, An alternate proof of the rectilinear art
gallery theorem, J. Geometry 21 (1983), 118-130.

N. J. A. Sloane, The On-Line encyclopedia of integer
sequences, OEIS Foundation, http://oeis.org/.

C. Sohler, Generating random star-shaped polygons,
in: Proc. CCCG’99, 1999.

A. P. Toméas and A. Bajuelos, Quadratic-time linear-
space algorithms for generating orthogonal polygons
with a given number of vertices, in: Proc. CGA’0/-
ICCSA’04, LNCS, vol. 3045, Springer, 2004, 117-126.

C. Zhu, G. Sundaram, J. Snoeyink, and J. S. B. Mit-
chell, Generating random polygons with given ver-
tices, Comput. Geom. 6 (1996), 277-290.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Distance domination, guarding and vertex cover for maximal
outerplanar graphs

Santiago Canales', Gregorio Hernandez*2, Mafalda Martins*'3, and Inés Matos*?

! Universidad Pontificia Comillas de Madrid, Spain
2Universidad Politécnica de Madrid, Spain
3Universidade Aveiro & CIDMA, Portugal

Abstract

In this paper we define a distance guarding concept on
plane graphs and associate this concept with distance
domination and distance vertex cover concepts on tri-
angulation graphs. Furthermore, for any n-vertex
maximal outerplanar graph, we provide tight up-
per bounds for go4(n) (2d-guarding number), y24(n)
(2d-domination number) and f24(n) (2d-vertex cover
number).

Introduction

Domination, covering and guarding are widely studied
subjects in graph theory. Given a graph G = (V, E)
a dominating set is a subset D of V such that ev-
ery vertex not in D is adjacent to a vertex in D. A
subset C' of V is a wvertex cover if each edge of the
graph is incident to at least one vertex of the set.
Thus, a dominating set guards the vertices of a graph
while a vertex cover guards its edges. In plane graphs
these concepts differ from the guarding set concept
that guards the faces of the graph. Let G = (V, E) be
a plane graph, a guarding set is a subset S of V' such
that every face has a vertex in S. There are many pa-
pers and books about domination and its many vari-
ants in graphs, e.g. [4, 8, 9, 10]. Domination was ex-
tended to distance domination by Meir and Moon [11]:
given a graph G, a subset D of V is said to be a dis-
tance k-dominating set if for each vertex u € V. — D,
distg(u,v) < k for some v € D. The minimum car-
dinality of a distance k-dominating set is said to be
the distance k-domination number of G and is de-
noted by vxq(G). In the case of distance domination,

*Research supported by ESF EUROCORES programme Eu-
roGIGA - ComPoSe IP04 - MICINN Project EUI-EURC-2011-
4306.

TEmail: mafalda.martins@ua.pt. Research also supported
by FCT grant SFRH/BPD/66431/2009.

fResearch supported by FEDER funds
COMPETE-Operational Programme Factors of Com-
petitiveness, CIDMA and FCT within project PEst-
C/MAT/UI4106/2011 with COMPETE number FCOMP-
01-0124-FEDER-022690.

through

51

there are also some known results concerning bounds
for vra(G), e.g., [13, 14]. However, if graphs are re-
stricted to triangulations, as far as we know, there
are no known bounds for vx4(G). The distance domi-
nation was generalized to broadcast domination when
the power of each vertex may vary [6]. Given a graph
G = (V, E), a broadcast is a function f:V — INg. A
broadcast is dominating if for every vertex v, there
is a vertex u such that f(u) > 0 and d(u,v) < f(u).
A dominating broadcast f is optimal if)\ f(v)
is minimum over all choices of broadcast dominating
functions for G. The broadcast domination problem
consists in building this optimal function. Note that,
if f(V) = {0, k}, then the broadcast domination prob-
lem is the distance k-dominating problem. If a broad-
cast f provides coverage to the edges of G instead of
covering its vertices, we have a generalization of the
vertex cover concept [2]. A broadcast f is covering if
for every edge (z,y) € F, there is a path P in G that
includes the edge (x,y) and one end of P must be a
vertex u, where f(u) is at least the length of P. A cov-
ering broadcast f is optimal if)~ ., f(v) is minimum
over all choices of broadcast covering functions for G.
Note that, if f(V) = {0,1}, then the broadcast cover
problem coincides with the problem of finding a min-
imum vertex cover. Regarding the broadcast cover
problem when all vertices have the same power (i.e.,
when f(V) ={0,k}, for a fixed k # 1), as far as we
know, there are no published results besides [5] where
the authors propose a centralized and distributed ap-
proximation algorithm to solve it. Concerning the
guarding concept there are also known bounds on the
guarding number g(G). For example, g(G) < |5, for
any n-vertex plane graph [3], and if G is a maximal
outerplanar graph this bound is | % | [7]. Contrary to
the notions of domination and vertex cover on plane
graphs that were extended to include its distance ver-
sions, the guarding concept was not generalized to its
distance version.

In this paper we generalize the guarding concept
on plane graphs to its distance guarding version. We
also formalize the broadcast cover problem when all
vertices have the same power, which we call distance

Distance domination, guarding and vertex cover for maximal outerplanar graphs

k-vertex cover. Since there are no combinatorial re-
sults for the concepts of domination, vertex cover
and guarding on its distance versions on triangulation
graphs (triangulations, for short), we also address this
problem. In the next section we describe some of the
terminology that will be used throughout this paper.

1 Preliminaries

Given a triangulation of a point set T = (V, E), we
say that a bounded face T; of T (i.e., a triangle) is kd-
visible from a vertex p € V, if there is a vertex x € T;
such that distr(x,p) < k — 1. The kd-visibility region
of a vertex p € V comprises the triangles of T' that are
kd-visible from p (see Fig. 1).

(a) (b)

Figure 1: The kd-visible region of p for: (a) k = 1;
(b) k =2.

A kd-guarding set for T is a subset F' C V such that
every triangle of T is kd-visible from an element of F'.
We designate the elements of F' by kd-guards. The kd-
guarding number grqa(T) is the number of vertices in
a smallest kd-guarding set for T'. Note that, to avoid
confusion with multiple guarding [1] - where the typ-
ical notation is k-guarding - we will use kd-guarding,
with an extra “d’. Given a set S and a positive
integer n, we define gpq(S) = max{gra(T) : T =
(V, E) is triangulation with V' = S} and gra(n) =
max{gra(S) : |S| = n}. A kd-vertez cover for T, or
distance k-vertex cover for T, is a subset C' C V such
that for each edge e € E there is a path of length at
most k, which contains e and a vertex of C. The
kd-vertex cover number Brqa(T') is the number of ver-
tices in a smallest kd-vertex cover set for T. Given
a set S and a positive integer n, we define Sq(S) =
max{Bra(S) : T = (V, E) is triangulation with V' =
S} and Bra(n) = max{fra(S) : |S| = n}. Finally,
as already defined by other authors, a kd-dominating
set for T, or distance k-dominating set for T, is
a subset D CV such that each vertex ueV — D,
distp(u,v) < k for some v € D. The kd-domination
number y;4(T) is the number of vertices in a smallest
kd-dominating set for 7. Given a set S and a positive
integer n, we define viq(S) = mazx{wa(T) : T =
(V, E) is triangulation with V' = S} and viq(n) =
max{vka(S) : |S| = n}. Our main goal is to obtain
bounds on Yka(T), gra(T) and Brq(T). We start by

establishing a tight upper bound for g24(n) for a spe-
cial class of triangulations, namely the mazimal out-
erplanar graphs. A graph is a maximal outerplanar
graph if it is a triangulation of a simple polygon with-
out holes [12]. Edges on the exterior face are called
exterior edges, and interior edges otherwise.

In the next section we show that there is a re-
lationship between 2d-guarding, 2d-dominating and
2d-vertex cover sets on triangulations. In sections 3
and 4 we provide upper bounds for gs24(n), y24(n) and
B24(n) on maximal outerplanar graphs and show that
these bounds are tight.

2 Relationship between distance
vertex cover, guarding and
domination on triangulations

We start by showing that the three concepts are dif-
ferent. Fig. 2 depicts 2d-dominating and 2d-guarding
sets for a given triangulation. Note that in Fig. 2(a)
the set {u,v} is 2d-dominating since the remaining
vertices are at distance 1 or 2. However, it is not
a 2d-guarding set because the shaded triangle is not
guarded, as its vertices are at distance 2 from {u,v}.
In 2(b) {w, z} is a 2d-guarding set, however it is not a
2d-vertex cover since any path between the bold edge
and w or z has length at least 3. Therefore, the bold
edge is not covered.

(@) (b)

Figure 2: (a) 2d-dominating set, for a triangulation T’
(b) 2d-guarding set for T'.

Now we are going to establish a relation between
924(T), v24(T) and B24(T). The following results can
be easily generalized to gxa(T), Yxa(T) and Bra(T).

Lemma 1 If C is a 2d-vertex cover of a triangulation
T, then C is a 2d-guarding set and a 2d-dominating
set of T.

Lemma 2 If F is a 2d-guarding set of a triangulation
T, then F is a 2d-dominating set of T.

The previous lemmas prove the following result.
Theorem 3 Given a triangulation T the minimum

cardinality goq(T) of any 2d-guarding set wverifies
Y2d(T) < g2a(T) < Boa(T).

52

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

R

Figure 3: (a) A 2d-dominating set for a triangulation 7' (black vertices); (b) a 2d-guarding set for T (gray
vertices); (c) each of the bold edges needs a different vertex to be 2d-covered.

Note that the inequalities above can be strict, as
we can see in the triangulation 7" presented in Fig. 3,
where Y24(T) = 2, g2q4(T) = 3, and B24(T) > 4.

2d-
out-

3 2d-domination and
guarding of maximal
erplanar graphs

In this section we establish upper bounds for g4(n)
and y24(n) on maximal outerplanar graphs. In order
to do this, and following the ideas of O’Rourke [12],
we first need to introduce some lemmas.

Lemma 4 Suppose that f(m) guards are always suf-
ficient to 2d-guard any outerplanar maximal graph G
with m wvertices. Then if G has two guards placed
at any two adjacent vertices or one guard placed at
any one of its vertices, then f(m —2) or f(m —1)
additional guards are sufficient to 2d-guard G, respec-
tively.

Lemma 5 Let G be an outerplanar maximal graph
with n > 2k vertices. There is an interior edge e
of G that partitions G into two pieces, one of which
contains m = k,k+1,...,2k — 1 or 2k — 2 exterior
edges of G.

Theorem 6 FEvery n-vertex mazximal outerplanar
graph, with n>5, can be 2d-guarded by %] 2d-
guards. That is, goa(n) < [Z] for alln >5.

Proof. For 5 < n < 11, the truth of the theorem
can be easily established. It should be noted that
for n =5 the 2d-guard can be placed randomly and
for n =6 it can be placed at any vertex of degree
greater than 2. Assume that n > 12 and that the
theorem holds for all n’ <n. Lemma 5 guarantees
the existence of an interior edge e that divides G into
two maximal outerplanar graphs G and G, such that
G4 has m exterior edges of G with 6 < m < 10. The
vertices of G are labeled with 0,1,...,n — 1 such that
e is (0,m). Each value of m is considered separately.
We present the cases m = 6 and m = 9.

Case m = 6. G has m 4+ 1 =7 exterior edges, thus
G, can be 2d-guarded with one guard. Gy has n —5

53

exterior edges including e, and by induction hypothe-
sis, it can be 2d-guarded with | %] = [£ |—1 guards.

Thus G and G2 together can be 2d-guarded by | %]
guards.

Case m = 9. The presence of any of the internal edges
(0,8), (0,7), (0,6), (9,1), (9,2) and (9,3) would violate
the minimality of m. Thus, the triangle T in G that
is bounded by e is either (0,5,9) or (0,9,4). Since these
are equivalent cases, suppose that T'is (0,5,9) (see Fig.

4(a)).

(b)

Figure 4: (a) The triangle T'is (0,5,9); (b) the internal
edge (0,4) and the triangle (6,7,8) are present.

The pentagon (5,6,7,8,9) can be 2d-guarded by plac-
ing one guard at a chosen vertex. However, to 2d-
guard the hexagon (0,1,2,3.45) we cannot place a
guard randomly.We will consider two separate cases:
(i) The internal edge (0,4) is not present: if a guard
is placed at vertex 5, then the hexagon (0,1,2,3,4,5)
is 2d-guarded, thus G; is 2d-guarded. Since G2 has
n — 8 edges it can be 2d-guarded by [2=%] < [2] -1
guards applying the induction hypothesis. This yields
a 2d-guarding of G by | £ | guards; (i) The internal
edge (0,4) is present: if a guard is placed at vertex
0, then G; is 2d-guarded unless the triangle (6,7,8)
is present in the triangulation (see Fig. 4(b)). In
any case, two 2d-guards placed at vertices 0 and 9
guard G;. G2 has n — 8 exterior edges, including
e. By lemma 4 the two guards placed at vertices 0
and 9 allow the remainder of G2 to be guarded by
f(n—8—2) = f(n—10) additional 2d-guards. Recall
that f(n') is the number of 2d-guards that are always
sufficient to guard a maximal outerplanar graph with

Distance domination, guarding and vertex cover for maximal outerplanar graphs

n/ vertices. By the induction hypothesis f(n') = [% .

Thus, [252] = |2] — 2 guards suffices to 2d-guard
Gy. Together with the guards placed at vertices 0
and 9 that 2d-guard G, all G is guarded by [% | 2d-

guards.

O

To prove that this upper bound is tight we need
to construct a maximal outerplanar graph G of or-
der n such that go4(G) = [£]. Fig. 5 shows a maxi-
mal outerplanar graph G for which 724(G) = %, since
the black vertices can only be 2d-dominated by dif-
ferent vertices. Thus, v24(n) > %. Note that this
example can be generalized to kd-domination to ob-

tain yrq(n) > o

(2k+1)"

el)
7

Figure 5: A maximal outerplanar graph G for which
Y24(G) = .

According to theorem 3, 724(G) < ¢24(G), so
| 2] < g24(G). In conclusion, ¥ | 2d-guards are oc-
casionally necessary and always sufficient to guard a
n-vertex maximal outerplanar graph G. On the other
hand, we can also establish that voq = [%], since
| 2] < 724(n) and v2q(n) < g24(n), for all n. Thus,
it follows:

Theorem 7 Fvery n-verter mazimal outerplanar
graph with n>5 can be 2d-guarded (and 2d-
dominated) by || guards. This bound is tight.

4 2d-covering of maximal outer-
planar graphs

In this section we determine an upper bound for 2d-
vertex cover on maximal outerplanar graphs which is
also tight.

Lemma 8 Suppose that f(m) vertices are always suf-
ficient to 2d-cover any outerplanar mazimal graph G
with m vertices. If we randomly choose a vertex of G
to be a 2d-covering vertex, then f(m — 1) additional
vertices are sufficient 2d-cover G.

Theorem 9 FEvery n-vertex maximal outerplanar
graph, with n >4, can be 2d-covered with || ver-
tices. That is, B2q4(n) < |] for all n > 4.

Now, we will prove that this upper bound is tight.
The bold edges of the maximal outerplanar graph il-
lustrated in Fig. 6 can only be 2d-covered from differ-
ent vertices, and therefore 824(n) > %. To conclude:

Theorem 10 FEvery n-vertex mazximal outerplanar
graph with n >5 can be 2d-covered by |G| vertices.
This bound is tight.

Figure 6: A maximal outerplanar graph G for which

Baa(G) = 7.

References

[1] P. Belleville, P. Bose, J. Czyzowicz, J. Urrutia, J.
Zaks, K-vertex guarding simple polygons, Comput.
Geom. Theory Appl. , 42(4) (2009), 352-361.

[2] J.R.S. Blair and S.B. Horton, Broadcast covers in
graphs, Congr. Num. 173 (2005), 109-115.

[3] P. Bose, T. Shermer, G. Toussaint, and B. Zhu,
Guarding Polyhedral Terrains, Computational Geom-
etry: Theory and Applications, 6(3)(1997), 173-185.

[4] C.N. Campos and Y. Wakabayashi, On dominat-
ing sets of maximal outerplanar graphs, Discrete
Appl.Math, 161(3) (2013), 330-335.

[5] Q. Chen, L. Zhao, Approximation algorithms for
the L-distance vertex cover problem, Proc. ICTMF
(2012), Bali, Indonesia, 100-104.

[6] D. Erwin, Dominating broadcasts in graphs, Bull.
Inst. Combin. Appl. 42 (2004), 89-105.

[7] S. Fisk. A short proof of Chvatal’s watchman theo-
rem, J. Combin. Theory Ser. B, (24) (1978), 374.

[8] T.-W. Haynes, S.T. Hedetniemi, P.J. Slater, Funda-
mentals of Domination in Graphs, M. Dekker, 1998.

[9] E. King, J. Pelsmajer, Dominating sets in plane tri-
angulations, Discret Math. 310(17-18) (2010), 2221
2230.

[10] L.R. Matheson, R.E. Tarjan, Dominating sets in pla-
nar graphs, Eur. J. Combin. 17(6) (1996), 565-568.

[11] A. Meir, J.W. Moon, Relations between packing and
covering number of a tree, Pacific J. Math 61(1)
(1975), 225-233.

[12] J. O’Rourke, Art Gallery Theorems and Algorithms,
Oxford University Press, Inc., New York, USA, 1987.

[13] F. Tian, J. Xu, Bounds for distance domination num-
bers of graphs, Journal of University of Science and
Technology of China 34(5) (2004), 529-534.

[14] F. Tian, J. Xu, A note on distance domination num-
bers of graphs, Aust. J. of Combin 43 (2009), 181—
190.

54

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Abstract Voronoi diagrams

Rolf Klein*

Universitdt Bonn, Institut fiir Informatik I

Abstract

Abstract Voronoi diagrams are a unifying framework
that covers many types of concrete Voronoi diagrams.
This talk reports on the state of the art, including
recent progress.

Introduction

Concrete Voronoi diagrams [1] are mostly defined in
terms of sites and distance, and both concepts can
vary greatly. Abstract Voronoi diagrams [6] are built
on what most concrete diagrams have in common: a
system of simple bisecting curves J(p,q) = J(¢,p),
where p, g are just indices from a set S of n elements.
Each curve J(p, q) divides the plane into two domains,
D(p,q) and D(q,p). The abstract Voronoi region of p
with respect to S is defined by

VR(p,S):= (] D(pa)
q€S\{p}

and the abstract Voronoi diagram of S is just the plane
minus all Voronoi regions.

An interesting question is what properties to re-
quire of the curves J(p,q). They should be as weak
as possible for generality, but strong enough to en-
sure that useful “Voronoi” structures result from the
above definitions. It turns out [7] that the following
are sufficient.

(A1) Each curve J(p,q), where p # ¢, is unbounded.
After stereographic projection to the sphere,
it can be completed to a closed Jordan curve
through the north pole.

For any three indices p,q,r in S, and S’ :=
{p?q7/r}7

(A2) each Voronoi region VR(p, S’) is path-wise con-
nected,

(A3) each point of the plane belongs to the closure of
a Voronoi region VR(p, S").

*Email: rolf.klein@uni-bonn.de. This work was supported
by the European Science Foundation (ESF) in the EURO-
CORES collaborative research project EuroGIGA/VORONOL

55

=

QP qr p/r

p\T q\r q/p

Figure 1: Admissible curve systems

Informally, if the bisecting curves are un-
bounded and behave decently, and if any triplet
J(p,q),J(p,r),J(¢q,r) is situated as shown in Fig-
ure 1, the AVD theory applies.

1 Results

This means that structural results and efficient algo-
rithms become available without further effort [7].

Theorem 1 V(S) is a planar graph of complexity
O(n). It can be constructed in an expected number
of O(nlogn) many steps.

If we replace Axiom A2 by the more general re-
quirement

(A2’) Each Voronoi region VR(p, S’) has at most s con-
nected components

(and assume that any two curves intersect only
finitely often), the above result can be generalized as
follows [3].

Theorem 2 Abstract Voronoi diagrams with discon-
nected regions can be computed in an expected number

of
n .
@) sQnZﬁ
=3 7

steps, where m; denotes the average number of faces
per region in all AVDs of j sites from S.

Abstract Voronoi diagrams

One can extend the definition of abstract Voronoi
diagrams to orders k£ > 1 by defining

VRMP,S):== () D.a.

pEP, g S\ P

For order k = n—1, the resulting AVDs are trees [9] of
linear size. In the general case the following complex-
ity result holds. Here we assume that all curves are
in general position, and that the standard Voronoi-
regions are non-empty.

Theorem 3 The abstract order-k Voronoi diagram
VF(S) has at most 2k(n — k) many faces. This bound
can be achieved.

2 Conclusion

Open is the case of closed bisecting curves.

References

[1] F. Aurenhammer, R. Klein, and D.-T. Lee, Voronoi
Diagrams and Delaunay Triangulations, World Sci-
entific Publishing Company, to appear August 2013.

[2] C. Bohler, P. Cheilaris, R. Klein, C.H. Liu, E. Pa-
padopoulou, and M. Zavershynskyi, On the complex-
ity of higher order abstract Voronoi diagrams, to be
presented at ICALP’ 13.

[3] C. Bohler and R. Klein, Abstract Voronoi diagrams
with disconnected regions, Bonn 2013, manuscript.

[4] C. Bohler and R. Klein, Point sites with individual
distance functions, Bonn 2012, manuscript.

[5] A. G. Corbalan, M. Mazon, and T. Recio, Geometry
of bisectors for strictly convex distance functions, In-
ternational Journal of Computational Geometry and
Applications 6(1) (1996), 45-58.

[6] R. Klein, Concrete and abstract Voronoi diagrams,
Lecture Notes in Computer Science, 400, Springer-
Verlag, 1987.

[7] R. Klein, E. Langetepe, and Z. Nilforoushan, Ab-
stract Voronoi diagrams revisited, Computational
Geometry: Theory and Applications 42(9) (2009),
885-902.

[8] R. Klein, K. Mehlhorn, and S. Meiser, Random-
ized incremental construction of abstract Voronoi di-
agrams, Computational Geometry: Theory and Ap-
plications 3 (1993), 157-184.

[9] K. Mehlhorn, S. Meiser, and R. Rasch, Furthest
site abstract Voronoi diagrams, International Journal

of Computational Geometry and Applications 11(6)
(2001), 583-616.

56

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Equipartitioning triangles

Pedro Ramos*! and William Steiger’?

!Department of Physics and Mathematics, University of Alcal4, Alcald de Henares, Spain.
2Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey
08854-8004.

Abstract

An intriguing conjecture of Nandakumar and Ramana
Rao is that for every convex body K C R?, and for
any positive integer n, K can be expressed as the
union of n convex sets with disjoint interiors and each
having the same area and perimeter. The first difficult
case - n = 3 - was settled by Barany, Blagojevi¢, and
Szucs using powerful tools from algebra and equivari-
ant topology. Here we give an elementary proof of
this result in case K is a triangle, and show how to
extend the approach to prove that the conjecture is
true for triangles.

Introduction

Let K be a convex body in the plane. Nandakumar
and Ramana Rao [7] noticed that if a ham-sandwich
cut for K were rotated through 7 radians - always
maintaining a bisection of K - then at some point in
this process, K is partitioned into two convex parts
with disjoint interiors, and each having the same area
and perimeter. A slightly more careful argument us-
ing this fact, along with induction, was given to show
that for n = 2¥, K can always be partitioned into n
convex subsets, each with the same area and perime-
ter. They made the intriguing

Conjecture 1 For everyn € N and all convex bodies
K C R?%, K is the disjoint union of n convez pieces,
each with the same area and perimeter.

The conjecture describes an n—equipartition of K (be-
cause of the n equal areas) which is in addition fair,
by virtue of the equal perimeters. Observe that, in
the related problems of cake partitioning [1] only the
perimeter of 0K is taken into account.

*Email: pedro.ramos@uah.es. Partially supported by MEC
grant MTM2011-22792 and by the ESF EUROCORES pro-
gramme EuroGIGA, CRP ComPoSe, under grant EUI-EURC-
2011-4306.

TEmail: steiger@cs.rutgers.edu. Work supported in part by
grant 0944081, National Science Foundation, USA. The author
thanks The University of Alcala for supporting a visit to their
Department of Mathematics. He is grateful to that department
for their congenial hospitality.

57

Barany et. al. [3], using heavy-duty tools from alge-
bra and equivariant topology settled the case n = 3:
A 3—fan is a point P in the plane with three rays
emanating from it. It is convex if all angles are at
most 7. It equipartitions K if the three rays divide
K into three regions of equal area, and it is fair, if
these regions also have equal perimeter. Barany et.
al. showed that there is a convex 3—fan that makes
a fair equi-partition of K. Subsequently, Aronov and
Hubard [2] and then Karasev [6], showed that the con-
jecture was true for n = p*, a prime power, and also
in dimension d > 2, with “area” replaced by “volume”
and “perimeter”; by “surface area”. Blagojevi¢ and
Ziegler found some problems with the proofs in these
two papers, so they established the results - and more
- using different tools. In the present paper, in an at-
tempt to understand some of the geometric features
of this problem and why - or why not - it may be
difficult, we use (only) elementary methods to study
the conjecture for R?, and when K is a triangle. We
call a 3—fan interior for K if the apex P is interior to
K; otherwise it is exterior. In the first case, all three
rays play a role in the partition. In the second case,
the partition is simply via two chords (which might
meet on the boundary of K, but not in its interior).
Because our results concern only exterior 3-fans, we
will state them using chords. A main result of this
paper is

Theorem 1 Every triangle has a fair equi-partition
defined by two disjoint chords.

More importantly, the ideas used to prove this re-
sult can be extended to show that every triangle has
a fair n-partition defined by n — 1 disjoint chords.

Corollary 2 For every n > 1, every triangle has a
fair, n-equipartition using n — 1 disjoint chords.

In [7] it was observed that when K is a triangle,
it can be covered by n = k? disjoint triangles simi-
lar to K, and all with the same area (and perimeter).
But Theorem 1 is a new step toward resolving Con-
jecture 1, if only for triangles.

Equipartitioning triangles

A P P B

Figure 1: Illustration for Lemma 2.

1 Some details

In this section we describe some ideas behind the
proofs for our results. The full proofs will appear in
the actual paper.

We are able to understand this problem in the tri-
angle case partly due to a simple tool that describes
how perimeters change when a chord in a partition is
moved slightly while still preserving the areas of all
regions.

We use a Cartesian coordinate system in the Eu-
clidean plane, and denote by AB and |AB]|, respec-
tively, the segment defined by points A and B and its
length. Vector O—}% and point P will be identified if the
context is clear enough. The list of points AB--- D
will be used to denote the corresponding polygon and,
finally, 7(-) will be the perimeter of the polygon.

Let A, B, C be non collinear points, and fix A as
the origin of the coordinate system.

Lemma 3 Consider points P € AB and QQ € AC
such that |AP| < |AQ|. Let P’ = tP and let Q' = +Q
(then the area of APQ equals the area of AP'Q)’).

1. m(AP'Q") and m(BCQ'P’) are convex functions
of t, achieving their minima when |AP’'| = |AQ’|.

2. If we write Amy = w(AP'Q") — n(APQ) and
Amy = 1(BCQ'P') — n(BCQ'P’) then |Am| >
|A’/T2|.

Consider a unit area triangle A = ABC. Without
loss of generality, we can assume that the smallest
side is AB and that the coordinates of its vertices are
A = (0,0),B = (b,0), and C = (¢,2/b), with b > 0
and ¢ > b/2, as in the figure above. If we take points
U = (b/3,0) and V = (2b/3,0), A is partitioned into
Ay = CAU, Ay = CUV, and A3 = CV B, all with the
same area. The goal is to rotate the chords CU and
CV maintaining equality of all three areas, but in such
a way as to force all three perimeters to coincide. To
describe this process unambiguously, we place points
D and E on the boundary of A. Initially both points

A U \%4 B

Figure 2: Rotation for an isosceles triangle.

are placed on C. We then manipulate the chords DU
and E'V by moving the endpoints along the boundary
of A, thus altering the three sets in the partition. We
use the notation 7; to denote the perimeter of region
i.

The case where © = b/2, and A is isosceles, is
easiest. Here, we move chord DU counter-clockwise
(maintaining the area of A; = DAU), and chord EV
clockwise (maintaining the area of Ay = EVB) un-
til U and V coincide at F' = (b/2,0) (see Figure 2).
During this process the middle region is a pentagon
Ay = CDUVE, ending at Ay = CDFE. If we also
keep U+V = (b,0), there will be a position where the
partition is fair, by the intermediate value theorem,
since A; and Aj initially have equal perimeters, but
larger than that of Ag, and at the end, m; = 73 < 7o,
by virtue of AB being the smallest side of A.

When A is not isosceles, we rotate DU, again main-
taining the area, till the perimeters of two regions are
equal. Observe that, during the rotation, both 7, and
o decrease. If b/2 < ¢ < 2b/3, because we start with
perimeters 7w > w3 > 7o, we must reach case 1 in
Figure 3, where m; = w3 > mo. If ¢ > 2b/3, we start
with perimeters m; > w9 > 7w3. When rotating DU we
can get m = 73 < m (case 2) or m; = m > 73 (case
3).

Using Lemma 3 we know how to proceed in each
case. For case 1, we rotate the chord EV clockwise,
and the chord DU counterclockwise, preserving equal-
ity for the areas of regions 1 and 3. For case 2, we
rotate the chords in the same way, maintaining now
equal areas for regions 2 and 3. Finally, for case 3
both chords are rotated counterclockwise, keeping ar-
eas of regions 1 and 2 equal. Theorem 1 will be proven
if we show that during this rotation, equality of the
three perimeters is achieved.

For cases 1 and 2, the key is to observe that the foot
of the left chord reaches the midpoint of AB first. If U
is the midpoint of AB, we consider the triangle U BE’,
congruent with AUD (see Figure 4,left). From this,
it is not hard to see that Aj has to be VBE, with
V € UB and that m < ms.

For case 3, consider a partition into three pieces of

58

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

C C

Al AQ Ag Al AQ AB

A \%4 B A \%4 B

Case 1: m = w3 > 7o Case 2: my = w3 < m

c

A1 /As] Asg

A 14 B
Case 3: m = w9 > T3

Figure 3: After the first rotation, two perimeters are
equal.

Figure 4: Situation at the end of the rotation.

equal area (but different perimeters) using two chords
parallel to BC' (see Figure 4,right). In this setting, it
can be shown that m 4+ my < 2m3. Therefore, if we
consider now the chord that divides AV E into two
pieces of equal area and perimeter, from Lemma 3 it
follows that perimeters of regions 1 and 2 are smaller
and in that situation we must have m; = m < 73.

The approach of the arguments above can be ap-
plied to prove the existence of a fair n-equipartition of
every triangle. Take points V; = (ib/n,0) and points
U;,i =0,...,n; initially all U; = C. The n— 1 chords
U;Viyi = 1,...,n — 1 partition A into n triangles
(A; = Ui1Vi1Vii = 1,...,n), of equal area. We
order the chords left to right, and so the chord with
foot at V; is the i-th chord. The chords for which
Vi < c are called left chords, and the rest are the right
chords.

We start by rotating the first chord counterclock-
wise, until the perimeter of the first region is equal,
either to the perimeter of the second region, or to
the perimeter of the last one. In the first case, we

59

continue by rotating the first and the second chord
(both counterclockwise), maintaining equality of the
perimeters of the first two regions. In the second case,
we continue by rotating the first chord counterclock-
wise, and the last chord clockwise, again maintaining
equal perimeters for the involved regions. This pro-
cess can be iterated, and when we reach the “central
region” (the one in between the last left chord and the
first right chord), we will have cases analogous to the
ones in Figure 3. We proceed in the same way here,
and it can be shown than equality of all perimeters
is obtained before reaching a critical situation. The
proof of this fact is more involved and will appear in
the full version of this paper.

2 Discussion

It is clear that an equilateral triangle has two distinct
fair 3-equipartitions that are interior (as well as three
exterior ones - for each vertex, the process outlined in
the previous section produces an equi-partition with
an exterior 3-fan). It is easy to see that skinny tri-
angles do not have fair interior 3-equipartitions. It
would be interesting to characterize which triangles
have equipartitions both exterior and interior, and
which have only exterior ones.

It is easy to see that fair equipartitions of disks have
to be radial, with the vertex at the center. Therefore,
we cannot expect to extend the approach of this paper
to the general case. Nevertheless, some convex bod-
ies may have fair n-equipartitions produced by n — 1
disjoint chords. It would be interesting to try to char-
acterize this family.

References

[1] J. Akiyama and A. Kaneko and M. Kano and G. Naka-
mura and E. Rivera-Campo and S. Tokunaga and
J. Urrutia. “Radial perfect partitions of convex sets
in the plane". Discrete and computational geometry
(Tokyo, 1998), 1-13, Lecture Notes in Comput. Sci.,
1763, Springer, Berlin, 2000.

[2] B. Aronov and A. Hubard. “Convex equipartitions of
volume and surface area”. arXiv.org/abs/1010.4611,
2010.

[3] I. Barany, L., P. Blagojevi¢, and A. Szucs. “Equiparti-
tioning by a convex 3-fan”. Advances in Mathematics,
223 (2), 579-593, 2010.

[4] I. Barany, 1., P. Blagojevié¢, and A. Blagojevi¢ “Func-
tions, measures, and equipartitioning k-fans”. Discrete
and Computational Geometry, 2013, to appear.

[5] P. Blagojevi¢ and G. Ziegler. “Convex equipar-
titions by equivariant obstruction theory”.
arXiv:1202.5504v2, 2012.

[6] R. Karasev. “Equipartition of several measures”.
arXiv:1011.4762, 2010.

Equipartitioning triangles

[7] R. Nandakumar and N. Ramana Rao “Fair’ parti-
tions of polygons’ - an introduction” Proc. Indian
Academy of Sciences - Mathematical Sciences (to ap-
pear); hitp://arziv.org/abs/0812, 2010.

60

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

On the nonexistence of k-reptile simplices in R?> and R* *

Jan Kyncl't and Zuzana Safernovat!

! Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles University,
Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Praha 1, Czech Republic

Abstract

A d-dimensional simplex S is called a k-reptile (or a
k-reptile simplex) if it can be tiled without overlaps by
k simplices with disjoint interiors that are all mutu-
ally congruent and similar to S. For d = 2, triangular
k-reptiles exist for many values of k£ and they have
been completely characterized by Snover, Waiveris,
and Williams. On the other hand, the only k-reptile
simplices that are known for d > 3, have k = m¢,
where m is a positive integer. We substantially sim-
plify the proof by Matousek and the second author
that for d = 3, k-reptile tetrahedra can exist only for
k = m3. We also prove a weaker analogue of this
result for d = 4 by showing that four-dimensional k-

reptile simplices can exist only for k = m?2.

1 Introduction

A closed set X C R? with nonempty interior is
called a k-reptile (or a k-reptile set) if there are
sets X1, Xo,..., X} with disjoint interiors and with
X =X UXoU---UXj that are all mutually congru-
ent and similar to X. Such sets have been studied in
connection with fractals and also with crystallography
and tilings of R? [4, [8] 9} [T1].

It easy to see that whenever S is a d-dimensional
k-reptile simplex, then all of R? can be tiled by con-
gruent copies of S: indeed, using the tiling of S by its
smaller copies S, ..., Sk as a pattern, one can induc-
tively tile larger and larger similar copies of S. On
the other hand, not all space-filling simplices must be
k-reptiles for some k > 2.

Clearly, every triangle tiles R2. Moreover, every
triangle T is a k-reptile for k = m?2, since T can be
tiled in a regular way with m? congruent tiles, each

*The authors were supported by the project CE-ITI (GACR.
P202/12/G061) of the Czech Science Foundation, by the grant
SVV-2013-267313 (Discrete Models and Algorithms) and by
project GAUK 52410. The research was partly conducted dur-
ing the Special Semester on Discrete and Computational Geom-
etry at Ecole Polytechnique Féderale de Lausanne, organized
and supported by the CIB (Centre Interfacultaire Bernoulli)
and the SNSF (Swiss National Science Foundation).

TEmail: kyncl@kam.mff.cuni.cz

tEmail: zuzka@kam.mff.cuni.cz

61

positively or negatively homothetic to 7. See e. g.
Snover et al. [I9] for an illustration.

The question of characterizing the tetrahedra that
tile R? is still open and apparently rather difficult.
The first systematic study of space-filling tetrahedra
was made by Sommerville. Sommerville [20] discov-
ered a list of exactly four tilings (up to isometry and
rescaling), but he assumed that all tiles are prop-
erly congruent (that is, congruent by an orientation-
preserving isometry) and meet face-to-face. Ed-
monds [6] noticed a gap in Sommerville’s proof and
by completing the analysis, he confirmed that Som-
merville’s classification of proper, face-to-face tilings
is complete. In the non-proper and non face-to-face
situations there are infinite families of non-similar
tetrahedral tilers. Goldberg [10] described three such
families, obtained by partitioning a triangular prism.
In fact, Goldberg’s first family was found by Som-
merville [20] before, but he selected only special cases
with a certain symmetry. Goldberg [I0] noticed that
even the general case admits a proper tiling of R3.
Goldberg’s first family also coincides with the family
of simplices found by Hill [14], whose aim was to clas-
sify rectifiable simplices, that is, simplices that can be
cut by straight cuts into finitely many pieces that can
be rearranged to form a cube. The simplices in Gold-
berg’s second and third families are obtained from the
simplices in the first family by splitting into two con-
gruent halves. According to Senechal’s survey [17], no
other space-filling tetrahedra than those described by
Sommerville and Goldberg are known.

For general d, Debrunner [5] constructed |d/2] + 2
one-parameter families and a finite number of addi-
tional special types of d-dimensional simplices that
tile R Smith [I8] generalized Goldberg’s con-
struction and using Debrunner’s ideas, he obtained
(1d/2] + 2)¢(d)/2 one-parameter families of space-
filling d-dimensional simplices; here ¢(d) is the Eu-
ler’s totient function. It is not known whether for
some d there is an acute space-filling simplex or a
two-parameter family of space-filling simplices [I§].

In recent years the subject of tilings has received
a certain impulse from computer graphics and other
computer applications. In fact, our original motiva-
tion for studying simplices that are k-reptiles comes
from a problem of probabilistic marking of Internet

On the nonexistence of k-reptile simplices in R? and R*

packets for IP traceback [I, 2]. See [15] for a brief
summary of the ideas of this method. For this appli-
cation, it would be interesting to find a d-dimensional
simplex that is a k-reptile with & as small as possible.

For dimension 2 there are several possible types
of k-reptile triangles, and they have been completely
classified by Snover et al. [19]. In particular, k-reptile
triangles exist for all k& of the form a? 4 b%, a? or
3a? for arbitrary integers a,b. In contrast, for d > 3,
reptile simplices seem to be much more rare. The
only known constructions of higher-dimensional k-
reptile simplices have & = m¢. The best known exam-
ples are the Hill simplices (or the Hadwiger—Hill sim-
plices) [5, 12, [14]. A d-dimensional Hill simplex is the
convex hull of vectors 0, by, by +ba, ..., by +---+ by,
where by,bs,...,bq are vectors of equal length such
that the angle between every two of them is the same
and lies in the interval (0, 3 + arcsin 15).

Concerning nonexistence of k-reptile simplices in
dimension d > 3, Hertel [I3] proved that a 3-
dimensional simplex is an m3-reptile using a “stan-
dard” way of dissection (which we will not define here)
if and only if it is a Hill simplex. He conjectured
that Hill simplices are the only 3-dimensional reptile
simplices. Herman Haverkort recently pointed us to
an example of a k-reptile tetrahedron which is not
Hill, which contradicts Hertel’s conjecture. In fact,
except for the one-parameter family of Hill tetrahe-
dra, three other space-filling tetrahedra described by
Sommerville [20] and Goldberg [10] are also k-reptiles
for every k = m3. The simplices and their tiling are
based on the barycentric subdivision of the cube. The
construction can be naturally extended to find simi-
lar examples of d-dimensional k-reptile simplices for
d > 4 and k = m?. Matougek [I5] showed that there
are no 2-reptile simplices of dimension 3 or larger. For
dimension d = 3 Matousek and the second author [16]
proved the following theorem.

Theorem 1 [16] In R3, k-reptile simplices (tetrahe-
dra) exist only for k of the form m3, where m is a
positive integer.

We give a new, simple proof of Theorem [in Sec-
tion [B

Matousek and the second author [16] conjectured
that a d-dimensional k-reptile simplex can exist only
for k of the form m? for some positive integer m.
We prove a weaker version of this conjecture for four-
dimensional simplices.

Theorem 2 Four-dimensional k-reptile simplices
can exist only for k of the form m?, where m is a
positive integer.

Four-dimensional Hill simplices are examples of k-
reptile simplices for k = m®*. Whether there exists a

four-dimensional m?2-reptile simplex for m non-square
remains an open question.

2 Angles in simplices and Cox-
eter diagrams

Given a d-dimensional simplex S with vertices
vo, ..., 04, let F; be the facet opposite to v;. A dihe-
dral angle 3; ; of S is the internal angle of the facets
F,; and Fj, that meet at the (d — 2)-face F; N Fj.

An edge-angle of S is the internal (d — 1)-
dimensional angle incident to an edge and can be rep-
resented by a (d — 2)-dimensional spherical simplex.

The Cozeter diagram of S is a graph ¢(S) with la-
beled edges such that the vertices of ¢(S) represent
the facets of S and for every pair of facets F; and Fj,
there is an edge e; ; labeled by the dihedral angle §3; ;.

Observation 3 The edge-angles of a four-
dimensional simplex S can be represented by
spherical triangles, whose angles are dihedral angles
in S. Therefore, an edge-angle in S represented by a
spherical triangle with angles o, 8,7 corresponds to a
triangle in the Cozeter diagram with edges labeled by

a, B,7. 0

The most important tool we use is Debrunner’s
lemma [5, Lemma 1], which connects the symmetries
of a d-simplex with the symmetries of its Coxeter di-
agram (which represents the “arrangement” of the di-
hedral angles). This lemma allows us to substantially
simplify the proof of Theorem [and enables us to
step up by one dimension and prove Theorem 2] which
seemed unmanageable before.

Lemma 4 (Debrunner’s lemma [5]) Let S be a
d-dimensional simplex. The symmetries of S are in
one-to-one correspondence with the symmetries of its
Cozeter diagram c(S) in the following sense: each
symmetry ¢ of S induces a symmetry ® of ¢(S) so
that p(v;) = v; & ®(F;) = Fj, and vice versa.

3 A simple proof of Theorem [I]

We proceed as in the original proof, but instead of us-
ing the theory of scissor congruence, Jahnel’s theorem
about values of rational angles and Fiedler’s theorem,
we only use Debrunner’s lemma (Lemma HI).

Assume for contradiction that S is a k-reptile tetra-
hedron where k is not a third power of a positive inte-
ger. A dihedral angle « is called indivisible if it cannot
be written as a linear combination of other dihedral
angles in S with nonnegative integer coefficients.

The following lemmas are proved in [16].

62

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Lemma 5 [16, Lemma 3.1] If a is an indivisible di-
hedral angle in S, then the edges of S with dihedral
angle o« have at least three different lengths.

Lemma 6 [16, Lemma 3.3] One of the following two
possibilities occur:

(i) All the dihedral angles of S are integer multiples
of the minimal dihedral angle «, which has the
form - for an integer n > 3.

(ii) There are exactly two distinct dihedral angles 54
and Bo, each of them occurring three times in S.

First we exclude case (ii) of Lemmalf@l If S has two
distinct dihedral angles 5; # (2, each occurring at
three edges, then they can be placed in .S in two essen-
tially different ways; see Fig.[Il In both cases, for each
i € {1,2}, the Coxeter diagram of S has at least one
nontrivial symmetry which swaps two distinct edges
with label 8;. By Debrunner’s lemma, the correspond-
ing symmetry of S swaps two distinct edges with di-
hedral angle 3;, which thus have the same length. But
then the edges with dihedral angle 5; have at most 2
different lengths and this contradicts Lemma 5] since
the smaller of the two angles /31, 82 is indivisible.

B1 B
B2 1 B 1

B2 B2

B B

Figure 1: Two possible configurations of two dihedral
angles.

Now we exclude case (i) of Lemmal6l Call the edges
of S (and of ¢(5)) with dihedral angle o the a-edges.
Since there are at least three a-edges in S, there is a
vertex v of S where two a-edges meet. Let 8 be the
dihedral angle of the third edge incident to v (possibly
B can be equal to «).

We have 2a + 5 > 7, using a well-known fact that
the sum of the three dihedral angles occurring at a
vertex of S exceeds w. Writing 8 = ma = = - 7, we
have 2- =+ .7 > m, which implies m > n —2. Since
m < n, we have m =n — 1 and hence g =7 — a.

Now we distinguish several cases depending on the
subgraph H, of ¢(S) formed by the a-edges.

e H, contains three edges incident to a common
vertex (which correspond to a triangle in S).
Then all the other edges must have the angle g
and we get the configuration as in Fig. [(right),
which we excluded earlier.

e H, contains a triangle (the corresponding edges
in S meet at a single vertex). Then § = «, and

63

thus a = 7, which contradicts the condition n >
3 from Lemma [0 (i).

e H, is a path of length three (this corresponds to
a path in S, too). Then two edges have the angle
B > « and the remaining edge has some angle
v # «a. See Figure.2(left). The resulting Coxeter
diagram has a nontrivial involution swapping two
a-edges. By Debrunner’s lemma, this contradicts
Lemma [l

e It remains to deal with the case where H, is a
four-cycle (which corresponds to a four-cycle in
S). In this case the remaining two edges have
dihedral angle 3, so the Coxeter diagram has a
dihedral symmetry group D, acting transitively
on the a-edges. By Debrunner’s lemma, all the
a-edges have the same length. This again con-
tradicts Lemma Bl

Figure 2: The a-edges form a path (left) or a four-
cycle (right) in ¢(5)

We obtained a contradiction in each of the cases,
hence the proof of Theorem [lis finished.

4 The proof of Theorem

The method of the proof is similar to the three-
dimensional case.

Assume for contradiction that S is a four-
dimensional k-reptile simplex where k is not a square
of a positive integer. Let Si, ..., S, be mutually con-
gruent simplices similar to S that tile S. Then each
S; has volume k-times smaller than S, and thus 5; is
scaled by the ratio p := k~/* compared to S. For
k non-square, p is an irrational number of algebraic
degree 4 over Q.

Similarly to [I6] we define an indivisible edge-angle
(spherical triangle) as a spherical triangle which can-
not be tiled with smaller spherical triangles represent-
ing the other edge-angles of S or their mirror images.
Clearly, the edge-angle with the smallest surface area
is indivisible. We consider a spherical triangle and its
mirror image as the same spherical triangle.

We obtain a result similar to Lemma Bt if 7j is an
indivisible edge-angle in S, then the edges of S with
edge-angle To have at least four different lengths (and
in particular, there are at least four such edges).

On the nonexistence of k-reptile simplices in R? and R*

The strategy of the proof is now the following. First
we exclude the case of two indivisible edge-angles, us-
ing only elementary combinatorial arguments and De-
brunner’s lemma.

Then we consider the case of one indivisible edge-
angle. Here we need more involved arguments. We
study the problem of tiling spherical triangles by con-
gruent triangular tiles, which might be of independent
interest. We give a partial classification of such tilings,
which might be possible to extend to a full classifica-
tion using a reasonable amount of effort. A related
question, a classification of edge-to-edge tilings of the
sphere by congruent triangles, has been completely
solved by Agaoka and Ueno [3].

To rule out several cases, we use a characteriza-
tion of (dgl)—tuples of dihedral angles by Fiedler [7].
The characterization implies, in particular, that if
Bij,tj = 1,2,...,d + 1, are the dihedral an-
gles of some d-dimensional simplex, then the ma-
trix (a;;34,5 = 1,2,...,n + 1), where a;;, = 0 and
ai; = cos f3; ; for i # j, is singular.

References

[1] M. Adler, Tradeoffs in probabilistic packet mark-
ing for IP traceback, Proc. 34th Annu. ACM
Symposium on Theory of Computing (2002) 407—
418.

[2] M. Adler, J. Edmonds and J. Matousek, Towards
asymptotic optimality in probabilistic packet
marking, Proc. 37th Annu. ACM Symposium on
Theory of Computing (2005) 450—459.

[3] Y. Agaoka and Y. Ueno, Classification of tilings
of the 2-dimensional sphere by congruent trian-
gles, Hiroshima Math. J. 32(3) (2002), 463-540.

[4] C. Bandt, Self-similar sets. V. Integer matrices
and fractal tilings of R", Proc. Amer. Math. Soc.
112(2) (1991), 549-562.

[5] H. E. Debrunner, Tiling Euclidean d-space with
congruent simplexes, Discrete geometry and con-
vexity (New York, 1982), vol. 440 of Ann. New
York Acad. Sci., New York Acad. Sci., New York
(1985) 230—261.

[6] A. L. Edmonds, Sommerville’s missing tetrahe-
dra, Discrete Comput. Geom. 37(2) (2007), 287—
296.

[7] M. Fiedler, Geometry of the simplex in E, (in
Czech, with English and Russian summary), Ca-
sopis pro péstovdni matematiky 79 (1954), 297—
320.

[8] M. Gardner, The unexpected hanging and other
mathematical diversions, The University of
Chicago Press (1991).

[9] G. Gelbrich, Crystallographic reptiles, Geom.
Dedicata 51(3) (1994), 235-256.

[10] M. Goldberg, Three infinite families of tetrahe-
dral space-fillers, J. Comb. Theory, Ser. A 16
(1974), 348-354.

[11] S. W. Golomb, Replicating figures in the plane,
Mathematical Gazette 48 (1964), 403—412.

[12] H. Hadwiger, Hillsche Hypertetraeder (in Ger-
man), Gaz. Mat. (Lisboa) 12(50) (1951), 47-48.

[13] E. Hertel, Self-similar simplices, Beitrige Algebra
Geom. 41(2) (2000), 589-595.

[14] M. J. M. Hill, Determination of the volumes
of certain species of tetrahedra without employ-
ment of the method of limits, Proc. London
Math. Soc. 27 (1896), 39-52.

[15] J. Matousek, Nonexistence of 2-reptile sim-
plices, Discrete and Computational Geometry:
Japanese Conference, JCDCG 2004, Lecture
Notes in Computer Science 3742, Springer, Berlin
(2005) 151-160, erratum at http://kam.mff.
cuni.cz/“matousek/no2r-err.pdf.

[16] J. Matousek and Z. Safernova, On the nonexis-
tence of k-reptile tetrahedra, Discrete Comput.
Geom. 46(3) (2011), 599-609.

[17] M. Senechal, Which tetrahedra fill space?, Math.
Magazine 54(5) (1981), 227-243.

[18] W. D. Smith, Pythagorean triples, ratio-
nal angles, and space-filling simplices (2003),
manuscript, http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.124.6579.

[19] S. L. Snover, C. Waiveris and J. K. Williams,
Rep-tiling for triangles, Discrete Math. 91(2)
(1991), 193-200.

[20] D. M. Y. Sommerville, Division of space by con-
gruent triangles and tetrahedra, Proc. Roy. Soc.
Edinburgh 4 (1923), 85-116.

64

http://kam.mff.cuni.cz/~matousek/no2r-err.pdf
http://kam.mff.cuni.cz/~matousek/no2r-err.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.6579
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.6579

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Drawing the double circle on a grid of minimum size

S. Bereg*!, R. Fabila-Monroy'2, D. Flores-Penaloza®, M.A. Lopez$*, and P. Pérez-Lantero¥®

!Department of Computer Science, University of Texas at Dallas, USA.
2CINVESTAV, Instituto Politécnico Nacional, Mexico.
3Departamento de Matemaéticas, Facultad de Ciencias, UNAM, Mexico.
4Department of Computer Science, University of Denver, USA.
SEscuela de Ingenieria Civil en Informéatica, Universidad de Valparaiso, Chile.

Abstract

In 1926, Jarnik introduced the problem of drawing a
convex n-gon with vertices having integer coordinates.
He constructed such a drawing in the grid [1, ¢-n3/2]?
for some constant ¢ > 0, and showed that this grid
size is optimal up to a constant factor. We consider
the analogous problem of drawing the double circle,
and prove that it can be done within the same grid
size. Moreover, we give an O(nlogn)-time algorithm
to construct such a point set.

1 Introduction

Given n > 3, a double circle is a set P =
{po,p1,---yPn-1,00,P1,---,D,_1} of 2n planar points
in general position such that: (1) po, p1,...,Pn-1 are
precisely the vertices of the convex hull of P labelled
in counterclokwise order around the boundary; (2)
point p) is close to the segment joining p; with p;11;
(3) the line passing through p; and p} separates p;i1
from P; and (4) the line passing through p} and p;y1
separates p; from P (see Figure |1)). Subindices are
taken modulo n. The double circle has been consid-
ered in combinatorial geometry and it is conjectured
to have the least number of triangulations [T, 2].
Drawing an n-vertex convex polygon with integer
vertices can be easily done by considering the n points
(1,1),(2,4),(3,9),...,(n,n?) as the vertices of the
polygon. In this case the size of the integer point
set is equal to n? — 1 = O(n?), where size refers to
the smallest N such that the point set can be trans-
lated to lie in the grid [0, N]?. In 1926, Jarnik [5]
showed how to draw an n-vertex convex polygon with

*Email: bespQutdallas.edu.

TEmail: ruyfabila@math.cinvestav.edu.mx. Partially sup-
ported by grant 153984 (CONACyT, Mexico).

tEmail: dflorespenaloza@gmail.com. Partially supported by
grants 168277 (CONACyT, Mexico) and 1A102513 (PAPIIT,
UNAM, Mexico).

$Email: mlopezQdu.edu.

TEmail: pablo.perez@Quv.cl. Partially supported by grant
CONICYT, FONDECYT/Iniciacién 11110069 (Chile).

65

P1 Po
B - -e -~
e 0
//“///// Po TN -
/0 ph AN
pz‘ » D5
<, oy
N@ Py °
. Py ,

.- ----- s <
p3 2

Figure 1: A double circle of twelve points.

size N = O(n?/?) and proved that this bound is op-
timal. In recent years the so-called Jarnik polygons
and extensions of them have been studied [3} [6].
Given any integer point (4,7), we say that (i,)
is wisible (from the origin) if the interior of the line
segment joining the origin and (7, j) contains no lat-
tice points. Observe that (4,7) is visible if and only
if ged(é,j) = 1, where ged(4,j) denotes the great-
est common divisor of ¢ and j. We consider points
as vectors as well, and vice versa. A Jarnik poly-
gon is formed by choosing a natural number (), and
taking the set Vg of visible vectors (4,j) such that
max{|i|,|7]} < Q [, B [6]. The polygon is then
the unique (up to translation) convex polygon whose
edges, viewed as vectors, are precisely the elements
of Vi, that is, the vertices can be obtained by start-
ing from an arbitrary point and adding the vectors
of Vi, one by one, in counterclockwise order, to the
previously computed vertex (see Figure [2)).

Figure 2: A Jarnik polygon (right) and its generating
vectors Vo (left).

We study how to draw a 2n-point double circle with
integer points using the smallest size N. We present

Drawing the double circle on a grid of minimum size

an O(nlogn)-time algorithm that correctly constructs
the double circle with size within O(n?/?), where that
bound is also optimal. In Section [2] we show our al-
gorithm, and in Section [3] its correctness is proved.
Finally, in Section [we state future work.

2 Double circle construction

Observe that a simple construction with quadratic
size is as follows: Consider the function f(z) = 22 +z.
For i = 1,...,2n — 1, add the point (i, f(¢)) if 7 is
odd, and the point (¢, f(i) + 2) otherwise. The final
point is (n, w —1) = (n,2n? —n), i.e., the
point just below the midpoint of the segment con-
necting (1, f(1)) and (2n — 1, f(2n — 1)). The size of
the resulting point set is N = f(2n — 1) — f(1) =
(2n—1)24+ (2n — 1) — 2 =4n? — 2n — 2 = O(n?).

We say that a sequence V' of vectors is symmetric
if V' contains an even number of vectors sorted coun-
terclockwise around the origin, and for every vector a
in V' its opposite vector —a is also in V. Observe that
any sequence of vectors defining a Jarnik polygon is
symmetric. For any sequence V = [v1,v9,...,v2] of
2t vectors let the point set P(V) := {p1,p2,...,D2t},
where p; = vy and p; = p;_1 +v; for i = 2,...,2¢t.
Note that if we sort the elements of Vg around the
origin then the elements of P(Vy) are the vertices of
the Jarnik polygon. Furthermore, if V' is symmetric
then the elements of P(V) are in convex position. Let
sequence alt(V) := [ve,v1,v4,03,..., V2, V2—1] (See
Figure 3| for an example with ¢ = 8). For any scalar
A let the sequence AV := [Avy, Ava, ..., Avgg].

Figure 3: P(alt(Va)).

The idea is to generate a suitable symmet-
ric sequence V of 2n vectors and then build
the point set P(alt(V)) as the double cir-
cle point set, up to some transformation of
the elements of alt(V). A (not optimal) ex-
ample is V. = [(1,1),(1,2),...,(1,n),(-1,-1),
(—=2,-2),...,(=1,n)] for even n > 4. The point set
P(alt(V)) is in fact a double circle but its size is equal
to1+2+...+n=0(n?) (see Figure 4.

The construction in which the resulting point set is
a double circle of size O(n3/?) is based on the next

//
// //
2
/

Figure 4: A naive construction for n = 4 showing both
vectors (left) and the resulting point set (right).

two algorithms:

VISIBLEVECTORS(n): With input n > 3, the sym-
metric sequence V of 2n visible vectors, sorted coun-
terclockwise around the origin, is generated so as to
satisfy the next two invariants. Let B, := {p € Z? :
Ilplli < t}, k := maxyey ||v||1, and (even) s be the
number of visible vectors of By_1: (i) all visible vec-
tors of By_; are in V, and (ii) the other elements of V'
are generated as follows, until 2n — s elements are ob-
tained: for i = 1,...,k — 1 generate vectors (i, k — 1),
(=i, —(k—1)), (—i,k—1), (i, —(k —1)) in this order, if
and only if ged(i, k — i) = 1. Refer to Algorithm
for a pseudo-code.

BUILDDOUBLECIRCLE(n): With input n > 3,
build a 2n-point double circle. First, set sequences
V' :=VISIBLEVECTORS(n) and [v},v5,...,v5,] =
alt(V). Then, the sequence W = [wq, wa, ..., wa,] of
2n vectors is created as follows: fori=1,3,...,2n—1

set w; = (1=AN)vj+Avj | and w11 = Avj+(1=N)vj, 4,
where A = 1/3. Finally, build the 2n-point set
P((1/X)W) as the double circle.

Algorithm 2.1: VISIBLEVECTORS(n)

kE<+ 1,V +[(1,0),(-1,0),(0,1),(0,—-1)]
repeat
kE—k+1
fori<1tok—1
j—k—1i
if aep(s,j) =1
if LENaTH(V) < 2n
then V < V +[(4,4), (=i, —j)]
if LENGTH(V) < 2n
then V < V + [(—4,), (4, —J)]
until LENGTH(V) = 2n
Sort V' counterclockwise around origin
return (V)

do
then

3 Construction correctness

Let V = [v1,va,...,v2,] be the (circular) sequence of
vectors obtained by executing VISIBLEVECTORS(n),

66

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

forn > 3. For every i =1,3,5,...,2n—1 we say that
the pair of vectors v;,v;41 is a pair of alt(V).

Lemma 1 (Chapter 2 of [4]) Given a natural
number @, the number |Vg| of vertices of the Jarnik
polygon is equal to

@& 2402
444)° Y 1= 77? +0(Qlog Q).
i=1 j=1

ged(i,5)=1

The size S(Q) of the Jarnik polygon is equal to

Q Q Q Q
142> 3 i = 142 j
i=1 j=1 i=1 j=1
ged(i.j)=1 ged(ij)=1
603

= ? + O(Q2 10g Q)

Lemma 2 V is symmetric and point set P(V) has
size O(n>/?).

Proof. Observe that for every vector a in V, —a is
also in V since in algorithm VISIBLEVECTORS the vec-
tors are added to sequence V in pairs, and each pair
consists of two opposite vectors. Then V' becomes
symmetric once the elements of V are sorted coun-
terclockwise around the origin. On the other hand
VL%J C V C Vi, where k = max,ev ||v||1. Then we

have |VL%J| < 2n < |Vg|, which implies & = ©(y/n)
by Lemma[I] By the same lemma we obtain:

n n k k
Zm(vi)72y(vi) < 1+ZZ Zz
i=1 i=1 i=1 j=1
ged(ij)=1
= S(k)
= O(k%) =0(n*?)
Hence, the size of P(V) is O(n?/?). O

Let o denote the origin of coordinates. Given two
points p, q let ¢(p, q) denote the line passing through p
and g and directed from p to ¢, and pqg denote the seg-
ment joining p and g. Given three points p = (z,,yp),
q = (2q,Yq), and r = (2,,yr), let A(p,q,r) denote
the triangle with vertices at p, ¢, and r; A(p,q,r) de-
note de area of A(p, q,r); and turn(p, ¢, r) denote the
so-called geometric turn (going from p to r passing
through ¢) where

Tp Yp 1
turn(p, ¢,7) = | 4 Yq
T, Yy 1

and A(p,q,7) = % |turn(p, ¢, r)|. Extending this no-

tation, let A(p,q) := A(o,p,q), A(p,q) := Ao, p,q),
and turn(p, q) := turn(o,p,q). We use the so-called
Pick’s theorem:

67

Theorem 3 (Pick’s theorem [7]) The area of any
simple polygon H with lattice vertices is equal to i +
b/2—1, where i and b are the numbers of lattice points
in the interior and the boundary of H, respectively.

Lemma 4 For every two consecutive vectors ay, as of
V we have A(ai,a2) =1/2.

Proof. Suppose A(ay,as) contains a lattice point p
different from o, a1, and as. Then p cannot belong
to segments oa; and oag, and segment op contains
a visible point ¢ (possibly equal to p). If ||q|1 <
max{||ai]]1, ||a2|l1} then ¢ must belong to V by in-
variant (i) of algorithm VISIBLEVECTORS. Other-
wise, we have ||g|ly = max{]||ai]]1,||az|l1}. Suppose
w.l.o.g. that |lai]1 < [Jaz|1, and let the point ¢’ de-
note the intersection of £(0, ¢) with the segment s con-
necting a; to ag. Observe that ¢ = da; + (1 — d)aq
for some ¢ € (0,1), and further that ||qlx < ||¢'|1 =
[6ar + (1 = 0)azlly < dllarflr + (1 = d)llazll2 < [[az]l1,
which is a contradiction. Then we must have that
llgllx = lla1]l1 = ||az]|1, which implies that ¢, a1, as be-
long to a same quadrant since in this case ¢ is at the
interior of the segment s. Therefore, ¢ must belong to
V' by invariant (ii) of algorithm VISIBLEVECTORS. In
both cases, the fact that ¢ belongs to V' contradicts
the fact that a; and as are consecutive vectors of V.
Hence A(aq,a2) = 1/2 by Pick’s theorem. O

Let A € (0,1/2). Given a pair a,b of vectors let
h(A a,b) := (1 — N)a + b (see Figure [5).

Figure 5: Two vectors a and b, and the vectors h(), a, b)
and h(\ b, a).

Lemma 5 Let ay,as,a3,aq4 be four consecutive vec-
tors of V' such that ai,as and asz,aq are pairs of
alt(V) Let A € (0, 1/2), g = h()\,a2,a1), g2 =
a1 + h(Na1,a2), 3 = g2 + h()\ aq,a3), and g4 =
qs + h(X as,aq4). Then g2 is to the right of £(o,q1)
and both g3 and qq4 are to the left of £(o,q1).

Proof. (Refer to Figure [6]) We have turn(gy, ¢2) =
turn(qy, g1 + (A, a1, az2)) = turn((1 — X)ag + Aaq, a1 +
az) = (1 — A)turn(asg, a1) + Aturn(ag,az) = 2(2\ —
1)A(a1,a2) < 0, which implies that go is to the right
of the line £(0,¢;). On the other hand:

turn(qi, gs)

= turn(h(A, ag,a1), h(X, az,a1) + h(X, a1, a2) +
h()\, a4, a3))

= turn(h(A, ag,a1), h(A a1,a2)) +
turn(h(A, ag, a1), h(A, aq,as))

Drawing the double circle on a grid of minimum size

= turn((1l — Nag + Aag, (1 — N)ag + Aag)) +
turn((1 — A)ag + Aa1, (1 — Nag + Aa3))

= (1 —N\)?turn(ag,ay) + A\ turn(ay, ag) +
(1 — N2 turn(ag, ag) + A(1 —) turn(az, az) +
A1 = X) turn(ay, ag) + A\ turn(ay, as)

= 2((2)\ — 1) A(ay,a) + (1 — N)?A(ag, aq) +
A1 = N)A(az,a3) + A1 — M) A(ar,a4) +
)\2A(a1,a3))

- 2(; (2X — 1) + (1 — A\)?A(az, aq) + (1)
A1 =N A(az,a3) + AM(1 — M) A(a1,a4) +

N A(ay, ag))

> A=+ 1 =N2+A1-N\)+ (2)
M1 —X) + A?
= 22>0

where equation follows from Lemma 4] and equa-
tion follows from the fact that by Pick’s the-
orem the area of any non-empty triangle with lat-
tice vertices is at least 1/2. Therefore, g3 is
to the left of £(o,q1). Similarly, since we have
that turn(a;,a;) > 0 (i = 1,2; j = 3,4) then
turn(h(A, az,a1), h(A, as,aq)) > 0, which implies that
qs is to the left of £(o,q1) given that g3 is to the
left of ¢(0,q1). By symmetry, it can be proved that
turn(qq, g3, q1) < 0 and turn(qy, gs,0) < 0, implying
that both ¢; and o are to the right of £(q4, g3). O

h(X, ag, a1)

Figure 6: Proof of Lemma

Theorem 6 There is an O(nlogn)-time algorithm
that for all n > 3 builds a double circle of 2n points
in the grid [0, N]> where N = O(n®/?).

Proof. Execute the algorithm BUILDDOUBLECIR-
CLE with input n, being V the result of calling
VISIBLEPOINTS(n), building the point set P of 2n
points. Observe that A = 1/3 implies that point

w;/A = 3w; is integer for ¢ = 1...2n, and then
all elements of P are integer points. By Lemma
point set P is a double circle. The size of P(V) is
O(n?/?) by Lemma [2| and since all elements of P be-
long to the polygon with vertices P(3V) the size N
of P is also O(n®/?). Finally, translate P to lie in the
grid [0, N]2. In algorithm VISIBLEPOINTS the time
complexity is dominated by: (1) computing ged(z, §)
for O((y/n)?) = O(n) pairs 4, j; and (2) sorting vec-
tors V' counterclockwise around the origin. In Case
(1) the time complexity is O(nlogn) since ged(i, j)
consumes O(log(min{i,j})) = O(log v/n) = O(logn)
time. Case (2) consumes O(nlogn) time as well.
Since the time complexity of VISIBLEPOINTS dom-
inates the time complexity of the main algorithm
BUiLDDOUBLECIRCLE, the result follows. O

4 Future work

We are working on extending these results to build
other known point sets in integer points of small size,
such as the double convex chain, the Horton set, and
others. We plan to eventually release a software li-
brary supporting many of these constructions.

Acknowledgements

The problem studied here were introduced and partially
solved during a visit to University of Valparaiso funded by
project CONICYT Fondecyt/Iniciacion 11110069 (Chile).
The authors would like to thank anonymous referees for
their valuable comments.

References

[1] O. Aichholzer, F. Hurtado, and M. Noy. A lower bound
on the number of triangulations of planar point sets.
Computational Geometry, 29(2):135-145, 2004.

[2] O. Aichholzer, D. Orden, F. Santos, and B. Speck-
mann. On the number of pseudo-triangulations of cer-
tain point sets. Journal of Combinatorial Theory, Se-
ries A, 115(2):254-278, 2008.

[3] I. Barany and N. Enriquez. Jarnik’s convex lat-
tice n-gon for non-symmetric norms. Mathematische
Zeitschrift, 270:627-643, 2012.

[4] M. N. Huxley. Area, lattice points, and exponential
sums. Oxford Science Publications. The Clarendon
Press Oxford University Press, New York, 1996.

[5] V. Jarnik. Uber die Gitterpunkte auf konvexen Kur-
ven. Mathematische Zeitschrift, 24:500-518, 1926.

[6] G. Martin. The Limiting Curve of Jarnik’s Polygons.
Transactions of the American Mathematical Society,
355(12):4865-4880, 2003.

[7] G. Pick. Geometrisches zur Zahlenlehre. Sitzungs-
berichte des Deutschen Naturwissenschaftlich-
Medicinischen Vereines fiir Bohmen "Lotos" in Prag.,
19:311-319, 1899.

68

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

SensoGraph: Using proximity graphs for sensory analysis

David N. de Miguel*!, David Orden’?, Encarnacién Fernandez-Fernandez*®, José M. Rodriguez-Nogales $3, and
Josefina Vila-Crespo 14

!Universidad de Alcal, Spain.
2Departamento de Fisica y Matematicas, Universidad de Alcal4, Spain.
3Departamento de Ingenieria Agricola y Forestal, Universidad de Valladolid, Spain.
“Departamento de Anatomia Patologica, Medicina Preventiva y Salud Publica, Medicina Legal y Forense,
Universidad de Valladolid, Spain.

Abstract

Sensory evaluation of foods is as important as chem-
ical, physical or microbiological examinations, being
specially relevant in food industries. Classical meth-
ods can be long and costly, making them less suitable
for certain industries like the wine industry. Some al-
ternatives have arisen recently, including Napping®,
where the tasters represent the sensory distances be-
tween products by positioning them on a tablecloth;
the more similar they perceive the products, the closer
they position them on the tablecloth. This method
uses multiple factor analysis (MFA) to process the
data collected. The present paper introduces the
software SensoGraph, which makes use of proximity
graphs to analyze those data. The application is de-
scribed and experimental results are presented in or-
der to compare the performances of SensoGraph and
Napping®, using eight wines from the Toro region and
two groups of twelve tasters with different expertise.

1 Sensory analysis

The goal of sensory evaluation of foods is the study
of the sensations they produce. When consuming a
food, stimulus of several classes are perceived; vi-
sual (color, shape, brightness), tactile (at fingertips
or mouth epithelium), odorous (at nose epithelium),
gustatory (at taste buds), and even auditory (e.g., for
crunchy food). The norm ISO 5492:2008 defines sen-
sory analysis as the science related to the evaluation
of organoleptic attributes of a product by the senses,
and other ISO norms unify the tools and methods

*Email: david.n.demiguel@gmail.com.

TEmail: david.orden@uah.es. Research partially supported
by MICINN Project MTM2011-22792, ESF EUROCORES
programme EuroGIGA - ComPoSe P04 - MICINN Project
EUI-EURC-2011-4306 and Junta de Castilla y Lebén Project
VA172A12-2.

tEmail: effernan@iaf.uva.es.

$Email: rjosem@iaf.uva.es.

YEmail: jvila@pat.uva.es.

69

used for that evaluation. The sensory examination
turns out to be as important as chemical, physical or
microbiological examinations, being specially relevant
in food industries.

The main tool in sensory analysis is a panel of
tasters, either experts or consumers, who evaluate
the products from an analytic and/or hedonic point
of view. As any other instrument depends on its
calibration, such a panel depends on human be-
ings. Their perceptions are translated into quantifi-
able data, which is then treated by means of different
methods.

The classical method is descriptive analysis, which
aims to describe the sensory characteristics of a prod-
uct and use them to quantify the sensory differences
between products [11]. Different implementations of
this method provide a quantitative description of the
sensory attributes perceived by a group of expert
tasters, chosen because of their sensory abilities, who
are trained to describe and evaluate sensory differ-
ences among products. Such a training is a critical
step in the creation of an expert panel of tasters, when
tasters agree on the definitions of descriptors and the
use of scales, in order to provide reliable and consis-
tent results.

However, this training can be long and costly, mak-
ing it less suitable for certain industries like the wine
industry. There, sensory characterization is usually
performed by the oenologist in charge of the winery,
for whom it is difficult to enrol in a panel requiring a
regular activity during a long time. Thus, in the last
years several alternative methods have been proposed,
aiming to provide a fast sensory positioning of a set of
products, in order to avoid the most time-consuming
steps in classical methods. A prominent one among
these alternatives is Napping® [12]. In a single ses-
sion, all the products are provided simultaneously to
the tasters, who represent the sensory distances be-
tween products by positioning them on a tablecloth.
Products which are perceived as similar should be po-
sitioned close to each other, while products perceived
as different should be positioned far enough. Each

SensoGraph: Using proximity graphs for sensory analysis

taster chooses the criteria and the relative importance
given. These data are later processed using multiple
factor analysis (MFA) [4], in order to take into ac-
count the criteria and relative importance of all the
tasters. Despite having both advantages and disad-
vantages, Napping® has become a useful tool when
some accuracy can be sacrificed for the sake of a faster
study [13].

2 Proximity graphs

Given a set of points in the plane, a (geometric)
proximity graph connects two of them according to
a chosen proximity criterion. These graphs have been
widely used in order to analyze the relative position
of points, for instance looking for clusters or span-
ning structures. See [1, 7] and the references therein.
Thus, it seems natural to use them in order to an-
alyze the data collected by a tablecloth method for
sensory analysis, like Napping®. Among the many
different types of proximity graphs, we have chosen
the following:

Nearest Neighbor Graph (NNG): Each point is
joined to the closest among the remaining points [14].
k-Nearest Neighbor Graph (k-NNG): In this gen-
eralization of the NNG, each point is joined to the k
closest among the remaining points.

Minimum Spanning Tree (MST): Among the
trees passing through all the given points, the MST is
the one which minimizes the sum of edge lenghts [10].
Relative Neighborhood Graph (RNG): This
graph, introduced by Toussaint [15], joins two points
P, Q@ if there is no point whose distances to both P
and @ are smaller than the distance d(P, Q).
k-Relative Neighborhood Graph (k-RNG): The
generalization of the RNG which allows up to k points
with distances to both P and @ smaller than d(P, Q).
Gabriel Graph (GG): In this graph two points P, Q
are joined if there is no other point inside the closed
disk which has the segment PQ as diameter [5].
k-Gabriel Graph (k-GG): Generalization of the GG
allowing up to k points to lie inside the closed disk.
Delaunay Triangulation (DT): Three points
P,Q, R form a triangle precisely if their circumcircle
does not contain any other point [3].

k-Delaunay Triangulation (k-DT): Generalization
of the DT allowing up to k£ points to lie inside the
closed disk.

B-skeleton (3-SK): A family of proximity graphs,
one for each value of 5 > 0, see [9] for more details.
For g =1 we get the GG. For § = 2 we get the RNG.
Unit Disk Graph (UDG): In this graph two points
P, Q are joined if the distance d(P, Q) between them
is no greater than a fixed threshold [2].

3 The SensoGraph application

SensoGraph is an application, still under develop-
ment, which aims to use proximity graphs for the anal-
ysis of data collected from tablecloth sensory meth-
ods like Napping®. The interface intends to be intu-
itive and easy to use, so that no special knowledge is
needed.

Tasting data are stored in the form of an m x 2n
matrix, in which there is a row per product and a pair
of columns per taster, storing the two coordinates as-
signed to the corresponding product. In a first screen,
this matrix can be manually created or inserted from
a CSV file, according to the IETF RFC 4180 stan-
dard. After insertion, the matrix can be modified by
adding or removing rows or columns, as well as by
editing an individual entry. See Figure 1.

2 SensoGraph - [Tablecloths] = | E el

W Fle -8 x
Toster i1 | Toster 42 |Toster 43 | Taster 4 | Tester 5 | Taster #6 | Taster 47 | Taster 4B | Tester#9 | Taster 410 | Toser 11 | Taster #12

12 P25 s w21 238 (w2 5% |m5 02 1311 [sule |50z Bl
s 0 [s418 [167 w19 |2n2e |ma [716 |15 (%6 [#m0 |as w2z

a2 7.1 sez 127 et 4sn 526 (736 315 (3419 2315 163 119 I
79 42 740 1M 227 252 120 |s17 %3 5219 463 su2 m i
[Z) 48 1912 w2 (226 23 |92 |53 555 4315 @2 818 @2

P 523 |5t 162 |st7 513 (3524 |sk6 &3 |m1 |43 5228 (816 il
13 5213 4921|1301 |42 | (% |6 |2t stz 218|219 w2

02 22 1025 |00 |27 |«s (%3 (717 151 76 116 wx |13 I
= ;

Figure 1: Matrix of tasting data.

After accepting the data matrix, a new screen is
shown. There, the user can choose a type of proxim-
ity graph among the ones specified in Section 2. For
those proximity graphs depending on a parameter, k-
NNG, £-RNG, k-GG, k-DT, 5-SK, and UDG, the user
can change the value of the parameter. Furthermore,
the application allows to intersect any of the graphs
considered with the UDG, in case the user wants to
avoid too long edges.

For the given choice of a type of proximity graph,
the application generates the graph for each of the
taster’s tablecloths. The user can choose a taster and
check its tablecloth and the resulting graph. When
visualizing a tablecloth, it is also possible to change
the type of proximity graph, in order to check the
differences between them. See Figure 2.

———

=0 Sensorap - [Representation] y——

W e

Figure 2: Tablecloth for taster number 2 with the
UDG for radius 10.

70

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Furthermore, chosen a type of proximity graph, the
user can also merge all the tablecloths and their corre-
sponding graphs into a single, global, picture. There,
every edge is shown with a thickness, computed ac-
cording to a simple function: The thickness corre-
sponds to the number of tasters for which that edge
appears in the proximity graph. This representation
encodes the global opinion of the panel of tasters, so
that those products perceived as similar are joined by
thicker edges, while products considered different are
joined by thinner edges (or even not joined at all).

In order to position the vertices of this global pic-
ture, SensoGraph considers the edges like springs
which try to approach their endpoints, with a strength
proportional to the edge thickness. Thus, vertices
joined by thicker edges become closer than those
joined by thinner edges. In this new picture, the prod-
ucts considered similar by the panel of tasters can be
recognized not only by the thickness of the edge be-
tween them, but also by their mutual distance, see
Figures 4, 6, and 8. Such a positioning is performed
by a slight adaptation of the algorithm by Kamada
and Kawai [8].

Since some types of proximity graphs insist in join-
ing vertices which are far apart, SensoGraph offers a
second way of computing the thickness of an edge.
The distance function also looks only at the edges
appearing in the proximity graph chosen but, in addi-
tion, it takes into account their length, decreasing the
contribution of long edges to the total thickness. As
mentioned above, the user can also choose to discard
too long edges, by intersecting any of the proximity
graphs with the UDG.

Furthermore, the user can also peel the graph in the
global picture, by removing edges below any chosen
thickness, in order to keep only the most relevant ones.

4 Experimental results

Eight wines from the Toro region, elaborated us-
ing different yeasts during the alcoholic fermentation,
were considered. Two panels, of twelve non-trained
tasters each, were selected. The ezperts panel was
composed by people, mainly young, with some knowl-
edge of the techniques for sensory analysis of wines.
The non-experts panel was composed by plain con-
sumers, with different ages and levels of knowledge.
Each of the panels performed a session of Napping®,
and the experts panel repeated for a second session, in
order to check for improvements due to such a slight
training.

The data from those three sessions was then pro-
cessed both by multiple factor analysis (MFA) [6], as
usual in Napping®, and by SensoGraph. Figures 3
to 8 show the results obtained, with SensoGraph us-
ing GG and the simple thickness function.

71

PM

7 Ar12

A19e 643 1 79

T ; T T T
2 0 2 4 6

Dim 1(35.06 %)

Figure 3: Experts panel, Napping®.

72

Dim?2 (2623 %)

Dim 1(35.25 %)

Figure 5: Repetition of experts panel, Napping®.

Figure 6: Repetition of experts panel, SensoGraph.

SensoGraph: Using proximity graphs for sensory analysis

Dim2 (2556 %)

Dim1 (283 %)

Figure 7: Non-experts panel, Napping®.

Figure 8: Non-experts panel, SensoGraph.

Among the three sessions performed, the most rep-
resentative results of Napping® were those from the
repetition of the experts panel. Figure 5 shows a
35.25% of the variation explained by the first di-
mension and a 26.23% of the remaining variation ex-
plained by the second dimension, for a total inertia of
61.48%. Being this the session for which Napping®
is most reliable, it is the one chosen to compare with
the results provided by SensoGraph.

For that session, using SensoGraph with the sim-
ple thickness function provides the same clusters as
Napping® for all the graphs considered except for
NNG, which has too few edges, and for k-DT, which
has too many edges. Using the distance thickness
function does not change the elements in the clus-
ters, although the whole picture appears expanded
and highlights only the strongest connections between
different clusters. Furthermore, it improves the re-
sults for the extreme cases above, leading to the same
clusters as Napping® for k-DT and palliating the dif-
ferences for NNG.

A possible advantage of SensoGraph is giving other
kind of information than Napping®. Apart from pro-
viding several types of proximity graphs and parame-
ters to test with, SensoGraph shows how the different
clusters are connected. For an example, Figures 5
and 6 lead to the same three clusters, but only the
one from SensoGraph shows that they are actually
quite connected, reflecting the fact that all the wines
considered were actually quite similar [6].

5 Acknowledgements

The authors want to gratefully thank Ferran Hurtado
for proposing them the use of proximity graphs in
order to analyze data from tablecloth methods.

References

[1] J. Cardinal, S. Collette, and S. Langerman, Empty
region graphs, Computational Geometry: Theory and
Applications, 42 (2009), 183-195.

[2] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Unit
Disk Graphs, Discrete Mathematics, 86 (1990), 165—
177.

[3] B. N. Delaunay, Sur la sphere vide, Bulletin of the
Academy of Sciences of the USSR, VII (1934), 793—
800.

[4] B. Escofier and J. Pages, Analyses factorielles simples
et multiples, Dunod, Paris, 1998.

[5] K. R. Gabriel and R. R. Sokal, A new statistical ap-
proach to geographic variation analysis, Systematic
Biology, 18:3 (1969), 259-278.

[6] L. Gallego-Expésito, Nuevas técnicas de analisis sen-
sorial de alimentos: Métodos espaciales, Degree the-
sis, 2011.

[7] J.W. Jaromczyk and G.T. Toussaint, Relative neigh-
borhood graphs and their relatives, Proceedings of the
IEFEE, 80:9 (1992), 1502-1517.

[8] T. Kamada and S. Kawai, An algorithm for draw-
ing general undirected graphs, Information Process-
ing Letters, 31 (1989), 7-15.

[9] D. Kirkpatrick and J. Radke, A framework for com-
putational morphology, in: Computational Geome-
try, Machine Intelligence and Pattern Recognition,
2, North-Holland, Amsterdam, 1985, 217—248.

[10] J. B. Kruskal, On the shortest spanning subtree of a
graph and the traveling salesman problem, Problems
of the American Mathematical Society, 7 (1956), 48—
50.

[11] H. T. Lawless and H. Heymann, Principles of Sensory
Evaluation, Aspen Publishers, Gaithersburg, 1999.

[12] J. Pages, Collection and analysis of perceived product
inter-distances using multiple factor analysis: Appli-
cation to the study of 10 white wines from the Loire
Valley, Food Quality and Preference, 16 (2005), 642—
649.

[13] L. Perrin , R. Symoneaux, I. Maitre, C. Asselin, F.
Jourjon , and J. Pages, Comparison of three sensory
methods for use with the Napping procedure: Case
of ten wines from Loire valley, Food Quality and Pref-
erence, 19 (2008), 1-11.

[14] M. I. Shamos and D. Hoey, Closest-point problems,
in Proceedings of FOCS, 1975, 151-162.

[15] G. T. Toussaint, The relative neighborhood graph of
a finite planar set, Pattern Recognition, 12 (1980),
261-268.

72

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Simulated Annealing applied to the MWPT problem

E.O. Gagliardi*!, M. G. Leguizamén ', and G. Hernandez ¥2

! Universidad Nacional de San Luis, Argentina
2Universidad Politécnica de Madrid, Espana

Abstract

The Minimum Weight Pseudo-Triangulation
(MWPT) problem is suspected to be NP-hard.
We show here how Simulated Annealing (SA) can
be applied for obtaining approximate solutions to
the optimal ones. To do that, we applied two SA
algorithms, the basic version and our extended hybrid
version of SA. Through the experimental evaluation
and statistical study we assess the applicability and
performance of the SA algorithms. The obtained
results show the benefits of using the hybrid version of
SA to achieve improved and higher quality solutions
for the MWPT problem.

Introduction

A pseudo-triangle is a simple polygon with three con-
vex vertices, and a pseudo-triangulation is a parti-
tion of a planar region into pseudo-triangles. See [9]
and [10] for surveys about theory and applications,
with several interesting results that include combina-
torial properties and counting of special classes, rigid-
ity theoretical results, and representations as poly-
topes, among others.

Optimization problems related to pseudo-
triangulations are interesting under several optimality
criteria. In this work, we consider the optimality
criterion for pseudo-triangulations refereed as Mini-
mum Weight. The weight of a pseudo-triangulation
is the total length of their edges. Minimizing the
total length is one of the main optimality criteria
that provides a quality measure. This formulation is
known as the Minimum Weight Pseudo-Triangulation
(MWPT) problem. The complexity of the MWPT
problem is unknown an it is assumed to be in
NP-hard class [6].

Indeed, since no polynomial algorithm is known,

*Email: oliQunsl.edu.ar Research supported by Project Tec-
nologias Avanzadas de Bases de Datos (22/F014), Universidad
Nacional de San Luis, Argentina

TEmail: legui@Qunsl.edu.ar - Research supported by LIDIC,
Universidad Nacional de San Luis, Argentina

YEmail: gregorio@fi.upm.es - Research supported by
ESF EUROCORES programme EuroGICA. ComPoSe IP04-
MINCINN Project EUI-EURC-2011-4306

73

approximate solutions of high quality are difficult to
obtain by deterministic methods. Thus, we consider
approximation algorithms. These algorithms are ca-
pable of obtaining approximate solutions to the op-
timal ones and they can be easily implemented for
finding good solutions in NP-hard optimization prob-
lems [8].

In this work, we propose the use of Simulated
Annealing (SA) for finding high quality pseudo-
triangulations of minimum weight. For this, we inves-
tigate its application through an experimental study
and an extended statistical analysis of the results. We
have implemented the algorithms involved and addi-
tionally, generated our set of instances. Non para-
metric statistical tests were applied for assessing the
performance of the algorithms implemented.

Our recent work on this research, [4] and [5], sum-
marize successive stages of this research using a differ-
ent metaheuristic. The preliminary results obtained
at the initial phase guided to apply a more method-
ological approach in this research.

This paper is organized as follows. Section 1 de-
scribes a general overview of the SA metaheuristic and
the main algorithms. Section 2 describes the experi-
mental design, and Section 3 presents the experimen-
tal evaluation and statistical analysis. Lastly, Section
4 is devoted to the conclusions.

1 Simulated Annealing

Simulated Annealing applied to optimization prob-
lems emerges from the work of S. Kirkpatrick et al.
[7] and V. Cerny [2]. SA is based on the principles of
statistical mechanics whereby the annealing process
requires heating and then slowly cooling a substance
to obtain a strong crystalline structure. This case is
based in an extension of local search (a trajectory-
based approach) to solve combinatorial optimization
problems. Without loss of generality, the strategy is
good for optimization problems, since SA has an ex-
plicit strategy to escape from locally optimal solu-
tions. SA introduces a control parameter, T', called
temperature or cooling schedule, whose initial value
should be high and should decrease during the search
process. The search process is done according to the

SA applied to the MWPT problem

execution of several iterations of the algorithm until
a termination condition is achieved.

In order to apply SA to the MWPT problem it is
necessary to define some components of a SA by spec-
ifying the following parameters: solution space S, ob-
jective function f, neighborhood of a solution N (.S;),
initial solution Sp, initial temperature Ty, tempera-
ture decrement rule R, number of moves at each tem-
perature M (Ty) (length of the Markov chain), accep-
tance function, and termination condition. The objec-
tive of this study is assessing throughout a rigorous
experimental study the applicability and respective
performances of MWPT-SA and MWPT-SA-2P for
the MWPT problem. Next, we describe the common
components taken into account in the experimenta-
tion.

1.1 The MWPT-SA Algorithm

This algorithm is the result of two combined strate-
gies: random walk and iterative improvement, com-
monly named diversification and intensification. The
search has two phases. The first phase consists of the
exploration of the search space; however, this behav-
ior is slowly decreased, leading the search to converge
to a local minimum, i.e., phase of iterative improve-
ment. At each iteration, a neighbor of the neigh-
borhood is randomly chosen. The neighborhood of
a pseudo-triangulation is obtained by application of
edge flips on two adjacent pseudo-triangles [1]. The
moves that improve the cost function are always ac-
cepted. Otherwise, the neighbor is selected with a
given probability that depends on the current temper-
ature. The basic outline is illustrated in Algorithm 1
(MWPT-SA).

Algorithm 1 MWPT-SA

Generate an initial solution S; € S
Set the initial temperature to Tp
k<« 0
while termination condition not met do
c+1
while ¢ < M(T}) do
Choose Sj; € N(S;) C S
Evaluate 6 = f(S;) — f(S:)
if 6 < 0 then
qu «— Sj
SaveBestSoFarSolution
else
Si S]' with probability ;D(T,zc7 Si, Sj)
end if
c—c+1
end while
k<« k+1
Decrease temperature T}
end while

Algorithm 1 (MWPT-SA) starts with an initial so-
lution S; € S, which can be randomly or heuristically
constructed. Then, it initializes the temperature with
value Ty. M (T}) is the number of iterations for tem-

perature 7. At each inner iteration, a new solution
S; € N(S;) is randomly generated. If S; is better
than S;, then S; is accepted as the current solution.
Otherwise, the move from S; to S; is an uphill move,
and S; is accepted with a probability computed ac-
cording to the acceptance function. Finally, the value
of T} is decreased at each outer iteration, controlled
by variable k. The algorithm continues in this way
until the termination condition is met.

1.2 The MWPT-SA-2P Algorithm

This is an extend scheme, called MWPT-SA-2P al-
gorithm, which was designed considering the cooling
schedule of MWPT-SA. The cooling schedule is used
for balancing between diversification and intensifica-
tion, by allowing to return to previous stages. In this
manner, the performance of MWPT-SA is improved.
Indeed, escaping from the area of low quality in the
phase of diversification was sometimes almost impos-
sible for the basic algorithm. Then it is necessary to
have the possibility of exploring other regions of the
search space. The basic outline is illustrated in Al-
gorithm 2. The algorithm introduces an additional
variable (named previous) in order to incorporate a
control over the trajectory. This variable allows to
know which is the parameter setting of the algorithm
running where the best so far solution has been found.

Algorithm 2 MWPT-SA-2P

Generate an initial solution S; € S
Set the initial temperature to Tp
k<« 0
while termination condition not met do
c+1
while ¢ < M(T}) do
Choose S; € N(S;) C S
Evaluate § = f(S;) — f(S;)
if § < 0 then
Si < Sj
SaveBestSoFarSolution
Tprcuiuos — Tk
else
S Sj with probability p(Tk, Si, Sj)
end if
c+—c+1
end while
k+—k+1
if the best so far solution was updated then
Decrease temperature T}
else
if it is the first pass on T} then
Return to previous temperature Tprevivos and
Do the second pass
end if
end if
end while

Algorithm 2 (MWPT-SA-2P) controls, before de-
creasing the temperature, whether during the current
temperature T} the algorithm has found a better so-
lution than the best so far solution. If not, the pro-
cess returns to a state refereed as the previous tem-

74

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

perature, named Tpreviuos, Where the best so far so-
lution was found. From that state, the algorithm
chooses moves for walking in other directions for ex-
ploring other areas of the unexplored solution space.
In this case, the SaveBestSoFarSolution process saves
the best solution found for all cycles so far and the
corresponding temperature Tprepinos. 1he amount of
repetitions to get through T} was experimented, and
we conclude that a maximum of two is enough. As the
title suggests, 2P in MWPT-SA-2P stands for double
pass, as the algorithm returns at most once on the
path traveled.

2 Experimental Design

Representation. The pseudo-triangulations are planar
subdivisions induced by planar embeddings of graphs.
For their representation we use a Doubly-Connected
Edge List (DCEL) [3]. For evaluation purposes in
SA, a solution must be transformed from the DCEL
into a nxn matrix, where n is the number of points.

Objective Function. The weight of a pseudo-
triangulation PT, named f,,(PT), is the sum of the
euclidean lengths of all the edges of PT.

Instances collection. An ad-hoc software was de-
signed and implemented by the authors for generating
the collection of problem instances, each one being a
set P of n points in the plane. A collection of ten
(10) instances of size n were generated, with n equal
to 40/80/120. Each one is called LDni, 1 < ¢ < 10.
The points were randomly generated, uniformly dis-
tributed, with coordinates x,y € [0,1000]. For imple-
mentation purposes, there are non collinear points.

Parameter Settings for the SA algorithms. The
proposed algorithms were executed thirty (30) times
using different random seeds for the complete col-
lection of instances. The initial solution is a
pseudo-triangulation. We consider two types of ini-
tial solutions for MWPT-SA-2P; the initial pseudo-
triangulation is: a) a randomly generated solution
and b) a pseudo-triangulation obtained by the GPT
algorithm [4]. The initial temperature Ty depends
on the number m of edges in the initial solution and
the objective function f,,. Ty = m X [, where [is
the average length of the edges of the initial solution.
The number of moves at each temperature N(Tk) is
N(T,) = T ensuring that the amount of moves is
directly proportional to the actual temperature. In
each case, for the Temperature decrement rule R,
three different types of rules were considered: (i) Fast
Simulated Annealing (Tj41 = (13—70/@))7 (#) Very Fast
Simulated Annealing (T;4+1 = Z—E), and (774) Geomet-
ric Decrease (Tj+1 = aTy, where a € [0,1]). The
Geometric cooling scheme had the best performance
according to previous experiments, therefore it was
chosen for the study presented in this work. For this

75

cooling scheme, we consider a = 0.8,0.9, and 0.95.
The setting a = 0.95 was chosen due to its high per-
formance. For the termination condition, the search
process is finished when the temperature is less than
or equal to Ty = 0.005.

Resources. The algorithms were implemented in C
and, for the statistical analysis, MATLAB was used.

3 Experimental Evaluation and
Statistical Analysis for the
proposed SA algorithms

This section shows the applicability of MWPT-SA
and MWPT-SA-2P algorithms through experimental
evaluation. The initial solution can be a randomly so-
lution generated, or a greedy pseudo-triangulation ob-
tained by the GPT algorithm. SA using the last strat-
egy for generating the initial solution can be consid-
ered a hybrid approach. We reference the MWPT-SA-
2P algorithm as MWPT-SA-2P-RPT (RPT stands for
Random Pseudo-Triangulation) or MWPT-SA-2P-
GPT (GPT stands for Greedy Pseudo-Triangulation).
The experimental and statistical study considers the
mentioned set of instances, the best objective, me-
dian, average, and standard deviation values. Us-
ing Kolmogorov-Smirnov test, we detect that the ob-
tained values do not follow a normal distribution, then
non parametric statistical tests were applied to deter-
mine if there is significant difference between algo-
rithms. Wilcoxon rank-sum test was applied for al-
lowing systematic pairwise comparisons and assessing
whether one of two samples of independent observa-
tions came from populations with the same median.
MWPT-SA and MWPT-SA-2P-RPT were compared,
being the the null hypothesis rejected in all cases.
The test rejected the null hypothesis of equal medi-
ans with p-value less than 0.01 in all cases. Then,
MWPT-SA-2P-RPT and MWPT-SA-2P-GPT were
compared, and also the the null hypothesis rejected
at all cases, showing the best performance of MWPT-
SA-2P-GPT over MWPT-SA-2P-RPT. Figures 1 and
2 display another perspective of the algorithms be-
havior.

The comparison between MWPT-SA-2P-GPT and
GPT algorithms can be observed in Figure 3.

It is also important to highlight that MWPT-SA-
2P-GPT achieved objective values that exceed the
values obtained by GPT by between 14% and 71%.
The SA algorithms have best behavior with respect to
GPT. The objective values of the solutions obtained
by the greedy algorithm have low quality with respect
to those found by the SA algorithms. In summary,
among the proposed algorithms, MWPT-SA-2P-GPT
achieves the best performance, obtaining the highest
quality solutions.

SA applied to the MWPT problem

S E I

Figure 1: Comparing SA algorithms w.r.t. best values

Weight

Figure 2: Comparing SA algorithms w.r.t. median values

Weight

om0 1

+— Best We'ght by MWPT-54.26-GPT

P PSPPI A PP
&

PP PP D PP

SIS

Figure 3: Comparing MWPT-SA-2P-GPT and GPT

In addition, the computational effort of the pro-
posed algorithms applied to the MWPT problem are
compared and analyzed. The metaheuristic algo-
rithms consume much more computational resources
than a greedy algorithm, but their advantage is that
they are capable of achieving solutions of much higher
quality. Considering the results obtained and showed
in previous subsections for all strategies, Table 1
shows the average runtimes of the mentioned algo-
rithms.

Table 1: Average runtimes of SA algorithms, adding the
greedy algorithm for the MWPT problem (in milliseconds).

Instance | MWPT-SA | MWPT-SA-2P-GPT | GPT
40 11679 27210 69
80 25376 33239 83
120 48342 51646 94

4 Conclusions

Our contributions show how SA can be applied to
the MWPT problem. We have developed MWPT-SA,
MWPT-SA-2P-RPT, and MWPT-SA-2P-GPT algo-
rithms. All claims were corroborated by the experi-
mental study and the respective statical tests. Our
conclusions lead us to propose the use of MWPT-SA-
2P-GPT for suitably solving MWPT.

References

[1] H. Bronnimann, L. Kettner, M. Pocchiola, and
J. Snoeyink. Counting and enumerating pointed
pseudotriangulations with the greedy flip algorithm.
SIAM J. Comput., 36:721-739, 2006.

[2] V. Cerny. Thermodynamical approach to the travel-
ing salesman problem: An efficient simulation algo-
rithm. Journal of Optimization Theory and Applica-
tions, 1985.

[3] M. de Berg, M. V. Krevel, M. Overmars, and
O. Schwarzkopf. Computational Geometry. Algo-
rithms and Applications. Springer-Verlag, 2000.

[4] M. G. Dorzan, E. O. Gagliardi, M. G. Leguizamon,
and G. Hernadndez-Pefialver. Approximations on min-
imum weight triangulations and minimum weight
pseudo-triangulations using ant colony optimization
metaheuristic. Fundamenta Informarticae, 119(1):1-
27, 2012.

[5] E. O. Gagliardi, M. G. Dorzan, M. G. Leguizamon,
and G. Hernandez-Penalver. Approximations on min-
imum weight pseudo-triangulation problem using ant
colony optimization. XXX International Conference
of the Chilean Computer Science Society. Jornadas
Chilenas de Computacion, 2011.

[6] J. Gudmundsson and C. Levcopoulos. Minimum
weight pseudo-triangulations. Comput. Geom.,
38(3):139-153, 2007.

[7] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimiza-
tion by simulated annealing. Science, 220:671-680,
1983.

[8] Z. Michalewicz and D. Fogel. How to Solve It: Mod-
ern Heuristics. Springer, 2004.

[9] M. Pocchiola and G. Vegter. Pseudo-triangulations:
Theory and applications. In Symposium on Compu-
tational Geometry, pages 291-300, 1996.

[10] G. Rote, F. Santos, and I. Streinu. Pseudo-
triangulations — a survey. Contemporary Mathe-

matics. American Mathematical Society, December
2008.

76

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

A symbolic-numeric dynamic geometry environment for the
computation of equidistant curves

Miguel A. Abanades*! and Francisco Botana!?

LCES Felipe 11, Universidad Complutense de Madrid, 28300 Aranjuez, Spain
’Dpto. Matematica Aplicada I, Universidad de Vigo, Campus A Xunqueira, 36005 Pontevedra, Spain

Abstract

A web-based system that determines point/curve and
curve/curve bisectors in a dynamic geometry system
in a completely automatic way is presented. The sys-
tem consists of an interactive drawing canvas where
the bisector is displayed together with the initial
point/curve elements. Algebraic methods are used to
provide the equation of an algebraic variety contain-
ing the bisector. A numeric approach is followed to
provide the graph of the semi-algebraic subset corre-
sponding to the true bisector. It is based on the free
dynamic geometry system GeoGebra and the open
source computer algebra system Sage.

Introduction

A Dynamic Geometry System (DGS) is a computer
application that allows the on-screen drawing of (gen-
erally) planar geometric diagrams and the manipula-
tion of these diagrams by mouse dragging. The first
standard systems to appear (in the late 80’s) were
Cabri in France [10] and The Geometer’s Sketchpad
in USA [9]. Nowadays special mention deserves Ge-
0Gebra [6], whose free software model and effective
community development has resulted in a spectacular
world wide distribution.

From the beginning, DGS have been the paradigm
of new technologies applied to Math education. How-
ever, most DGS rely on numeric computations and ap-
proximate graphs, which make them prone to inaccu-
racies. Moreover, their lack of symbolic tools prevent
DGS from realizing a thorough algebraic treatment of
geometry.

In this work we develop a symbolic treatment of
bisectors in the plane (locus set of points equidistant
to two geometrical elements).

In [1], symbolic algorithms to determine algebraic

*Email: abanades@ajz.ucm.es. Research partially sup-
ported by the project MTM2011-25816-C02-(01,02) funded by
the Spanish Ministerio de Economia y Competitividad.

TEmail: botana@uvigo.es. Research partially supported by
the project MTM2011-25816-C02-(01,02) funded by the Span-
ish Ministerio de Economia y Competitividad.

77

descriptions of point/curve and curve/curve bisectors
are described. In this note we present the implementa-
tion of these algorithms in an open web-based system
in which symbolic capabilities are added to the DGS
GeoGebra by connecting it (remotely) to the Com-
puter Algebra System (CAS) Sage [13].

The presented prototype is based on the remote
use of Sage rather than GeoGebraCAS [8], the CAS
available within GeoGebra, due to higher versatility
of Sage, that includes multiple specialized software
packages. The prototype wants to illustrate a gen-
eral philosophy of DGS-CAS connection that we find
more appropriate to implement with the most general
systems possible. For this same reason, direct use of
Python from GeoGebra has not been considered.

Together with these symbolic web applications, nu-
meric graphic alternative tools are provided to visual-
ize a bisector when the exact symbolic computation of
its algebraic description is not computationally possi-
ble.

1 Bisectors

Given two geometrical elements (points, curves, sur-
faces, etc.), their bisector is the locus set of points
equidistant to them. We consider bisectors of two ge-
ometric objects O and Oy in the Euclidean 2-space
E?, where each object is a point or an algebraic curve
(see for instance Figure 1). Bisectors play an impor-
tant role when constructing Voronoi diagrams, medial
axis transformations and in a variety of algorithms re-
lated to shape decomposition (see [12]). A systematic
study of plane bisectors can be traced back to [4],
where the curves are parametrically described, and
[7], where a set containing the bisector is obtained by
solving a system of nonlinear equations.

Standard DG systems do not consider bisectors.
Besides the usual computation of the parabola via
its focus and directrix, there are not other primitives
for such computations. Nevertheless, the bisector of a
point and a linear object in a DG environment can be
partially determined through an elementary locus op-
eration. Since a bisector point is the center of a circle

Symbolic-numeric computation of equidistant curves

Figure 1: Bisector (dotted) of a line and an ellipse.

tangent to the linear object and passing through the
point, the locus tool can suggest a graphical path con-
taining the bisector. Similarly, following the symbolic
locus approach in [2], an algebraic variety containing
the bisector can be found by solving the correspond-
ing nonlinear polynomial system. We refer to this set
as the algebraic or untrimmed bisector.

In [1], a mixed algebraic-numeric approach for the
study of bisectors of points and lines within a DGS
is sketched. More precisely, elimination techniques
are used for obtaining the detailed description of a
bisector. Since the complete bisector description falls
out of the algebraic setting, a numerical approach to
trim the algebraic bisectors is shown to provide an
easy generation of bisectors.

More concretely, the following is the algorithm pro-
posed to compute point/curve bisectors:

Input: curve ¢: f(z,y) =0, point A
Step 1: Compute (symbolically) the untrimmed
(algebraic) bisector of A and ¢
Step 2: Define this object as an implicit curve d
Step 3: Construct a point B on d
Step 4: Construct the point D on ¢ closest to B
Step 5: If D and A are at the same distance from
B, then construct the point E, E =B
Return:
i) the locus graphic object truelocus of E
when B moves along d
ii) the equation(s) of the untrimmed bisector

Moreover, to compute the untrimmed bisector in
step 1, a solution based on the remote use of a CAS
is indicated.

The system presented here results mainly from the
implementation of these algorithms in a web system
with a GeoGebra applet through an automatic con-
nection with a remote Sage server.

Determining the algebraic description of some bi-
sectors is computationally out of reach. To obtain the
graph of these bisectors we provide an alternative nu-
merical method based on the dynamic color property
of GeoGebra whose details can be found in Section
2.2.

File Edit View Options Tools Help

.0) :

= Free Objects
2 A=(1.0

=

D ar i 4yi=0

D b:2048xT — 23562 — 1
Jer x4yl =0 1

= Dependent Objects

) D undefined o v]

< >

Input O

GeotGabra applt (reffesh i not loaded)

1. Input the rame of a poiet in the construction: [&

2. Input the name of a curve in the construction: |

3. Ingut a trimming factor (prozimmity threshold under which two points will be considered the same):|0.005

4. [_Find bisector
RESULT: the (black dotted) frimmed bisector of the curve a and the point A has been graphed in the applet. It ies in the (ved dotted) curve
with the following equation:
(272 - D 216"°F - 1458% 2756 + 1024*306 - BI64*X4*y"] + 3583*2 2"y - 11264*3°5 - 153282332 - 372"y +

96RO + 28368*E21Y0D - 49344*RT - 1472475 YD + 26592°K D + TOHYO6 + 2214*4 + 2727752 - 6256% + 529) = 0

Figure 2: Algebraic bisector (red dotted) and true
trimmed bisector (black dotted) of point A(1,0) and

curve y2 = 3.

2 System Description

The system consists of two main web applications cor-
responding to the symbolic treatment of point/curve
and curve/curve bisectors. Moreover, two auxiliary
web applications showing a graphic illustration of a
bisector are also provided. They all have been in-
cluded in a simple web page together with examples
and instructions freely available at [15].

All four applications consist of a drawing canvas
where the bisectors are displayed together with the
initial elements. They all are based on the DGS Ge-
oGebra and the CAS Sage.

GeoGebra is a free DGS with multiple representa-
tions of objects in different windows: graphics, alge-
bra, and spreadsheet. Its remarkable world wide use
makes GeoGebra a de facto standard in the field. Sage
is an open source CAS that integrates more than 100
open-source packages (including Singular).

2.1 Symbolic web applications

After the user has input the point and the curve in
the applet, he/she just has to press the Find bisec-
tor button. The aleph.sagemath.org sagecell server
[14] is then used to remotely obtain an algebraic va-
riety containing the bisector whose graph is input in
the applet. To determine the true (trimmed) bisec-
tor, a numeric comparison of distances is carried out.
Figure 2 shows how the answer provides both the al-
gebraic description of the bisector together with the
true (trimmed) bisector.

The algebraic treatment of the geometric data ob-
tained from the applet is done in Sage with some ad-
hoc Python code composed of several hundred lines of

78

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Figure 3: Bisector (white) of point (0,2) and curve
yv*+ 9?2 —y— 219 — 23 — 2 = 0 (left) and bisector
(white) of curves y? — 23 = 0 and 2% + y* = 9 (right).

code. More precisely, once the data are sent to Sage,
the appropriate variables are initialized and the ideal
corresponding to the task is generated. Singular (a
CAS included in Sage with special emphasis on com-
mutative algebra) is then called to basically compute
a Groebner basis for this ideal.

It has to be noted that the integration of GeoGe-
bra and Sage has been implemented without loosing
interactivity. The DGS-CAS communication is syn-
chronous. That is, changing an element in the Ge-
oGebra construction does automatically trigger the
corresponding update on the Sage side.

The structure of the symbolic web application for
the computation of simple curve/curve bisectors is
similar. It implements in a GeoGebra applet the an-
alytic method sketched in [1] (algorithm 1, Section

2.2 Graphic web applications

In the case of bisectors, even point/curve bisectors in
simple situations can be very involved. For instance,
the bisector of the point (2,2) and the curve y = 27 +2
is a polynomial of degree 20 with more than 150 terms.

A curve/curve bisector is symbolically computed
as the intersection of two envelopes (see [3]), each
one previously obtained with an elimination proce-
dure using Groebner bases. This makes the process
too complex for the symbolic computation of bisectors
of curves other than lines and circles with current al-
gorithms and standard hardware.

When obtaining the algebraic description of a
point/curve or curve/curve bisector is not possible,
two web applications providing a graphic illustration
of the bisector have been implemented, one for each
type of bisector

The idea of these graphic applications is to scan the
different 1-pixel points in the applet to change their
RGB color code. The color of a point P is changed
according to a formula related to the distances to, for
instance, curves a and b, in such a way that the closer
the value distance(P, a) is to distance(P, b) the whiter
the point P becomes. Figure 3 shows a point/curve
and a curve/curve bisector as graphed by the appli-
cations.

79

This idea, based on the dynamic color property of
GeoGebra, was first used by R. Losada [11]. Neverthe-
less, this approach should be taken with care. Given
the numerical character of the application, misleading
answers can be returned.

3 Point/Curve Bisectors

In Figure 2 above we have already seen how the an-
swer given by the application provides a complete de-
scription of the bisector of a point and a curve, both
algebraically and graphically. Here we give a rough
description of the method.

If the curve is non-singular, obtaining the alge-
braic bisector is a direct application of the elementary
method for computing bisector points. Each bisector
point must lie on the intersection of the normal line
to the curve by a generic point on it, and the per-
pendicular bisector of this point and the given one.
Computing the locus of these points we get the alge-
braic bisector, which will be trimmed in a subsequent
step. Note that if the initial point lies on the curve
itself, the bisector is contained in the normal line to
the curve, as noted in [5]. However, if the curve is
singular, the normal line will remain undefined when
the generic point is a singular one, thus including a
spurious factor (the perpendicular bisector of the sin-
gular point and the initial point) in the elimination
result. Nevertheless, after the trimming process, all
but a finite number of points in this perpendicular
bisector will be excluded.

If the initial point is a singular point on the curve,
the normal line will be undefined and the perpendic-
ular bisector will be the whole plane, so the process
returns the ideal (0) after elimination. In this case,
the trimming procedure does not have a proper vari-
ety to trim, since the algebraic bisector is the whole
plane. Following [7], we exclude the singular points
from our locus finding algorithm. In this way, the ap-
plication returns some partial information about the
bisector. For instance, we have a bi-dimensional bisec-
tor for the curve y? = 23 and the point (0, 0) as shown
by the point/curve graphic application in [15] (Figure
4, left). In this case, the symbolic web application
provides the algebraic description of the boundary of
this bi-dimensional bisector (Figure 4, right).

As a conclusion, we note that the proposed appli-
cations deal efficiently with regular curves, while for
singular ones the results, although sometimes clever,
must be taken with caution. The final decision about
bisectors in such cases should be guided by an ad-hoc
and specific study. The automatic determination of
the bisectors in these cases is work in progress.

Symbolic-numeric computation of equidistant curves

Figure 4: 2D bisector of curve y? = 2 and its cusp
(0,0) (left) and its boundary (right).

File Edit View Options Tol 3

A

O}
)

EEECE o |

\,
\,
\

nput] [5)

1 Tnput the.
2. Input the n
3. Ingut
4 _Fin

under which two poiats will be considered the same): [0.005

RESULT: the (black dotted) trinmed bisector of the curves ¢ and d has been graphed in the applet It ies n the (red dotted) curve with the following equation

(2 + 02+ B+ 16)(685 + 1002192 + 272%%°3 + 200452 - 1088%°2 - 4954 + 296%°2 - 2720 + 1904) =0

Figure 5: Algebraic bisector (dotted red) and true
trimmed bisector (dotted black) of circles (x + 4)% +
y? =8 and (z —2)? + y? = 36.

4 Curve/Curve Bisectors

As mentioned above, for algebraic curves of low de-
gree the symbolic application for the computation of
curve/curve bisectors in [15] provides an algebraic va-
riety where the bisector lies. This algebraic bisector
is then trimmed numerically within GeoGebra to dis-
play the true bisector.

Figure 5 shows the algebraic bisector and true bi-
sector of the intersecting circles (x +4)2? +4? = 8 and
(x —2)? + y? = 36 as provided by the prototype.

For curves of higher degree, the computation of the
algebraic bisector is (currently) computationally out
of reach. In these cases we have already seen in 2.2
how the graphic web application allows the display
of curve/curve bisectors for curves of any degree (see
Figure 3).

5 Conclusion

The prototype presented provides tools for the
study of bisectors in the plane (point/curve and
curve/curve). Complete graphic information is pro-
vided together with an exact algebraic description
when computationally possible.

The system, web-based and interactive, shows the
power of the remote automatic connection of CAS

and DGS. Moreover, the exclusive use of free soft-
ware, shows that it can be done without resorting to
expensive commercial systems.

References

[1] F. Botana. Computing bisectors in a dynamic geome-
try environment. International Journal of Mathemat-
ical Education in Science and Technology, 44(2):299—
310, 2012.

[2] F. Botana and J. L. Valcarce. A software tool for the
investigation of plane loci. Mathematics and Com-
puters in Simulation, 61(2):139-152, 2003.

[3] R. Farouki and J. Johnstone. Computing point/curve
and curve/curve bisectors. In R. B. Fisher, editor,
Design and Application of Curves and Surfaces, num-
ber V in The Mathematics of Surfaces, pages 327—
354. Oxford University Press, London, 1994.

[4] R. T. Farouki and J. K. Johnstone. The bisector of a
point and a plane parametric curve. Computer Aided
Geometric Design, 11:117-151, 1994.

[5] R. T. Farouki and R. Ramamurthy. Degenerate
point/curve and curve/curve bisectors arising in me-
dial axis computations for planar domains with
curved boundaries. Computer Aided Geometric De-
sign, 15:615-635, 1998.

[6] GeoGebra. http://www.geogebra.org, Last accessed
May 2013.

[7] C. M. Hoffmann and P. J. Vermeer. Eliminating ex-
traneous solutions in curve and surface operations.
International Journal of Computational Geometry
and Applications, 1:47-66, 1991.

[8] http://dev.geogebra.org/trac/wiki/GeoGebraCAS,
Last accessed May 2013.

[9] N. Jackiw. The Geometer’s Sketchpad v 4.0. Key
Curriculum Press, 2002.

[10] J. M. Laborde and F. Bellemain. Cabri Geometry II.
Texas Instruments, Dallas, 1998.

[11] R. Losada. Propiedad de color dinamico en GeoGe-
bra, http://geogebra.es/color_dinamico/color_
dinamico.html, Last accessed May 2013.

[12] M. Peternell. Geometric properties of bisector sur-
faces. Graphical Models and Image Processing,
62:202-236, 2000.

[13] Sage. http://www.sagemath.org, Last accessed May
2013.

[14] https://github.com/sagemath/sagecell, Last ac-
cessed May 2013.

[15] http://webs.uvigo.es/fbotana/bisectors, Last
accessed May 2013.

80

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Simulating distributed algorithms for lattice agents

Oswin Aichholzer*!, Thomas Hackl™!, Vera Sacristant?, Birgit Vogtenhuber*!, and Reinhard Wallner!

Mnstitute for Software Technology, Graz University of Technology, Graz, Austria.
2Departament de Matematica Aplicada II, Universitat Politécnica de Catalunya, Barcelona, Spain.

Abstract

We present a practical Java tool for simulating syn-
chronized distributed algorithms on sets of 2- and 3-
dimensional square/cubic lattice-based agents. This
AgentSystem assumes that each agent is capable to
change position in the lattice and that neighboring
agents can attach and detach from each other. In
addition, it assumes that each module has some con-
stant size memory and computation capability, and
can send/receive constant size messages to/from its
neighbors. The system allows the user to define sets
of agents and sets of rules and apply one to the other.
The AgentSystem simulates the synchronized execu-
tion of the set of rules by all the modules, and can keep
track of all actions made by the modules at each step,
supporting consistency warnings and error checking.
Our intention is to provide a useful tool for the re-
searchers from geometric distributed algorithms.

Introduction

Mainly due to their scalability, distributed algorithms
are a powerful tool for the control of self-organizing
systems. One of the most interesting examples of a
field of application is the control of modular robotic
systems and, in particular, the development of geo-
metric algorithms for their locomotion, reconfigura-
tion, and self-repair. When dealing with these sys-
tems and algorithms, it is still often unaffordable to
actually implement and run the algorithms on a big
set of real prototypes and, in any case, it is recom-
mended to simulate the behavior of the algorithms
prior to their actual physical implementation. From
a different viewpoint, frequently algorithmic results
of theoretical nature are obtained but cannot imme-

*Email: {oaich,bvogt}@ist.tugraz.at. Research partially
supported by ESF EUROCORES programme EuroGIGA -
ComPoSe, Austrian Science Fund (FWF): T 648-N18.

TEmail: thackl@ist.tugraz.at. Research supported by the
Austrian Science Fund (FWF): P23629-N18 “Combinatorial
Problems on Geometric Graphs".

fEmail: vera.sacristan@upc.edu. Research partially sup-
ported by projects MTM2012-30951, MTM2009-07242, Gen.
Cat. DGR 2009SGR1040, and ESF EUROCORES programme
EuroGIGA, CRP ComPoSe: MICINN Project EUI-EURC-
2011-4306, for Spain.

81

diately be translated into physical prototypes, as they
may require miniaturization or precision to a level
which is still out of reach. Having a simulator at
hand is then very convenient. In this paper we present
and describe the functionalities of a practical and very
general simulator that we hope will be useful in many
different research contexts. Other multi-agents simu-
lators are available with different scopes, as for exam-
ple MASON [5]. Our tool supplies a framework for
lattice-based modular robots. The instruction set for
the modules/agents is specific, simple, and intention-
ally compact, as to make the use easy also for non-
experts. In the following descriptions we present the
2D information followed, if applicable, by additional
information needed for 3D in squared brackets.

1 The agents

The initial agents setting is stored in the file
agents.txt. Each line of the file defines one agent
by its initial (global) coordinates (mandatory) plus
(optional) its state, its attachments and initializations
for (some of) its counters. Optionally it is possible to
state the size of the universe in the agents file.

Universe size UminX,maxX,minY,maxY[,minZ,maxZ]
To be positioned at the beginning of the file.

Initial (global) position x,y[,z]
The initial position is written as integer x-, y- [and
z-|coordinates, separated by a comma.

State S_____

The state of an agent consists of exactly 5 characters,
written with a leading S.

Attachments A____[__]

The attachments of an agent are written as A followed
by 4 [6] booleans (0 for not attached, 1 for attached),
in the order north, west, east, south[, above, below].

Counters C__ _____
Each agent has 25 [45] integer counters, C00, . ..,C24
[,C25,...,C44], which can be set to any 16-bit in-

teger between —32767 and 32767.

Simulating distributed algorithms for lattice agents

2 The rules

The definition of what a robot may do is stored in
the file rules.txt. Each rule definition consists of 4
lines:

1. the name of the rule,

2. the priority of the rule,

3. the precondition, and

4. the postcondition.

The name is a nonempty string. Priorities are used
by each agent to decide which of the possibly several
rules that apply to its situation to execute. The prior-
ity of a rule is a positive integer between 1 and 32767.
Higher priorities win over lower ones. The precondi-
tion defines whether or not an agent may apply the
rule. Finally, the postcondition defines the actions to
be performed when a rule is applied to an agent.

2.1 Precondition

The precondition of a rule is any boolean combination
of: compare priorities, check neighboring empty /filled
positions, check own connections, match states/text
or counters/integers, and compare calculation results
with counters, messages and integers.

More precisely: a precondition is an AND combi-
nation of the following.

Neighbors N____[__]

The situation of the direct neighboring positions
(north, west, east, south[, above, below]). For each
of them, 0 denotes empty (no agent), 1 denotes filled
(an agent), and * denotes indifferent.

Empty position Edx,dy[,dz], EC__,dy[,dz],

An empty position requirement. Written as an E,
followed by the relative coordinates of the lattice po-
sition required to be empty, separated by a comma.
Alternatively instead of each value dx,dy or dz the
name of any counter can be inserted, where a counter
starts with a C, followed by the two digits number of
the counter.

Filled position Fdx,dy[,dz]

A filled position requirement. The restrictions and the
syntax are the same as in the Empty position condi-
tion.

Priorities P____|[__|

Compare the priority of (the applied rule/s) of the
direct neighboring agents (north, west, east, south],
above, below]) with the agents’ own priority. For each
of them, < denotes that the priority of such agent
needs to be (strictly) smaller, = denotes smaller or
equal, and * denotes indifferent.

Smaller Priority Ldx,dy[,dz]

A (strictly) less priority agent requirement. The L is
followed by the relative coordinates of the agent re-
quired to have smaller priority, separated by a comma.

The usage of counters is the same as in the Empty po-
sition condition.

Smaller or equal Priority Qdx,dy[,dz]

A less or equal priority agent requirement. Syntax
and usage is analogous to the Smaller Priority condi-
tion.

Attachments A____|__|

The attachment states to the direct neighbors (north,
west, east, south[, above, below]), where 0 denotes
not attached, 1 denotes attached, and * denotes in-
different.

State S_____

The agent state can be required to match a simple
pattern, where an asterisk matches any character.

State of a remote agent Tdx,dy[,dz|,_____
This is a combination of the Filled position and the
State precondition. Written as a T, followed by the
relative coordinates of the lattice position that needs
to be filled, and ended by the state that the remote
agent must have. The usage of counters is the same
as in the Empty position condition.

(Text) messages from direct neighbors

Every agent has four [six] text messages from its
direct neighbors (*=any, N=north, W=west, E=east,
S=south[, A=above, B=below]), each consisting of ex-
actly 5 characters. Any of these messages can be re-
quired to match a pattern, where an asterisk matches
any character and at most four asterisks are allowed.

Numeric comparisons <(-)____ (-)____,
>(-) o (oo, =()n (o

In addition to its 25 [45] counters, every agent
has 4 + 8 = 32 [6 * 3 = 18] numeric messages
from its direct neighbors, denoted #NO1,...,#N08,
#WO01,...,#W08, #EO1,...,#E08, #S01,...,#S08 in
2D, and limited to 3 counters per direction in 3D, in-
cluding #A01,...,#A03, and #B01,...,#B03. Aster-
isks can be used instead of a specific direction. Any of
these numeric values can be required to fulfill a com-
parison with respect to any other such value or to any
four digit number.

Remote numeric comparisons

Vdx,dy,C___ (-)____, Wdx,dy,C___ (-)____
These options are only available in 2D. They allow to
compare the first value with the second value. V indi-
cates strictly smaller and W indicates smaller or equal.
The first numeric value is a counter from a remote
agent at relative coordinates dx,dy. It requires the
agent to exist. The second numeric value can be a
counter, a numeric message from a neighbor or any
four digit number. See more details in the Numeric
comparisons description.

82

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

The following two operators enable generating any
boolean combination:

Parenthesis ()
Group the expressions they surround.

Negation !
Negates the expression it precedes.

2.2 Postcondition

The postcondition of a rule defines the actions per-
formed by an agent when it applies the rule. It is
any AND combination of the following: change posi-
tion, change attachments, modify state, compute and
update counters, and send messages. More precisely:

Position change Pdx,dy[,dz]

Move the agent to the given relative coordinates.
Counters can be used as in the Empty position condi-
tion.

Attachments A____[__]

For each of the four [six| possible directions (in the
already described order), the possibilities are: 0 de-
tach (if attached) before moving, and stay detached
afterwards; 1 detach (if attached) before moving, and
attach afterwards (if possible); * detach (if attached)
before moving, and attach afterwards if attached be-
fore (and possible); + stay attached along the move-
ment. In this case, attached agents are carried along
with the moving agent.

New state of the agent. An asterisk denotes that the
according character remains unchanged.

(Text) messages to direct neighbors

Send messages to neighbors (* = all).

Calculations on counters and numerical mes-

sages C___ _ ____ ____,#___ _ ____ ____
2D only:

C___ _ dx,dy,C____ ____ ,

#___ _ dx,dy,C____ ____ ,
c____¢c__,c__,C____ ____ ,

C C C

Every calculation action starts with a position to
write the result to (counter or outgoing message),
followed by the operation to be performed, and two
(readable) values on which the operation is per-
formed. Possible operations are + (add), - (subtract),
* (multiply), / (divide), M (modulo), A (maximum),
and I (minimum). As values for an operation,
either four-digit-numbers or internal counters (or one
external counter, only in 2D) or incoming numerical
messages can be used. The external counter is
defined by first indicating the coordinates (dx,dy or
C__,C__) of the agent and then the counter.

——

83

Swap XN, XW, XE, XS, [XA, XB]

Exchange the positions of two neighboring agents.
Written as a X, followed by the desired swap neigh-
bor.

3 The program flow

The program synchronously runs the rules on the
agents. It starts by reading the initial setting as well
as the set of rules. At every step, the following oper-
ations are performed in the order listed below. Alter-
natively, the order of steps 2 and 3 can be transposed
by the user, if desired. It is also possible for the user
to make all rules not involving position changes to be
applied before those involving position changes.

1. Check and get valid rules. For all agents,
check which rules would apply (ignoring priorities)
and store valid rules sorted by priority. Store the
highest priority of valid rules as current priority and
set the agents priority to open. For all open priority
agents sorted by priority, do until all agents have fized
priority: i) fetch current rules to current priority, and
ii) check priority-conditions for all rules. If they are
fulfilled, set priority to fized. If a condition is not ful-
filled, remove this rule from the specified agent and if
the agents rule list is empty, reduce the current prior-
ity to the highest priority of the remaining rules. If a
circular dependency between rules on different agents
is detected, remove all related rules. Finally, for each
agent remove all rules with priority lower than the
priority of the agent.

2. Perform actions. For all agents, for all previ-
ously stored rules for the agent, perform applicable
actions in the following order: i) detach, ii) compute
attachment decisions, iii) change position (includes
collision detection test), iv) update attachments, v)
update state, and vi) swap agents.

3. Compute calculations and send messages.
For all agents and for all previously stored rules for
the agent, do all calculations (in the order they are
listed in the rule) and send numerical messages and
all text messages to the post-office. Then, deliver all
messages from the post-office to their recipients.

4 The interface

The main window of the program consists of a menu
and a tabbed panel with five tabs, as can be seen in
the topmost portion of Figure 1.

Universe. This tab allows to visualize the agents as
they apply the rules. The algorithm can be visualized

Simulating distributed algorithms for lattice agents

step by step or can be let to run, it can be stopped,
and it is also possible to jump one or more steps for-
wards and backwards. In addition to the colors that
can be used to distinguish the agents’ states and their
attachments, clicking on an agent allows to show its
id, position, attachments, state, counter values, mes-
sages, and current priority. Zooming and translating
the scene is always possible. In the 3-dimensional sim-
ulator rotations are also possible. Figure 1 shows a
screen shot of the universe of the 2D simulator, in
which the information of one of the agents can be
seen. The universe panel also shows the current num-
ber of iterations, and all warning and error messages.

Figure 1: A screen shot of the program, showing the
visualization of a set of rules running on a set of agents.

Agents and Rules. The tab consists of two text
panels. The left one shows the agents file, the right
one shows the rules file. Both files can be indepen-
dently loaded, modified and saved. Editing shortcuts
are provided. When saving any of the files, inconsis-
tencies and syntax errors are detected and marked.
See Figure 2 for an illustration.

=)

Figure 2: A screen shot of the panel showing the current
agents (left) and rules (right). An error detection is shown.

Log tabs. There are three log tabs, each showing
the corresponding file. The actions.log file stores the
information of the rules applied by all agents at each
iteration. The positions.log file stores the complete
information of all agents at each iteration (position,
state, attachments, counters, etc.). The error.log file
stores all error messages at each iteration.

Agents generator. This tab allows to graphically
generate or modify a set of agents, together with their
attachments, states and counters.

5 Implemented algorithms

We have designed and implemented a large set of dis-
tributed algorithms, and we have run them on dif-
ferent configurations of agents. The implemented al-
gorithms cover tasks from self-organization to self-
reconfiguration. Self-organization includes: choosing
a leader, building a spanning tree, counting the num-
ber of agents, and computing the minimum bounding
box. All these self-organization tasks refer to con-
nected sets of agents. Details can be found in [4].
Among the self-reconfiguration algorithms, we have
implemented generic reconfiguration strategies for ar-
bitrary connected shapes either assuming linear force
per module [4], inspired by the centralized algorithm
proposed in [1], or only constant force [3], follow-
ing [2]. In addition, we have also implemented path
finding algorithms, as well as some screen-saver-like
amusement ones.

6 Conclusion

Our simulator is robust, and it is our strong belief
that it will be useful to researchers wishing to run
experiments on a wide range of distributed algorithms
for self-organizing agents. For practical purposes the
system scales linearly in nk, where n is the number of
agents and k is the number of rules.

We therefore offer both the simulator and the
aforementioned examples to the scientific community.
They can be downloaded from the web page [6], which
also includes i) the source files, ii) a user guide, and
iii) the details of the already implemented algorithms.

References

[1] G. Aloupis, S. Collette, M. Damian, E. D. Demaine,
R. Flatland, S. Langerman, J. O’Rourke, S. Ra-
maswami, V. Sacristan, S. Wuhrer, Linear reconfig-
uration of cube-style modular robots, Computational
Geometry — Theory and Applications, 42, 6-7 (2009),
652-663.

[2] F. Hurtado, E. Molina, S. Ramaswami, V. Sacristan,
Distributed universal reconfiguration of 2D lattice-

based modular robots, in: Proc. 29th European Work-
shop on Computational Geometry, 2013, 139-142.

[3] O. Rodriguez, Simulacié de lactuacié distribuida de
robots modulars, Degree thesis, Universitat Politéc-
nica de Catalunya, Spain, 2013.

[4] R. Wallner, A System of Autonomously Self-
Reconfigurable Agents, Degree thesis, Graz University
of Technology, Austria, 2009.

[5] http://cs.gmu.edu/~eclab/projects/mason/
Last visited: May 15, 2013.

[6] http://www-ma2.upc.edu/vera/AgentSystems/

84

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Empty convex polytopes in random point sets

Jozsef Balogh*!, Hernan Gonzalez-Aguilarf?, and Gelasio Salazar®3

!Department of Mathematics, University of Illinois at Urbana-Champaign. Urbana, IL, United States.
2Facultad de Ciencias, Universidad Auténoma de San Luis Potosi. San Luis Potosi, SLP, México.
3Instituto de Fisica, Universidad Auténoma de San Luis Potosi. San Luis Potosi, SLP, México.

Abstract

Given a set P of points in R?, a convez hole (alterna-
tively, empty convex polytope) of P is a convex poly-
tope with vertices in P, containing no points of P
in its interior. Let R be a bounded convex region in
R?. We show that if P is a set of n random points
chosen independently and uniformly over R, then the
expected number of vertices of the largest hole of P
is O(logn/(loglogn)), regardless of the shape of R.
This generalizes the analogous result proved for the
case d = 2 by Balogh, Gonzélez-Aguilar, and Salazar.

Introduction

Given a set P of points in R?, a convez hole (alterna-
tively, empty convex polytope) of P is a convex poly-
tope with vertices in P, containing no points of P in
its interior.

Recently, we showed that the expected size of the
largest convex hole in a random n-point set in the
plane is ©(logn/loglogn) [3]. One anonymous ref-
eree of this paper asked if this could be generalized
to d > 2 dimensions. Joe O’Rourke asked the same
question in MathOverflow, and Douglas Zare replied
that the Q(logn/loglogn) lower bound carries over
easily to the d-dimensional case [10]. At the end of
his reply, Zare wrote: “I don’t know whether their
harder upper bound of the same form also extends to
higher dimensions, but I suspect that it does.”

Our aim in this note is to show that, indeed, the
upper bound also holds for higher dimensions. Thus,
our main result is:

Theorem 1 Let d > 2 be an integer, and let R be a
bounded convex region in R%. Let R, be a set of n
points chosen independently and uniformly at random
from R, and let HOL(R,,) denote the random variable

*Email: jobal@math.uiuc.edu. Research supported by NSF
CAREER Grant DMS-0745185.

TEmail: hernan@fc.uaslp.mx.
PROMEP.

tEmail: gsalazar@ifisica.uaslp.mx. Research supported by
CONACYT Grant 106432.

Research supported by

85

that measures the number of wvertices of the largest
convex hole in R,. Then

B logn
E(HoL(Ry)) = 9(1og logn)

Moreover, a.a.s.

HOL(R,) = © (l(’g”>
loglogn

The proof, which is an immediate consequence of
Theorems 2 and 3 below, follows very closely the main
ideas of the proof of [3, Theorem 3]. Indeed, the strat-
egy and the main ideas are so close that it seems best
to follow as closely as possible the structure of [3]. As
we shall see below, some of the results proved in [3]
follow without any modification to arbitrary dimen-
sions. The main adaptations needed are:

1. a generalization of the results in [3, Section 2] to
d > 2 dimensions, to approximate convex sets in
R? with lattice polytopes; and

2. an adaptation to d > 2 dimensions of the re-
sults on the probability that a random n-point
set is in convex position, from the exact results
of Valtr [11, 12] in R? to the asymptotic results
of Barany [6] in R?, for any d > 2.

The workhorse for the proof of Theorem 1 for ar-
bitrary regions R is the following statement, which
takes care of the particular case in which R is a par-
allelotope.

Theorem 2 Let R be a parallelotope in R?. Let R,
be a set of n points chosen independently and uni-
formly at random from R, and let HOL(R,,) denote
the random variable that measures the number of ver-
tices of the largest convex hole in R,,. Then

_ logn
E(HoL(R,)) =0 <1og logn> .

Moreover, a.a.s.

_ logn
HoL(R,) =© (1og logn> .

Empty convex polytopes in random point sets

The other essential fact is that the order of magni-
tude of the expected number of vertices of the largest
convex hole is independent of the shape of R:

Theorem 3 There exist absolute constants b, b’ with
the following property. Let R and S be bounded convex
regions in RY. Let R, (respectively, S,) be a set of n
points chosen independently and uniformly at random
from R (respectively, S). Let HOL(R,,) (respectively,
HoL(S,,)) denote the random variable that measures
the number of vertices of the largest convex hole in R,
(respectively, Sy,). Then, for all sufficiently large n,

E(HOL(R,)) _
"= B(Hou(s,) <

Moreover, there exist absolute constants c,c’ such that
a.a.s.

HoL(R,) _ ,
€= HoL(S,) — ¢

We remark that Theorem 3 is in line with the fol-
lowing result proved by Barany and Fiiredi [5]: the ex-
pected number of empty simplices in a set of n points
chosen uniformly and independently at random from
a convex set A with non-empty interior in R is ©(n?),
regardless of the shape of A.

Remark (Proof of Theorem 1). Theorem 1 is an
immediate consequence of Theorems 2 and 3.

The proof of Theorem 2 is in Section 1. As we
explain in Section 2, the proof of Theorem 3 is totally
analogous to the proof of [3, Theorem 2].

We make a few final remarks before we move on to
the proofs. For the rest of the paper we let Vol(U)
denote the volume of a region U in R?. We also note
that, throughout the paper, by log x we mean the nat-
ural logarithm of x. Finally, since we only consider
sets of points chosen independently and uniformly at
random from a region, for brevity we simply say that
such point sets are chosen at random from this region.

1 Proof of Theorem 2

We start by noting that if Q,Q’ are two regions such
that @' is obtained from @ by an affine transforma-
tion, then HOL(®,) = HoL(Q),). Thus we may as-
sume without loss of generality that R is the isothetic
unit area square centered at the origin.

We prove the lower and upper bounds separately.
More specifically, we prove that for all sufficiently
large n:

1 logn
Pr({ HoL(R,) > - ————
r(L(Bn) = 2 loglogn

) >1-n"2 (1)

Pr(HOL(Rn) < d(2 + 2d?) l(jgoign) >1-n"1. (2)

We note that (1) and (2) imply immediately the
a.a.s. part of Theorem 2. Now the Q(logn/loglogn)
part of the theorem follows from (1), since HOL(R,,)
is a non-negative random variable, whereas the
O(logn/loglogn) part follows from (2), since
HoL(R,,) is bounded by above by n.

Thus we complete the proof by showing (1) and (2).

Proof of (1)

Let R, be a set of n points chosen at random from
R. We prove that a.a.s. R, has an empty convex
polytope of size at least 21(1)(5;;”.

Consider the 2-dimensional projection
R? — R? defined by (x1,22,23, T4,...,Tq) —
(21,22,0,0,...,0). Note that 7(R,) is a set of n
points chosen (independently and uniformly) at ran-
dom from the unit square. Thus it follows from Eq. (1)
in [3] that a.a.s. m(R,,) has a convex hole H of size at

least mi}‘;%gn. Clearly, 7~1(H) is an empty convex
polytope of R, of size at least 213%%. O

Proof of (2)

Let R,, be a set of n points chosen at random from
R. We remark that throughout the proof we always
implicitly assume that n is sufficiently large.

We shall use the following easy consequence of
Chernoff’s bound. This is derived immediately, for
instance, from Theorem A.1.11 in [1].

Lemma 4 Let Y7,...,Y,, be mutually independent
random variables with Pr(Y; = 1) = p and Pr(Y; =
0)=1—p, fori=1,...,m. LetY :=Y1 + ...+ Y,,.
Then

Pr(Y > (3/2)pm) < e P™/16 O

Let S be the isothetic d-cube of volume 3%, also (as
R) centered at the origin.

We need the following result on approximating con-
vex sets by lattice parallelotopes.

Claim A. For each positive integer d > 0 there ez-
ist integers fi1(d) and fo(d) with the following prop-
erty. Let H be a convex set in R%. Then there ea-
ists a lattice parallelotope Q1 such that H C Q1 and
Vol(Q1) < (f1(d)+1) Vol(H). Moreover, if Vol(H) >
29=1.1000/n, then there is a lattice parallelotope Qg
such that Qo € H and Vol(Qo) > (f2(d) — 1)Vol(H).

Sketch of Proof. By a the theorem of M. Balla [2],
for every convex compact set H C R there exists a
parallelotope P such that P C H C dP = P where
dP is the image of P under a homothety with ratio d.
This implies that d~ Vol(P) < Vol(H) < d? Vol(P).

For each vertex v;, i = 0,...,2% of]3, let us denote
by Q. the parallelotope with side length 2/n with

86

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

facets parallel to the facets of P that has v; as one of
its vertices and PNQ,, = {v;}. Observe that each Q,,
contains a d-ball of diameter 2/n and for that, there
is a lattice point v} in the interior of each @,,. Let Q1
be the convex hull of the points v{,...,v,. Note that

d(vg,v}) < %\/& for each ¢ = 1,...,2% this implies

~

that o(P, Q1) < %\/E where o(+,-) is the Hausdorff

metric. Then

Vol(Q1) < VO1(13)+%\/& - Surf(P) + Vol(B)

< d? Vol(H) + %\/E- Surf(P) + Vol(B)
< (fi(d) + 1) Vol(H)

where B is the d-ball of diameter %\/ﬁ and Surf(+) is
the volume (d — 1)-dimensional.

Now, for each vertex w;, i = 0,...,2%, of P con-
sider the parallelotope Q.,, with side length 2/n with
facets parallel to the facets of P that has w; as one
of its vertices and Q,,, C P. Because each Q,, con-
tains a d-ball of diameter %, then there exists a lattice
point in each @,,, let w} this point. The existence of
these points is guaranteed provided that Vol(H) >
24=1.1000/n Let Qo be the convex hull of the points
wl,...,wh,. Note that d(w;,w]) < 2v/d for each
i=1,...,2% this implies that o(P, Qo) < %\/ﬁ Then
Vol(P) — 2V/d-Surf(Qo) — Vol(B) < Vol(Qo) This im-
plies

Vol(Qo) > Vol(P) — %\/J Surf(Qo) — Vol(B)
> Vol(P) — %\/8- Surf(P) — Vol(B)
> d~?Vol(H) — %\/Zi. Surf(H) — Vol(B)
> (fa(d) —1)Vol(H). O

For the rest of the proof, for simplicity we define
f3(d) := f3(d), where fi(d) and f(d) are as in Claim
A.

Since there are (9n + 1)¢ < (10n)? lattice points,
out of which (n + 1)? are in R, it follows that

there are fewer than ((1gg)d) < (10n)%2" lattice d-

d
parallelotopes in total, and fewer than (gd) < n@*
lattice d-parallelotopes all of whose vertices are in R.

Claim B. With probability at least 1 — n='0 every
lattice parallelotope @ with Vol(Q) < 20f3(d)logn/n
satisfies that |R, N Q| < (3/2) - 20f3(d) logn.

Proof. We note that, since (fi(d) + 1)/f2(d) > 1,
it follows that 20f3(d) > d2¢ + 10. Let Q be a lat-
tice parallelotope with Vol(Q) < 20 f3(d) logn/n, and
let Z = Z(Q) C R be any lattice parallelotope con-
taining @, with Vol(Z) = 20 f3(d)logn/n. Let Xq
(respectively, Xz) denote the random variable that

87

measures the number of points of R, in @ (respec-
tively, Z). We apply Lemma 4 with p = Vol(Z) and
m = n, to obtain Pr(Xz > (3/2) - 20 f5(d) logn) <
e~ (3/2)20 f3(d)/24logn — p—=(5/4)f3(d) Since Q C Z,
it follows that Pr(Xq > (3/2) - 20 f3(d) logn) <
n~(/9f(d) As the number of choices for Q is at
most (10n)d2d, with probability at least (1— (10n)d2d :
n~ (/N fs(d)y > 1119 1o such Q contains more than
(3/2) - 20 f3(d) logn points of R,,. O

A polytope is empty if its interior contains no points
of R,.

Claim C. With probability at least 1 —n =19, there is
no empty lattice parallelotope Q C R with Vol(Q) >
20 (d2? + 10) logn/n.

Proof. The probability that a fixed lattice paral-
lelotope @ C R with Vol(Q) > d2? + 10logn/n is
empty is (1 — Vol(@Q))" < n=92"+10_ Since there are
fewer than n’ lattice parallelotopes in R, it fol-
lows that the probability that at least one of the lat-
tice parallelotope with area at least (d2? + 10) logn/n
(and hence with area at least 20 (d2¢ + 10) log n/n) is
empty is less than nd2* . = (d27+10) < =10, O

For the rest of the proof, we let H be a maximum
size convex hole of R,,.

Claim D. With probability at least 1 —n =10 we have
Vol(Q1)< f3(d)logn/n.

Proof. Suppose first that Vol(H) < 29711000/n.
Then Vol(Qq) < 2971 . 1000(f1(d) + 1)/n. Since
this is obviously smaller than f3(d)logn/n, in this
case we are done. Now suppose that Vol(H) >
24=1..1000/n, so that Qg (from Claim A) exists.
Moreover, Vol(Q1) < (fi(d) + 1)Vol(H). Since
Qo € H, and H is a hole of R,, it follows that
Qo is empty. Thus, by Claim C, with probabil-
ity at least 1 — n~ ! we have that Vol(Qg) <
(d2¢ +10)logn/n. Now since Vol(Q;) < (fi(d) +
1) Vol(H) and Vol(Qo) > fa(d) - Vol(H), it follows
that Vol(Q1) < (fi(d) + 1) Vol(Qo)/f2(d). Thus
with probability at least 1 — n~!° we have that
Vol(Q1) < ((fi(d) + 1)(d2? + 10)/2(d) logn/n =
f3(d)logn/n. O

Claim E. For each fized integer d > 0, there exist
a universal positive constant co := ca(d) with the fol-
lowing property. Let K be any convex polytope in R?.
Then the probability that r points chosen at random
from K are in convez position is at most (co ndzfl)*”.

Proof. This is an immediate consequence of [6] (see
for instance [4, Theorem 2.1]). O

Empty convex polytopes in random point sets

Claim F. With probability at least 1 — 2n=2 the
random point set R, satisfies that no lattice paral-
lelotope @ with Vol(Q) < 20 f3(d)logn/n contains
d(2 + 2d?)logn/(loglogn) points of Ry, in convex po-
sition.

Proof. Let @ be a lattice parallelotope with
Vol(Q) < 20 f3(d)logn/n. By Claim B, with prob-
ability at least 1 — n =10 we have |R, N Q| < (3/2) -
20 f3(d)logn. Thus it suffices to show that the
probability that there exists a lattice parallelotope
Q@ with with |R, N Q| < (3/2) - 20 f3(d)logn and
d(2 + 2d?)log n/(loglogn) points of R, in convex po-
sition is at most n 2.

Let ¢o := c2(d) be as in Claim E. Thus the expected
number of r-tuples of R, in @ in convex position is
at most

<|Rn; Q|> (cgr%)""

< ((3/2) - fa(d) log n> (cy«ﬁ) =

- r

< (6 - (3/2) - B logn)r (Czrd%)ﬂ”

r
12 \"
< (c;;,logn-r dfl) ,

where c3 := 3ef5(d)/2cs.

Since there are at most n choices for @, it
follows that the expected total number of such r-
tuples with 7 = d(2 + 2d?)logn/loglogn is at most

d —1—
n2" . <63logn~r 1

d2?

T
%) < n~2 (this last inequal-
ity follows from an elemenary but long manipula-
tion). This completes the proof, since it follows that

the probability that such an r-tuple exists is at most
2
n-. (I

To finish the proof of (2), recall that H is a maxi-
mum size empty convex polytope of R,,, and that H C
@1- It follows immediately from Claims D and F that
with probability at least 1 —n~' the parallelotope Q1
does not contain a set of d(2 + 2d?)logn/(loglogn)
points of R, in convex position. In particular, with
probability at least 1 — n~! the size of H is at most
d(2 + 2d?)logn/(loglogn). O

2 Proof of Theorem 3

The proof of Theorem 3 is totally analogous to the
proof of [3, Theorem 2|. Indeed, in that proof, es-
sentially all the arguments are independent of the
dimension. The only adaptation that needs to be
done is that we need a version of [3, Corollary 6] for
d > 2 dimensions. We recall that [3, Corollary 6]

claims that if H is a closed convex set in R?, then
there exist rectangles U, K such that U C H C K,
Vol(U) > Vol(H)/8, and Vol(K) < 2Vol(H).

A d-dimensional analogue of this statement follows
from the following result in [9]: if H is a convex body
in R?, then H contains a parallelotope P such that
some translate of dP contains K. Indeed, this implies
at once that if H is a closed convex set in R¢, then
there exist parallelotopes U, K such that U C H C K,
Vol(U) > Vol(H)/d, and Vol(K) < d - Vol(H).

References

[1] N. Alon and J. Spencer. The probabilistic method,
3rd. Edition. Wiley, 2008.

[2] M. Y. Balla, Approximation of convex bodies by par-
allelotopes, Internal Report IC/87/310, International
Centre for Theoretical Physics, ICTP, Trieste, 1988

[3] J. Balogh, H. Gonzalez-Aguilar, and G. Salazar,
Large convex holes in random point sets. Comp.
Geom. 46 (2013), 725-733.

[4] 1. Barany, Random points, convex bodies, lattices.
Proceedings of the International Congress of Mathe-
maticians, Vol. III (Beijing, 2002), 527-535. Higher
Ed. Press, Beijing, 2002.

[6] I. Barany and Z. Fiiredi, Empty simplices in Eu-
clidean space, Canad. Math. Bull. 30 (1987) 436—445.

[6] I. Barany, A note on Sylvester’s four-point problem.
Studia Sci. Math. Hungar. 38 (2001), 73-77.

[7] 1. Barany, Sylvester’s question: the probability that n
points are in convex position, Ann. Probab. 27 (1999),
2020-2034.

[8] I. Barany and P. Valtr, Planar point sets with a small
number of empty convex polygons. Studia Sci. Math.
Hungar. 41 (2004), 243-266.

[9] G.D. Chakerian and S. K. Stein,
intersection properties of convex
Proc. Amer. Math. Soc. 18 (1967), 109-112.

Some
bodies.

[10] J. O’Rourke, Empty convex polytopes for random
point sets.
http://mathoverflow.net/questions/107875
(2012).

[11] P. Valtr, Probability that n Random Points are in
Convex Position. Discrete and Computational Geom-
etry 13 (1995), 637-643.

[12] P. Valtr, The Probability that n Random Points in a
Triangle Are in Convex Position. Combinatorica 16
(1996), 567-573.

88

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Note on the number of obtuse angles in point sets

Ruy Fabila-Monroy*!, Clemens Huemer!?, and Eulalia Tramuns*?

I'Departamento de Matematicas, Cinvestav-IPN
2Departament de Matematica Aplicada IV, Universitat Politécnica de Catalunya, BarcelonaTech

Abstract

In 1979 Conway, Croft, Erdés and Guy proved that

every set S of n points in general position in the plane
3

determines at least = —O(n?) obtuse angles and also

showed the upper bound % — O(n?) on the mini-
mum number of obtuse angles among all sets S. We
prove that every set S of n points in convex position
determines at least % — o(n?) obtuse angles, hence
matching the upper bound (up to sub-cubic terms) in
this case. Also on the other side, for point sets with
low rectilinear crossing number, the lower bound on
the minimum number of obtuse angles is improved.

Introduction

A point set S in the plane is in general position if
no three points of the set lie on a common straight
line. Throughout, all considered point sets S will be
in general position in the plane and |S| = n. An angle
abe at b determined by three points {a, b, ¢} of S is ob-
tuse if it is greater than 7. Prominent problems and
results on obtuse and acute angles in point sets can
be found in [4]. Here we are interested in the number
of obtuse angles determined by point sets S. Conway

et al. [3] proved that the minimum number of obtuse
angles among all sets S is between n’ O(n?) and

5
% — O(n?). In this note we prove that point sets

S in convex position determine at least % — o(n?)
obtuse angles. Interestingly, this matches (up to sub-

cubic terms) the upper bound example from [3]. We
conjecture that % is indeed the right order of magni-
tude for the minimum number of obtuse angles. Point
sets in convex position are characterized as the point
sets that maximize the rectilinear crossing number.
The rectilinear crossing number cr(S) of a point set

S equals the number of convex quadrilaterals with

*Email: ruyfabila@math.cinvestav.edu.mx. Partially sup-
ported by Conacyt of Mexico, Grant 153984.

TEmail: clemens@mad.upc.edu. Partially supported by
projects MEC MTM2012-30951 and Gen. Cat. DGR
2009SGR1040 and ESF EUROCORES programme EuroGIGA,
CRP ComPoSe: grant EUI-EURC-2011-4306, for Spain.

{Email: etramuns@mad.upc.edu. Partially supported by
MTM2011-28800-C02-01 from Spanish MEC.

89

Figure 1: Alternately skipping ¢ and j points in the
polygonal path for class (3, j).

vertices in S. Hence, an upper bound of () on the
rectilinear crossing number is obvious. As for point
sets with low crossing number, the current best lower
bound is 277 (’}) +©(n?®) [2] and there are point sets S
that only have cr(S) = 0.380488(}) + ©(n?) [1]. We
show that point sets S whose crossing number is not
too large, at most %(2), have more than ™ obtuse

18
angles.

Proofs

Theorem 1 Every set S of n points in conver and
3
general position in the plane determines at least 2% —

27
o(n?) obtuse angles.

Proof. First we consider the case when n is a prime
number; the case when n is not a prime number will be
treated at the end of the proof. We label the points of
S from 0 to n—1 in counter-clockwise order. For three
points a,b,c € S in counter-clockwise order, we say
that the angle abc at point b is of class (4, j) if the open
halfplane bounded by the line through points ¢ and
b, and not containing point ¢ contains ¢ points of S,
and if the open halfplane bounded by the line through
points b and ¢, and not containing point a contains j
points of S; see Figure 1. (Then ab is an i-edge and bc
is a j-edge.) Hence each angle defined by S belongs
to some class (i,7), where 0 < i+ j <n — 3. For i,j
fixed, i # j, we consider the polygon P that starts at
point 0, visits points of S in counter-clockwise order,
alternately skipping ¢ points and j points of S, until
it returns to point 0 the second time. Three steps of

Note on the number of obtuse angles in point sets

such a polygonal path of P are shown in Figure 1.
Note that the polygon P is self-intersecting and can
visit vertices more than once.

e Claim: Each angle of class (i,j) and each angle
of class (j,1) is encountered exactly once in P.

We modify P to obtain a new polygon P’ by pair-
ing two consecutive steps of P which skip ¢ points
and j points respectively; that is, we now move
from a point m to point m + ¢+ j + 2 mod n.
Since n is a prime number, each non-zero ele-
ment of the additive group Z, is a generator of
the group; in particular also ¢ + j + 2. This im-
plies that P’ returns to the starting point 0 after
it visited each point of S\{0} exactly once. We
now retrieve the original polygon P by splitting
the paired steps into steps skipping alternately ¢
points and j points. It follows that each point of
S is visited twice in P, and each angle of class
(i,7) and each angle of class (j,4) is encountered
exactly once in P.

e Claim: The rotation number [5] of the polygon
Pisi+j+2.
The rotation number measures how many times
the polygon turns around. Note that the under-
lying point set is in convex position and all steps
are done in counter-clockwise order. The polygon
visits each vertex m twice; from a point m the
polygonal path continues once to point m +i+1
mod n, and once to point m + j + 1 mod n; in
total the path advances ¢ + j + 2 points from
m. Hence, summing over all n vertices, we count
(i + j + 2)n steps between consecutive points of
the point set in counter-clockwise order. n steps
between consecutive points describe one full turn.
Thus the rotation number is i + j + 2.

e Claim: At least 2n — 3(i + j +2) angles of the 2n
angles of classes (i, j) and (j,¢) encountered in P
are obtuse.

For the sake of contradiction, suppose that P
contains less than 2n — 3(i+ j + 2) obtuse angles.
Then, P contains more than 3(i + j + 2) acute
or right angles. By an averaging argument, at
least one of the ¢+ j + 2 full turns of the polygon
contains more than three acute or right angles.
But this is not possible, unless P contains four
right angles forming a 4-cycle contradicting n
being a prime number.

Hence, each pair of classes (i,5) and (j,4) of an-
gles, with ¢ # j, contains at least 2n—3(i+j +2)
obtuse angles. Summing over all possible values
1,7 we thus get the lower bound on the number

of obtuse angles in S

el] o3
Z > 2m-3(i+j+2) = I om?).

=0 j=0,j#i 27

It remains to consider the case when n is not a
prime number. In this case it suffices to only
count the number of obtuse angles in a subset
S" of S consisting of n, points, where n, is the
largest prime number smaller than n. Since n, >
n — o(n), see e.g. [6], we get the lower bound on
the number of obtuse angles in S

2(n — o(n))? 2

— 2 —
27 O7) =5

—o(n®).
g

Lemma 2 FEvery set S of n points in general position
in the plane with rectilinear crossing number cr(S)
cr(S)
n—3

determines at least 15 — — O(n?) obtuse angles.

Proof. We first remark that the number of right an-
gles formed by S is negligible for our purpose. In fact,
it is enough to observe that no edge spanned by S is
incident to more than two right angles, due to the
general position assumption. Hence we upper bound
the number of right angles by 2(}). Each 4-tuple of
points in convex position forms at least one obtuse
angle or four right angles; and each 4-tuple of points
not in convex position forms at least two obtuse an-
gles. Thus, the total number of obtuse angles in S is

(er(s)- (")/4) ((") er(8))2

at least , where we divide
by n — 3 because each obtuse angle is counted n — 3
times. Simplifying gives the claimed bound. O
References

[1] B.M. Abrego, M. Cetina, S. Fernandez-Merchant,
J. Leafios, G. Salazar, 3-symmetric and 3-
decomposable geometric drawings of K,, Discrete
Applied Mathematics 158 (2010), 1240-1258.

[2] B.M. Abrego, M. Cetina, S. Fernandez-Merchant, J.
Leanos, G. Salazar, On (< k)-edges, crossings, and
halving lines of geometric drawings of K,, Discrete
and Computational Geometry 48 (2012), 192-215.

[3] J.H. Conway, H.T. Croft, P. Erdgs, M.J.T. Guy, On
the distribution of values of angles determined by
coplanar points, Journal of the London Mathemati-
cal Society (2) 19 (1979), 137-143.

[4] P. Erdés, Z. Firedi, The greatest angle among n
points in the d-dimensional Euclidean space, Annals
of Discrete Mathematics 17 (1983), 275-283.

[5] B. Griinbaum, G.C. Shephard, Rotation and wind-
ing numbers for planar polygons and curves, Trans-
actions of the American Mathematical Society 322
(1990), 169-187.

[6] R. Guy. Unsolved problems in number theory, Third
Edition, Springer, New York, 2004.

90

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Stabbing simplices of point sets with k-flats

Javier Cano*!, Ferran Hurtado'2, and Jorge Urrutiat!

nstituto de Mateméticas, Universidad Nacional Auténoma de México, Mexico City, Mexico.
?Departament de Matematica Aplicada, Universitat Politécnica de Catalunya, Barcelona, Spain.

Abstract

Let S be a set of n points in R? in general position.
A set H of k-flats is called an my-stabber of S if the
relative interior of any m-simplex with vertices in S
is intersected by at least one element of H. In this
paper we give lower and upper bounds on the size of
minimum mg-stabbers of point sets in R%. We study
mainly my-stabbers in the plane and in R3.

Introduction

Aset {zg,..., 7} € R?of k+1 points is called linearly
independent if there is no linear combination Agxg +
-+ + Agxr = 0 in which at least one A\; # 0, k < d.
A set of points {zg,...,z} € R? is called affinely
independent if the set {x1 —xo, ..., 2t —xo} is linearly
independent, £ > 1. A set consisting of a single point
will also be considered as affinely independent. An
affine combination of a set of k41 affinely independent
points in R? is a linear combination Mgz + - - - + A\pZp
of xg,...,xp such that A\g + --- + Ay = 1. The set
of affine combinations of k + 1 affinely independent
points of R? is called a k-flat. In particular, a (d—1)-
flat of R? will be called a hyperplane. Following our
intuition, a 1-flat is a line, and a 2-flat is a plane. A
k-flat is isomorphic to the k-dimensional space R¥. A
point set S in R? is in general position if any subset of
S with at most d+ 1 elements is affinely independent.

An m-simplez of R¢ is the convex hull of a set of
m + 1 affinely independent points in R¢, m < d. For
example, in R? a 0-simplex is a point, a 1-simplex is
a segment and a 2-simplex is a triangle.

Given a k-flat h and an m-simplex P of R?, we say
that h stabs P if h intersects the relative interior of P.
A set of k-flats H is called an my-stabber of a set of
points S if every m-simplex induced by the elements

*Email: jcanoQciencias.unam.mx. Research supported by
project number 178379 Conacyt, México.

TEmail: ferran.hurtado@upc.edu. Research partially sup-
ported by projects MINECO277 MTM2012-30951, Gen. Cat.
DGR2009SGR1040, and ESF EUROCORES programme Eu-
roGIGA, CRP ComPoSe IP04: MICINN Project EUI-EURC-
2011-4306.

tEmail: urrutia@matem.unam.mx. Research supported by
project number 178379 Conacyt, México..

91

of S is stabbed by at least one element of H.

For example, in the plane a set of points @ (respec-
tively lines) is a 3g-stabber (respectively a 31-stabber)
of point set S if any triangle with vertices in S con-
tains an element of @ in its interior (respectively is
intersected by a line in Q).

In this paper we study the following problem: Given
two integers k < m, k < d, and m < d—+ 1, and a set
S of n points in R in general position, how many k-
flats are needed to stab all the m-simplices generated
by the elements of S7

In this paper we focus mainly on stabbing all the
r-simplices of point sets on the plane or in R?, and
give some results for higher dimensions.

The problem of finding sets of points that stab
all the triangles of a point set has been studied by
Katchalsky and Meir [4], and independently by Czy-
zowicz, Kranakis, and Urrutia [2]. They prove that
for any point set S in the plane in general position
with n elements, such that its convex hull has ¢ ele-
ments, the set of triangles of S can be stabbed with
exactly 2n — ¢ — 2 points, and that such a bound is
tight, as any triangulation of S has 2n—c—2 triangles.
Stabbers for other convex holes, such as quadrilaterals
and pentagons, have also been studied [1].

Given a point set S in R, we define fJ*(S) as the
size of the smallest my-stabber of S. We define f;"*(n)
as the largest value that a my-stabber can have over
all the point sets S of R? with n elements. With this
terminology, the preceding result in the plane trans-
lates to f2(S) =2n —c— 2.

In this paper we show upper and lower bounds for
fi(n), for point sets on the plane and R?® that are
tight up to a constant.

1 Well-separated sets and gener-
alized ham-sandwich cuts

A family of convex sets Cy,...,Cy of RY, k < d, is
well separated if for any choice of x; € C;, the set of
points {xg,...,zx} is affinely independent. A family
Py, ..., P, of finite point sets in R? is well separated
if their convex hulls Conv(P), ..., Conv(Py) are well
separated, k < d.

Stabbing simplices with k-flats

Notice that in particular, this implies that for any
pair of different indexes i,j < k, the convex hulls of
P; and P; do not intersect.

Let Py, ..., Py be a family of pairwise disjoint finite
point sets in RY, k < d. Given positive integers a; <
|P;|, an (ag,...,ax)-cut is a hyperplane h for which
hNP;#0and |h™ NP =a;, 0 <i<d, where hT is
the half-space bounded below by h.

The following result by Steiger and Zao will be use-
ful to us:

Theorem 1 ([8]) Let Py,...,P; be well-separated
point sets in RY such that Py U ---U Py is in general
position, and let ag,...,aq be positive integers such
that a; < |P;|. Then there is a unique (ag, . .., aq)-cut
OfPQ,...,Pd.

Finally, we recall the almost folklore result about
ham-sandwich cuts:

Theorem 2 (Ham-sandwich theorem, [9])

Every d finite sets in RY can be simultaneously
bisected by a hyperplane. A hyperplane h bisects a
finite set P if each of the open half-spaces defined by

h contains at most L@J points of P.

Now we have all the tools that we will use to give
an algorithm for constructing a worst-case optimal
my-stabber for point sets in the plane and in the 3-
dimensional space.

2 Stabbers in the plane

We start by studying the following problem: How
many lines are necessary to stab the set of line tri-
angles (segments) determined by triples (pairs) of el-
ements of a point set .S in the plane? In our previous
terminology, determine lower and upper bounds for
fi(n) and fZ(n) for point sets on the plane. We first
prove:

Theorem 3 For any set S of n points in the plane
r < f2(S) < [2], where r is the smallest number such
that 5 <2+2+3+---+r. Our bounds are tight.

Proof. The lower bound follows from the fact that r
lines, no three of which intersect at a point, divide the
plane into 2+ 2 + 3 4 - - - + r convex regions, and if a
set of r lines stabs all of the triangles with vertices in
S, then S has at most two elements in each of these
regions.

We now prove that f£(S) < [2]. To this end, we
now show how to obtain a set H with [%] straight-
lines that is a 2;-stabber of S. To prove our result, it
is sufficient to find a set H with [}] lines such that
any cell of the arrangement generated by H contains
at most two elements of S.

First, we put in H one straight line ¢ that separates
S into two subsets of size [5] and |] respectively.
Refer to these sets as .S; and Sy. Clearly, these sets are
well separated, and by Theorem 1 we can find a (2, 2)-
cut for S; and S5. This cut is a line ¢; that leaves
two elements 1,25 of S and two elements), z, of
Sy above it. These points are separated from the re-
maining points of S by ¢ and /¢, if /1 contains some
element of S; or Sy move it slightly. Thus any trian-
gle containing at least one vertex in {x1, zo, 2], 25} is
intersected by £ or /1.

We repeat this recursively on Sy \ {z1,22} and Sa\
{x}, 25}, 4] — 2 times, obtaining a set of [%] lines
(including ¢ and ¢;) that is a 2;-stabber of S.

To show that our bound is tight, let S be a
set of n points in the plane in convex position la-
beled pg, p1,...,Pn_1 in counterclockwise order, with
n even. Consider the set of T triangles p;p;y1pit2, i
even, and i < 7 for every even value of i. Observe
that any two of these triangles intersect at exactly one
vertex, for n > 6.

We claim that any straight line stabs at most 2 of
these triangles. This is true since every such triangle
has exactly two edges of the convex hull of P,; then
any straight line stabbing one such triangle stabs at
least one edge of the convex hull. Any straight line
stabs at most two edges of the convex hull, so then it
can stab at most two of such triangles. Thus to stab
all of those triangles we need at least one straight
line for every two triangles. Observe next that if the
elements of S are in convex position, then to stab the
edges of the convex hull of S we need at last [%] lines.
Thus our upper bound is tight.

The key property of H in the proof of this result is
the fact that any cell of the arrangement induced by
‘H contains at most two elements of S. Observe that
if instead of finding a (2,2)-cut for S; and Sa, we use
(m—1,m — 1)-cuts, then we obtain a set of lines such
that any cell of the arrangement generated by them
contains at most m — 1 elements of S. An m island
of S is a subset S’ of S with exactly m elements and
such that the convex hull of S’ contains no element
of S\ S in its convex hull. The next result follows
easily from the proof of Theorem 3.

Theorem 4 For any set S of n points in the plane,
[m] lines are always sufficient and sometimes
necessary to stab all of the m islands of S.

In particular, for m = 2, this proves that fi(S) <
[5]; that is, to stab the segments of S we need at most
[5] lines. It is easy to see that the bound fm]
in Theorem 4 is achieved for point sets in convex po-
sition.

We close this section by observing that the problem
of calculating f(S) is equivalent to calculating the
minimum number of lines such that in each face of

92

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

the arrangement defined by these lines, there is at
most one element of S. This problem is known as the
shattering problem and its decision version is known
to be NP-complete [5].

3 Stabbers in the space

We consider now the problem of stabbing the tetra-
hedra induced by an n point set S in R? using sets of
planes. Our approach is similar to that of the previous
section.

For the lower bound we will use the following set
of n points in the plane. Let f: R — R3, f(a) =
(a,a?,a®). f(R) is known as the momentum curve in
R3. Clearly, any plane in R? intersects f(R) in at most
3 points. Let C,, = {po,...,pn-1} with p; = f(i).
Since any plane intersects f(R) in at most 3 points,
Cy, is in general position. Given any segment p;p;,
let f([¢,4]) be the curve containing the points f(x),
with ¢ < o < j. We call f([i,j]) the shadow of the
segment p;p; in the momentum curve. The following
observation will be useful.

Observation 1 Let p;,p; € C,. Then any plane in-
tersecting the relative interior of the segment p;p; in-
tersects its shadow.

Consider the set {to, . .. ,ttnzs;lj} of tetrahedra, such
that the vertex set of ¢; is {ps:, P3i+1,P3i+2, P3i+3 }-
Observe that the interiors of these tetrahedra are pair-
wise disjoint, and that ¢; and ¢;; share exactly one
vertex, namely ps;s.

Observation 2 If a plane intersects the interior of a
tetrahedron, then it intersects the relative interior of
one of its edges.

We define the shadow of t; as the shadow of the seg-
ment p3;p3;+3 which is in fact the union of the shadows
of the edges of ¢;. Then the relative interiors of the
shadows of {to, ... ,thT—lJ} are pairwise disjoint. The
next lemma follows now directly from Observations 1
and 2:

Lemma 5 If a plane stabs t;, then it intersects the
relative interior of its shadow.

Since any plane intersects the momentum curve at
most three times, it follows that any plane intersects
at most three elements of {tg,... ’tL%J}'

By Observation 1, any plane stabbing ¢; must in-
tersect its shadow; thus any any plane stabs at most
three elements of {to, ... ’tL%J }.

Thus we have:

Lemma 6 f5(n) > [251].

93

We will now prove that f3(n) < [%] + 2. To this
end, we are going to give an algorithm that splits any
point set S into a a family of well-separated families
of subsets of S.

First find two parallel planes 71 and w9 such that
they split S into three subsets .S1, S5 and S5 such that
[|Si] —155]] <1, ¢# 5 <3. That is, each S; contains
| 5] or [§] elements.

We now apply the ham-sandwich theorem in R3
to find a plane 73 that simultaneously bisects S1, So
and S3. Let S;r be the subset of S; that lies above
m3 and S; the one that lies below 73, with i = 1,2, 3.
This gives us two disjoint well-separated families F =
{S7,85,55} and F' = {S;,S5,S5}. Similarly to
the algorithm in the previous section, iteratively find
(3,3,3)-cuts for F, removing the nine points above
the cut until each set in F contains at most three
points, and adding the cut planes to the 3;-stabber.
Then repeat the same process for F’.

It is now easy to see that the set of planes we obtain
has at most [§] + 2 elements, and that they form a
stabber of all the tetrahedra with vertices in .S. Thus
we have proved:

Theorem 7 [%51] < f3(n) < [2] +2.

Observe that using similar arguments we can prove
that f2(n) ~ n/6 (stabbing triangles with planes) and
f3(n) =~ n/3 (stabbing segments with planes).

3.1 Stabbing 2-simplices of point sets
with lines

For the problem of stabbing triangles with lines, it is
easy to see that in some instances, we need at least
lines. Indeed, consider any set of points S in
R® with n points in convex position. Observe that
the convex hull of S contains exactly 2n — 4 triangles,
and that any line intersects the interior of at most two
of these triangles. Thus we have proved that in R?,
fin) =n—2.

We now prove that 2n —5 lines are always sufficient
to stab all of the triangles of S. To prove this, first
project the elements of S into the real plane, thus
obtaining a point set S’ in R2. It is known that if the
convex hull of S” has ¢ elements, it is always possible
to find a set of points) with at most 2n — ¢ — 2
points that stabs all of the triangles of S’; see |2, 4].
Each point ¢ € @) generates a vertical line ¢, passing
through ¢. Since each triangle T of S projects to a
triangle T” of S’, there is a line ¢;, ¢ € @ that stabs
T’ and thus T. Since in the worst case, the convex
hull of S” has three points, we have proved:

Theorem 8 In R3, f2(n) <2n —5.

Stabbing simplices with k-flats

3.2 Stabbing the 3-simplices of a point
set in R3® with points

We now turn our attention to the problem of stabbing
the set of tetrahedra generated by a point set S in
R3 using sets of points. We will assume that no two
elements of S lie on a line vertical to the real plane.

Consider again the momentum curve f(a) =
(a,a?,a®), and the set of points C, = {po,...,pn}
as defined above. Let 0 < 4,57 < n such that
i+ 1 < j. Let T; ; be the tetrahedra with vertex set
{pi,Pi+1,P;:Pj+1}. It is well known [3] that the set of
tetrahedra T; ;, with ¢ and j as above, have disjoint
interiors, and form a tetrahedralization of the convex
hull of C,, = {po, ..., pn} Since any set of points that
stabs the tetrahedra of S contains at least one point
in each of these T; ;, it follows that f3(n + 1) is at
least ("gl)

We now prove an upper bound on f3(n + 1). We
proceed as follows: For every two elements z;,z; € S,
place a point p; ; slightly above the midpoint of the
line segment joining x; to ;. For every z; € S, place
a point p; slightly below x;.

We now prove that the set of points containing all
the pg,js and the p;’s stabs all the tetrahedra of S.

Consider any four points x;, x;, Tk, e of S. Let H
be the convex hull of {x;, z;, xx, z,}. Two cases arise.
In the first case, H projects to a convex quadrilateral
in the plane. In this case, one edge of the convex hull
of {z;,z;,zk, x¢} is not visible from below. Suppose
w.l.o.g. that it is the edge joining xj to xy. Then the
point p; ; stabs H.

Suppose then that H projects to a triangle T on
the plane. Then one vertex of H, say x;, belongs to
the interior of T. Two sub-cases arise. In the first
sub-case, when we see H from below, x; is not visi-
ble. In this case, the point p; stabs the convex hull of
{zs,z;, 2K, z¢}. In the remaining sub-case, p; ; stabs
H.

Thus we have that we can always choose (”;rl) +n
points that stab the tetrahedra of S. It is not hard
to see that we can reduce the above number by 9 by
observing that if the line segment joining x; to z; is
not visible from below, and this line segment belongs
to the convex hull of S; then the point p; ; is redun-
dant. Also if a point x; belongs to the convex hull of
S and is visible from below, then p; is redundant.

Thus we have proved:

Theorem 9 (";1) <fin+1)< ("'QH) +n-9.

4 Some thoughts on higher di-
mensions

Some of the results in this paper; e.g. Lemma 5
and Lemma 6, generalise easily to higher dimensions,

yielding the following result:

Lemma 10 InR?, [251] < f4 | (n).

And in general:

Lemma 11 In RY, [221] < fr(n).
To finish this paper, we conjecture:

n

Conjecture 1 f&(n)~ 2.

References

[1] J. Cano, A. Garcia, F. Hurtado, T. Sakai, J. Tejel,
J. Urrutia, Blocking the k-holes of point sets in the
plane, submitted.

[2] J. Czyzowicz, E. Kranakis, J. Urrutia, Guarding the
convex subsets of a point set, in: 12th Canadian
Conference on Computational Geometry, Frederic-
ton, New Brunswick, Canada, 2000, 47-50.

[3] B. Griinbaum, Convez Polytopes, Interscience Mono-
graphs in Pure and Applied Mathematics, Vol. XVI,
John Wiley & Sons, London-New York-Sydney.

[4] M. Katchalski, A. Meir, On empty triangles deter-
mined by points in the plane, Acta Math. Hungar 51
(1988), 323-328.

[5] R. Freimer, J. S. B. Mitchell, C. D. Piatko, On the
Complexity of Shattering Using Arrangements, in:
Proceedings of the 2nd Canadian Conference on Com-
putational Geometry, 1990, 218-222.

[6] A. Por, D. R. Wood, On visibility and blockers, J.
Computational Geometry 1(1) (2010), 29-40.

[7] T. Sakai, J. Urrutia, Covering the convex quadri-
laterals of point sets, Graphs and Combinatorics 38
(2007), 343-358.

[8] W. Steiger, J. Zhao, Generalized Ham-Sandwich
Cuts, Discrete and Computational Geometry 44(3)
(2010), 535-545.

[9] H. Steinhaus, A note on the ham sandwich theorem,
Mathesis Polska 9 (1938), 26-28.

94

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Stackable tessellations

Lluis Enrique*! and Rafel Jaumef?

'ETH Ziirich, Switzerland
2Freie Universitit Berlin, Germany

Abstract

We introduce a class of solids that can be constructed
gluing stackable pieces, which has been proven to have
advantages in architectural construction. We derive
a necessary condition for a solid to belong to this
class. This helps to specify a simple sufficient con-
dition for the existence of a stackable tessellation of a
given solid. Finally, we show the compatibility of our
method with some discretization techniques appear-
ing in the literature.

Introduction

During the last decades, the increasing demand of ar-
chitectural freeform shapes has motivated the study
of surface tesselations in tiles which can be manu-
factured with a low economic impact. Substantial
research has been done on planar tesselations with
triangular meshes, quadrilateral meshes [1, 2] and its
special cases of spherical and conical meshes [3]. Nev-
ertheless, tessellating methods in non-standard non-
planar panels have been rarely considered, since for
most construction materials the production of such
building components is very expensive. The inno-
vative CASTonCAST project [4] proposes a system
which consists of two parts: a geometric method for
the construction of double curved shapes by means of
stackable tiles and an efficient fabrication technique of
curved precast panels which relies on shaping building
components in stacks by using the previous compo-
nent as a mold for the next one. The latter relies on
using the top surface of each component as part of the
mold for the next one, after applying a chemical bar-
rier. Once the components have been fabricated in
stacks, they are detached and assembled by glueing
them through their lateral faces, forming a new solid
called strip. This procedure features obvious advan-
tages concerning storage and transport as well.

We analyse the kind of solids that can be con-
structed using stacks under some reasonable assump-

*Email: enrique@arch.ethz.ch. Research supported by Obra
Social "la Caixa".

TEmail: jaume@mi.fu-berlin.de. Research supported by
Obra Social "la Caixa" and the DAAD.

95

tions. More precisely, we focus on constructions where
the tiles form a face-to-face tessellation whose adja-
cency graph is a grid both in stack and strip forms, as
in Figure 1. We also require the junction faces in the
strip configuration to be planar. After stating neces-
sary conditions for a solid to admit a stackable tes-
sellation as desired, we provide sufficient conditions
and a procedure to obtain the stacks that generate
it. It turns out that the solids for which a stack-
able tessellation exists are naturally defined, skipping
some technical details, as the ones generated sweep-
ing a surface around an axis or in a fixed direction. In
addition, we prove that, under certain conditions, a
one-parametric family of stackable tessellations exists.
Finally, we approach the problem of approximating a
target solid using polyhedral tiles.

Figure 1: Stacks (right) and associated strips (left)

We normally use capital letters for points, lower-
case letters for vectors, lines and rays, and Greek let-
ters for curves. We add a * to the names in order to
indicate the correspondences between the 2- and 3-
dimensional elements of the constructions in Sections
1 and 2. We will often omit the indices ranges, for
ease of reading. The curves and surfaces are consid-
ered to have no self-intersections. Abusing notation,
we denote the image set of a curve or a surface by its
name. Curves are assumed to be parametrized using
the unit interval. We define the wedge spanned by
two rays to be the cone defined by their supporting
lines and containing an unbounded part of both rays.

Stackable tessellations

1 Planar stacks

Before starting the analysis of the 3-dimensional case,
we study a 2-dimensional object we call planar stack.
Its construction is described in the next subsection
and illustrated by Figure 2.

1.1 Construction

Let p and ¢ be two infinite rays emanating from a
point K and spanning a wedge W of angle o € (0, 7)
in R2. Let oy, ..., 0, be pairwise disjoint, simple curves
contained in W. Assume the indices correspond to the
inverse order a ray shot from K would intersect them.
Assume further that o; Np = ¢;(0) and ;N g = o;(1)
and require that

d(04(0),0:41(0)) = d(oi-1(1),0:(1)), (1)

where d denotes the Fuclidean distance in the plane.
Let 7; denote the closed subset of W bounded by o;
and 0;41. Each of these simply connected sets will be
called a tile and each o; will be called a separator. The
whole construction will be referred to as a planar stack
of angle a. It may also be required that the curves
o; are separable, i.e., that a tile can be moved away
from the next one by a rigid motion preventing them
to overlap. A simple condition ensuring this property
is that each o; is monotone in some direction but we
will ignore this requirement in this article.

= RS()

Figure 2: A planar stack and the corresponding strip.

Note that condition (1) ensures that the tiles can be
rearranged gluing o;41(0) with o;(1) and 0;(0) with
0i—1(1). This configuration will be called the strip
associated to the planar stack.

It will be handy to define s; : R — R? to be the
congruence that maps 7; to its position in the strip,
assuming sg = Id. Given a point C' € R? and an angle
a, we define RS to be the counterclockwise rotation
of angle a and center C.

Theorem 1 If the strip U?;Ol 3i(Ti) associated to a
planar stack of angle « is a simply connected set, then
its boundary contains the curves v = U?:_Ol si(0i11)
and RS (7), for some point C € R2.

Proof. The assumptions that all the o; start in p
and end in ¢, are pairwise disjoint and have no self-
intersections ensure that the tiles are topologically
disks. Provided that U?;ol $;(T;) is simply connected,
the tiles must intersect only in the glued segments.
In addition, condition (1) ensures that s;(c;(1)) =
si+1(0i+1(0)) and si(0i+1(1)) = siy1(0i42(0)), for
i €{0,...,n —2}. Consequently, it is clear that v and
p= U, si(c;) are contained in the boundary of the
strip. Observe now that when 7;;1 is glued next to
T, the two copies of 0,41 involved are congruent via
RS, for some point C;. But RS maps s;(0;41(1))
to sit1(oi+1(1)) and R maps Si+1(0i42(0)) to
Si+2(0i+2(0)), which are the same pair of points.
Since for any pair of points P # Q and a given «
there is only one point O such that RY(P) = Q, it
has to be C; = C for all i € {0,...,n — 1}. Thus, we
have that u = RS (7). O

1.2 Tessellation

Constructing a planar stack and developing it can be
used as a modelling tool. However, we are now inter-
ested in the other direction of the procedure. That is,
given a curve -, an angle o and a center of rotation C,
construct a planar stack such that, when reconfigured
into strip, contains v and RS () in its boundary. Such
a planar stack may not exist. If it does, it may not be
unique. Indeed, there is in general a one-parametric
family of possibly suitable planar stacks.

Theorem 1 indicates that we need to construct a
stack of angle a if we aim to obtain a shape with ~
and RS (7) forming part of its boundary. Consider
the locus of points that see a counterclockwise angle
a between v(0) and RS (v(0)), i.e., the set

k={P ecR?: RE(Py(3

where X Y is the ray starting at X and going through
Y. It is well known that x is a circumference arc
going from v(0) to RS (v(0)). It is not hard to see
that C' € k. Obviously, any candidate K to be the
vertex of the stack must belong to x and there is a
possibly valid planar stack leading to our target for
each of such points.

Consider a fixed K € k and let rg be the ray con-
taining K, passing through +(0) and such that RS (1)
touches but does not cross ro. We define r; = RS, (o)
for i € N. Let W; be the wedge of angle o spanned by
r; and 7,41 and define also U; to be the region in W;
bounded by v and RS (7). For simplicity, we assume
that « does not intersect RY_ (rg). This last restric-
tion is not necessary, but simplifies the technicalities.

PREGO)}, ()

96

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Figure 3: Tessellation procedure.

Theorem 2 If rq,...,r, intersect vy in a single point,
the tilesUy, ...,Uy_1 can be arranged as a planar stack.
Proof. We will prove that {RC, ()} is a set
of cells tessellating a simply connected subset of Wj.
Observe first that W;y; = RS(W;), since Tjt1 =
RS (r;) for all j € N. For the same reason, 71, ..., "nt1
intersect RS (7) in a single point. Since v and RS (7)
do not intersect, the boundary of U; is formed by a
subcurve of vy and a subcurve of RS(7y) which are
mutually disjoint, one segment contained in r; and
one contained in 7;11. It remains to be proven that
each tile matches the next one and they all fit in Wj.
This can be derived from the facts that RS (U; N7y) =
Ui 1 N RS (v) and that RE, (W;) = Wy. O

Using the previous theorem, it is not hard to see
that under an additional technical condition, one can
construct a stack containing the whole v and RS () in
its boundary. We state this in the following corollary,
omitting its simple proof.

Corollary 3 If rq, ..., intersect v in a single point
and ri41 does not intersect vy, then there exists a pla-
nar stack containing v and RS (7y) in its boundary.

1.3 Refinement

For obvious reasons, it can be useful to refine a stack-
able tessellation. This feature will be essential in the
discussion concerning approximation in Section 3.
Adopting the notation used in the previous section,
consider the angularly ordered rays ro = 70, ...,75" =
r1 emanating from K and contained in Wj. De-
fine also 7! to be RS (r}) for i € {1,..,n} and

Jj € {0,...,m}. Let W/ be the wedge spanned by

97

Figure 4: Shaded tiles can be arranged in stack form.

rf and rf“. Define also Z/{ij to be the space in W

bounded by v and RS (7).

m

Proposition 4 If 3,,r0" = 70, ri, ., intersect

v in a single point, the tiles U7, ...,U;_, can be ar-

ranged as a planar stack, for j € {0,...,m — 1}.

Proof. The way we defined Tf ensures that
RC, (W/) = W{. Therefore, the arguments in the

proof of Theorem 2 apply to each j individually. O

Note that, in addition, the m stacks obtained from
the refined tessellation can be obtained by cutting the
original stack by straight radial cuts.

The results presented in this section can easily be
extended to the case where K is thought of as a point
at infinity. That is, we consider the wedge W to be
the space between two parallel lines. Then, the two
copies of v appearing in the boundary of the strip are
related by a simple translation. Conversely, given a
curve and a translated copy of it, a one-parametric
family of possible stacks can be again evaluated. In
this case, we may consider to be the set of directions
of the plane, except for the direction of W. We can
then cut the curves by a set of equally spaced lines
in any direction v € . This case is specially inter-
esting because it generates offset shapes. Moreover,
requiring that ~ is monotone in u is sufficient to en-
sure the existence of the corresponding stack with the
additional separability property.

Stackable tessellations

2 Solid stacks

We consider now a 3-dimensional extension of the pre-
vious results, which is the actual target of this work.
In this way, we model a meaningful subset of the
solids constructible using the CASTonCAST fabrica-
tion technique.

The initial object is now the space W* between
two non-parallel planes p* and ¢*, which we further
bound by two planes orthogonal to K* = p* N g¢*.
Cutting W* with pairwise-disjoint surfaces o, ..., 0},
each of them dividing W* in two parts, a sequence
of 3-dimensional tiles 7;* is defined. If we require
that RX™(T;* N p*) = T, N¢* (the condition analo-
gous to (1)), the resulting object will be called a solid
stack. The tiles can be rearranged by glueing con-
gruent faces contained in p* and ¢* in order to form
the associated solid strip. We can repeat the argu-
ments in Section 1.1 and derive that if the resulting
solid strip is simply connected, its boundary contains
two congruent copies of a surface v*. The congruency
relating them is a rotation around a linear axis C*
parallel to K* by the amount corresponding to the
dihedral angle between p* and ¢*. The results in Sec-
tion 1.2 also extend to the 3-dimensional case if the
conditions are properly adapted.

In addition to the refinement possibilities analogous
to the planar case, we can now split the tessellation
of a solid stack in order to obtain multiple stacks that
can be then converted into strips and arranged one
next to the other. To ensure that the tessellation is
face-to-face in the strip form, we assume here that the
solid stack is refined only cutting by planes hj,..., h}
orthogonal to K*. However, this is not a necessary
condition, as can be appreciated in Figure 1.

3 Discretization

This section studies how polyhedral tiles can be used
to approximate the stacks constructed in previous sec-
tions. This can be thought of as simplifying the tiles
one would get in the continuous case while preserving
their stackability and congruency relations.

We assume here that a solid stack is given and
that it has been refined by means of the planes (rf)*
through K* and the planes hj orthogonal to K™*.
A possible way to discretize the tiles is to substi-
tute each separator o by the lower convex hull of
the points resulting of its intersection with the rays
r3F = (r)* N ;. Tt is an easy exercise to prove that
this construction preserves the topology and the con-
gruency relations of the tiles. However, the tiles ob-
tained in this way may not be convex, a property that
can be useful in some practical applications. This
restriction forces the separators to be planar within
each of the stacks. This is equivalent to approximate

the surface v* by a planar-quadrilateral mesh (PQ-
mesh) 7, whose vertices are constrained to lie on pre-
scribed rays 77 k= RC (rék). Then, the vertices V; 4§
of ¥ can be expressed as Vijk = ng +)\gkuzk, for some
)\gk € R, where Ofk is the initial point of rfk and
uzk is its direction. Therefore, the vertices of RS ()
will also lie on these rays and their positions can be
retrieved from the variables)\Zk However, one should
ensure that the perturbed versions of 5 and RS (7)
do not intersect. But provided that 5 and RS () are
PQ-meshes, these conditions translate into the simple
linear inequalities A\ < M' .

Existing algorithms, like the PQ perturbation de-
tailed in [3], implement the planarity constraints and
minimize functions measuring the distance to the sur-
face and the quality of the mesh. Since the spe-
cific requirements of our method are, as hinted be-
fore, translated into linear equations and inequalities
in the space of coordinates of the vertices, the men-
tioned algorithm, based on sequential quadratic pro-
gramming [5], can be applied to our construction.

The results on 3-space generalize to case where p*
and ¢* are parallel as well. In this situation, the ver-
tices are constrained to lie in rays that have all the
same direction. Therefore, the planarity constraints
can be expressed as linear equations and optimizing
with respect to linear functions can be done very effi-
ciently by linear programming.

4 Conclusion

We give the first geometric analysis of the solids
constructible with the fabrication method CASTon-
CAST. We restrict the study imposing some con-
straints to the tiles of the tessellation, which lead
to simple and geometrically meaningful constructions.
We also provide a scheme to approximate the tiles
using polyhedra while preserving their stackability.
More general cases can be studied using the intro-
duced framework and are left to future work.

References

[1] R. Sauer, Differenzengeometrie, Springer, 1970.

[2] A.L Bobenko, Y.B. Suris, Discrete Differential Ge-
ometry: Integrable Structure, Graduate Studies in
Mathematics Series, Volume 98, AMS, 2008.

[3] Y. Liu, H. Pottmann, J. Wallner, Geometric mod-
eling with conical meshes and developable surfaces,
ACM Trans. Graphics 25 (2006), 681-689.

[4] Designed by L. Enrique, P. Cepaitis, D. Ordofiez, C.
Piles at the Architectural Association School of Ar-
chitecture, 2009.

[6] K. Madsen, H. B. Nielsen, O. Tingleff, Optimization
with Constraints, 2nd ed., 2004.

98

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Improved enumeration of simple topological graphs*

Jan Kynélt !

!Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles University,
Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Praha 1, Czech Republic

Abstract

A simple topological graph T = (V(T),E(T)) is a
drawing of a graph in the plane where every two edges
have at most one common point (an endpoint or a
crossing) and no three edges pass through a single
crossing. Topological graphs G and H are isomorphic
if H can be obtained from G by a homeomorphism of
the sphere, and weakly isomorphic if G and H have
the same set of pairs of crossing edges.

We generalize results of Pach and To6th and the au-
thor’s previous results on counting different drawings
of a graph under both notions of isomorphism. We
prove that for every graph G with n vertices, m edges
and no isolated vertices the number of weak isomor-
phism classes of simple topological graphs that realize
G is at most 20" log(m/n)) “and at most 90(mn'/*logn)
if m < n3/2. As a consequence we obtain a new up-
per bound 90(n*/*logn) o the number of intersection
graphs of n pseudosegments. We improve the upper
bound on the number of weak isomorphism classes of
simple complete topological graphs with n vertices to
2”2'”‘(”)0(1), using an upper bound on the size of a set
of permutations with bounded VC-dimension recently
proved by Cibulka and the author. We show that the
number of isomorphism classes of simple topological
graphs that realize G is at most 9m*+0(mn) and at
least 22(m%) for graphs with m > (6 + &)n.

1 Introduction and the results

A topological graph T = (V(T'), E(T)) is a drawing of
a graph G in the plane with the following properties.
The vertices of G are represented by a set V(T') of dis-
tinct points in the plane and the edges of GG are repre-
sented by a set E(T) of simple curves connecting the
corresponding pairs of points. We call the elements of

*The full version of the paper is available [8].

TEmail: kyncl@kam.mff.cuni.cz. The author was supported
by the GraDR EUROGIGA GACR project No. GIG/11/E023
and by the grant SVV-2013-267313 (Discrete Models and Algo-
rithms). Part of the research was conducted during the Special
Semester on Discrete and Computational Geometry at Ecole
Polytechnique Féderale de Lausanne, organized and supported
by the CIB (Centre Interfacultaire Bernoulli) and the SNSF
(Swiss National Science Foundation).

99

V(T) and E(T) the vertices and the edges of T. The
drawing has to satisfy the following general position
conditions: (1) the edges pass through no vertices ex-
cept their endpoints, (2) every two edges have only a
finite number of intersection points, (3) every intersec-
tion point of two edges is either a common endpoint
or a proper crossing (“touching” of the edges is not al-
lowed), and (4) no three edges pass through the same
crossing. A topological graph is simple if every two
edges have at most one common point, which is either
a common endpoint or a crossing. A topological graph
is complete if it is a drawing of a complete graph.

We use two different notions of isomorphism to enu-
merate topological graphs.

Topological graphs G and H are weakly isomorphic
if there exists an incidence preserving one-to-one cor-
respondence between V(G),E(G) and V(H),E(H)
such that two edges of G cross if and only if the cor-
responding two edges of H do.

Note that every topological graph G drawn in the
plane induces a drawing Gg2 on the sphere, which is
obtained by a standard one-point compactification of
the plane. Topological graphs G and H are isomor-
phic if there exists a homeomorphism of the sphere
which transforms Gg2 into Hg2. The isomorphism
can be also defined in a combinatorial way.

Unlike the isomorphism, the weak isomorphism can
change the faces of the involved topological graphs,
the order of crossings along the edges and also the
cyclic orders of edges around vertices.

For counting the (weak) isomorphism classes, we
consider all the graphs labeled. That is, each vertex is
assigned a unique label from the set {1,2,...,n}, and
we require the (weak) isomorphism to preserve the
labels. Mostly it makes no significant difference in the
results as we operate with quantities asymptotically
larger than n!.

For a graph G, let Ty, (G) be the number of weak iso-
morphism classes of simple topological graphs that re-
alize G. Pach and To6th [I3] and the author [6] proved
the following lower and upper bounds on Ty (K,,).

Theorem 1 [6, [13] For the number of weak isomor-
phism classes of simple drawings of K,,, we have

2207 < Ty (K,) < ((n— 2)1)" = 2007 losm),

Improved enumeration of simple topological graphs

We prove generalized upper and lower bounds on
Tw(G) for all graphs G.

Theorem 2 Let G be a graph with n vertices and m
edges. Then

Tw(G) < 90(n”log(m/n))
If m < n3/2, then
T,u(G) < 20(mn' " logn),

Let ¢ > 0. If G is a graph with no isolated vertices
and at least one of the conditions m > (1 + &)n or
A(G) < (1 —e)n is satisfied, then

TW(G) > 2(2(max(m,n logn)))
We also improve the upper bound from Theorem [

Theorem 3 We have

n)OM

T (K,) < 27

Here a(n) is the inverse of the Ackermann function.
It is an extremely slowly growing function, which can
be defined in the following way [10]. a(m) := min{k :
ag(m) < 3} where ag(m) is the dth function in the in-
verse Ackermann hierarchy. That is, aq(m) = [m/2],
aq(1) =0for d > 2 and ag(m) = 14+ ag(ag—1(m)) for
m,d > 2. The constant in the O(1) notation in the ex-
ponent is huge (roughly 43°"), due to a Ramsey-type
argument used in the proof.

In the proof of Theorem [B] we use the fact that
for simple complete topological graphs, the weak iso-
morphism class is determined by the rotation sys-
tem [7, [I3]. This is combined with a Ramsey-type
theorem by Pach, Solymosi and Téth [12], which says
that a simple complete topological graph with suffi-
ciently many vertices contains a subgraph weakly iso-
morphic to a convez graph or a twisted graph of given
size; see Figure[ll Once we have a convex graph with
5 vertices or a twisted graph with 6 vertices, we may
restrict the set of possible rotations of other vertices
in terms of forbidden subpermutations. The last main
ingredient is a recent combinatorial result, a slightly
superexponential upper bound on the size of a set of
permutations with bounded VC-dimension obtained
together with Josef Cibulka [4].

The method in the proof of Theorem[2is more topo-
logical, gives a slightly weaker upper bound, but can
be generalized to all graphs. Here the main tool is
a construction of a topological spanning tree T of G,
which is a simply connected subset of the single topo-
logical component of G containing all vertices of G
and satisfying the property that the only nonseparat-
ing points of T are the vertices of G. We find such
a tree consisting of O(n) connected portions of edges

Cs Ts

Figure 1: The convex graph C5 and the twisted graph
Ts.

/)
Uy vy

T

C2

C
Vs !

U3 U2 2 1
v G2

Figure 2: A topological spanning tree 7 of a simple
topological graph with two components (left) and the
corresponding 7 -representation (right).

of G. By cutting the plane along 7, we obtain the
T -representation of GG, which is equivalent to a disc
with at most 2mn chords, each chord corresponding
to a portion of some edge of G. See Figure 2 We
give an upper bound on the number of inequivalent
T-representations, exploiting the fact that many por-
tions of edges do not cross.

We further generalize Theorem [3] by removing al-
most all topological aspects of the proof. The re-
sulting theorem is a purely combinatorial statement,
involving n-tuples of cyclic permutations avoiding a
certain simple substructure.

We also consider the class of simple complete topo-
logical graphs with maximum number of crossings and
suggest an alternative method for obtaining an upper
bound on the number of weak isomorphism classes of
such drawings.

An arrangement of pseudosegments (or also 1-
strings) is a set of simple curves in the plane such that
any two of the curves cross at most once. An inter-
section graph of pseudosegments (also called a string
graph of rank 1) is a graph G such that there exists an
arrangement of pseudosegments with one pseudoseg-
ment for each vertex of G and a pair of pseudoseg-
ments crossing if and only if the corresponding pair
of vertices forms an edge in G. Using tools from ex-
tremal graph theory, Pach and Téth [13] proved that
the number of intersection graphs of n pseudoseg-
ments is 2°("*). As a special case of Theorem [2] we

100

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

obtain the following upper bound.

Theorem 4 There are at most 207"/ *1087) intersec-
tion graphs of n pseudosegments.

The best known lower bound for the number of (un-
labeled) intersection graphs of n pseudosegments is
2f2(nlogn) Thig follows by a simple construction or
from the the fact that there are 29("198™) pnonisomor-
phic permutation graphs with n vertices.

Let T'(G) be the number of isomorphism classes of
simple topological graphs that realize G. The follow-
ing theorem generalizes the result T'(K,,) = 20(n*)
from [7].

Theorem 5 Let G be a graph with n wvertices, m
edges and no isolated wvertices. Then T(G) <
9m*+0(mn) More precisely,

2
T(G) < (6mn) (m + 6mn) . 9O(nlogn)

2mn mTZ + 2mn

< 2m2+2mn(1+3 log, 3)+0O(nlogn) , and

m2
T(G) < 2m2+4mn . 2mn + 2). 2O(n log n)
- 2mn

< gm?+2mn(log(1+ 1%)+2-+logy €)+0(nlogn)
Let € > 0. For graphs G with m > (6 4+ ¢)n we have
T(G) > 22",
For graphs G with m > w(n) we have
T(G) > 2160 _ o(1).

The two upper bounds on T(G) come from two es-
sentially different approaches to enumerating isomor-
phism classes of 7 -representations. In the first ap-
proach, we reduce the problem to enumerating sim-
ple quadrangulations of the disc [9]. In the second
approach, we split the problem into two parts: enu-
merating chord diagrams [14] and enumerating iso-
morphism classes of arrangements of pseudochords.
The first method gives better asymptotic results for
dense graphs, whereas the second one is better for
sparse graphs (roughly, with at most 35n edges). For
graphs with m = O(n) the second term in the expo-
nent becomes more significant. Since m > n/2, the
exponent in the first upper bound can be bounded by
23.118m?2 + o(1), using the entropy bound for the bi-
nomial coefficient. Similarly, the exponent in the sec-
ond upper bound can be bounded by 11.265m2+o(1).
For such very sparse graphs (for example, matchings),
however, better upper bounds can be deduced more
directly from other known results.

The upper bound T(G) < 20(m*) ig trivially ob-
tained from the upper bound on the number of unla-
beled plane graphs (or planar maps). Indeed, every

101

drawing G of G can be transformed into a plane graph
H by subdividing the edges of G by its crossings and
regarding the crossings of G as new 4-valent vertices
in H. The graph H has thus at most n + (7)) ver-
tices, at most m + 2("y) = m? edges, no loops and no
multiple edges. Tutte [17] showed that there are

22M)'3Y _10g,(12)+o(1)) M1
MI(M 1 2)!

rooted connected planar maps with M edges (see
also [2, [3, 5]). Walsh and Lehman [I8] showed that
the number of rooted connected planar loopless maps
with M edges is

6(4M +1)! _ o(logy(256/27)+0(1)) M
MI(3M + 3)!

This implies the upper bound T(G) <
9(log5(256/27)+0(1))m* Gomewhat better estimates
could be obtained by reducing the problem to count-
ing 4-regular planar maps [I5, [16], since typically
almost all vertices in H are the 4-valent vertices ob-
tained from the crossings of G. But such a reduction
would be less straightforward and the resulting upper
bound 2(3 1082(196/27)+o(1))m* gtil] relatively high for
dense graphs (for graphs with more than 27n edges
the two upper bounds from Theorem [are better).
The proof in [7] implies the upper bound T'(K,,) <
2(1/1240(1)(n") ' although it is not explicitly stated
there. However, the key Proposition 7 in [7] is in-
correct. We prove a correct version in the full paper.
Note that by the reduction to counting planar
maps, for every fixed constant k, we also obtain the
upper bound 20(km*) on the number of isomorphism
classes of connected topological graphs with m edges
where all pairs of edges are allowed to cross k times.

2 A few open problems

The problem of counting the asymptotic number of
“nonequivalent” simple drawings of a graph in the
plane is answered only partially. Many open ques-
tions remain.

The gap between the lower and upper bounds on
Tw(G) proved in Theorem [is wide open, especially
for graphs with low density. For graphs with cn?
edges, the lower and upper bounds on log T+, (G) dif-
fer by a logarithmic factor. We conjecture that the
correct answer is closer to the lower bound.

We do not even know whether Ty, (G) is a monotone
function with respect to the subgraph relation, since
there are simple topological graphs that cannot be ex-
tended to simple complete topological graphs. Due to
somewhat “rigid” properties of simple complete topo-
logical graphs, we have a much better upper bound
for the complete graph than, say, for the complete
bipartite graph on the same number of vertices.

Improved enumeration of simple topological graphs

Problem 1 Does the complete graph K, mazimize
the value T,,(G) among the graphs G with n vertices?
More generally, is it true that T,,(H) < Ty (G) if H C
G?

Our methods for proving upper bounds on the num-
ber of weak isomorphism classes of simple topological
graphs do not generalize to the case of topological
graphs with two crossings per pair of edges allowed.

Problem 2 What is the number of weak isomor-
phism classes of drawings of a graph G where every
two independent edges are allowed to cross at most
twice and every two adjacent edges at most once?

For the complete graph with n vertices, Pach and
Té6th [13] proved the lower bound 22" 1°m) and the
upper bound 90(n™)

A nontrivial lower bound can be proved also in the
case when G is a matching. Ackerman et al. [I] con-
structed a system of n xz-monotone curves where ev-
ery pair of curves intersect in at most one point where
they either cross or touch, with Q(n*/3) pairs of touch-
ing curves. Eyal Ackerman (personal communication)
noted that this also follows from an earlier result by
Pach and Sharir [II], who constructed an arrange-
ment of n segments with Q(n*/3) vertically visible
pairs of disjoint segments. By changing the drawing in
the neighborhood of every touching point, we obtain
22n"’*) different intersection graphs of 2-intersecting
curves, also called string graphs of rank 2 [13]. This
improves the trivial lower bound observed by Pach
and Toth [13].

Acknowledgements

The author thanks Josef Cibulka for discussions about
enumerating various combinatorial objects.

References

[1] E. Ackerman, R. Pinchasi and S. Zerbib, On
touching curves, Bernoulli Reunion Confer-
ence on Discrete and Computational Geometry,
EPFL, Lausanne, 2012.

[2] E. A. Bender and L. B. Richmond, A survey of
the asymptotic behaviour of maps, Journal of
Combinatorial Theory, Series B 40(3) (1986),
297-329.

[3] E. A. Bender and N. C. Wormald, The number
of loopless planar maps, Discrete Mathematics
54(2) (1985), 235-237.

[4] J. Cibulka and J. Kynél, Tight bounds on the
maximum size of a set of permutations with

[5]

[6]

[7]

18]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

102

bounded VC-dimension, Journal of Combinato-
rial Theory, Series A 119(7) (2012), 1461-1478.

M. Drmota and M. Noy, Universal exponents
and tail estimates in the enumeration of planar
maps, Flectronic Notes in Discrete Mathematics
38 (2011), 309-317.

J. Kyn¢l, Crossings in topological graphs, master
thesis, Charles University, Prague, 2006.

J. Kynél, Enumeration of simple complete topo-
logical graphs, FEuropean Journal of Combina-
torics 30(7) (2009), 1676-1685.

J. Kynél, Improved enumeration of simple topo-
logical graphs, submitted. Manuscript available
at larXiv:1212.2950.

R.C. Mullin and P.J. Schellenberg, The enumer-
ation of c-nets via quadrangulations, Journal of
Combinatorial Theory 4(3) (1968), 259-276.

G. Nivasch, Improved bounds and new tech-
niques for Davenport—Schinzel sequences and
their generalizations, Journal of the ACM 57(3)
(2010), 1-44.

J. Pach and M. Sharir, On vertical visibility in ar-
rangements of segments and the queue size in the
Bentley-Ottmann line sweeping algorithm, STA M
Journal on Computing 20(3) (1991), 460-470.

J. Pach, J. Solymosi and G. To6th, Un-
avoidable configurations in complete topological
graphs, Discrete and Computational Geometry
30 (2003), 311-320.

J. Pach and G. Téth, How many ways can
one draw a graph?, Combinatorica 26(5) (2006),
559-576.

R. C. Read, The chord intersection problem,
Annals of the New York Academy of Sciences
319(1) (1979), 444-454.

H. Ren and Y. Liu, Enumerating near-4-regular
maps on the sphere and the torus, Discrete Ap-
plied Mathematics 110(2-3) (2001), 273-288.

H. Ren, Y. Liu and Z. Li, Enumeration of
2-connected Loopless 4-regular maps on the

plane, European Journal of Combinatorics 23(1)
(2002), 93-111.

W. T. Tutte, A census of planar maps, Canadian
Journal of Mathematics 15 (1963), 249-271.

T. R. S. Walsh and A. B. Lehman, Counting
rooted maps by genus III: Nonseparable maps,

Journal of Combinatorial Theory, Series B 18
(1975), 222-259.

http://arxiv.org/abs/1212.2950

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

On three parameters of invisibility graphs *

Josef Cibulkat!, Miroslav Korbelait?, Jan Kyn¢l¥!, Viola MészarosT?, Rudolf Stolafll!, and Pavel Valtr**!

!Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles University,
Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Prague, Czech Republic
2Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlaiska 2, 611 37 Brno,
Czech Republic
3Institute for Mathematics, Technical University of Berlin, Strasse des 17. Juni 136, 10623 Berlin, Germany

Abstract

The invisibility graph I(X) of a set X C R? is a (pos-
sibly infinite) graph whose vertices are the points of
X and two vertices are connected by an edge if and
only if the straight-line segment connecting the two
corresponding points is not fully contained in X. We
consider the following three parameters of a set X:
the clique number w(I(X)), the chromatic number
X(I(X)) and the minimum number «(X) of convex
subsets of X that cover X.

We settle a conjecture of Matousek and Valtr claim-
ing that for every planar set X, v(X) can be bounded
in terms of x(I(X)). As a part of the proof we show
that a disc with n one-point holes near its boundary
has x(I(X)) > loglog(n) but w(I(X)) = 3.

We also find sets X in R® with x(I(X)) = 2, but
~(X) arbitrarily large.

1 Introduction

Let X be a subset of a d-dimensional Euclidean space.
We say that two points z,y € X see each other if
the straight-line segment Ty connecting x and y is
a subset of X. The invisibility graph I(X) of a set

*This research was supported by the project CE-ITI
(GACR P202/12/G061) of the Czech Science Foundation and
by the grant SVV-2013-267313 (Discrete Models and Algo-
rithms). The second author was supported by the project
CZ.1.07/2.3.00/20.0003 of the Operational Programme Educa-
tion for Competitiveness of the Ministry of Education, Youth
and Sports of the Czech Republic. The fourth author was also
partially supported by ESF EuroGiga project ComPoSe (IP03),
by OTKA Grant K76099 and by OTKA Grant 102029. The
first, the third and the sixth author were partially supported by
project GAUK 52410. Part of the research was conducted dur-
ing the Special Semester on Discrete and Computational Geom-
etry at Ecole Polytechnique Féderale de Lausanne, organized
and supported by the CIB (Centre Interfacultaire Bernoulli)
and the SNSF (Swiss National Science Foundation).

tEmail: cibulka@kam.mff.cuni.cz.

{Email: miroslav.korbelar@gmail.com.

$Email: kyncl@kam.mff.cuni.cz.

YEmail: meszaros@math.tu-berlin.de.

Il Email: ruda@kam.mff.cuni.cz.

**Email: valtr@kam.mff.cuni.cz.

103

X C R%is a graph whose vertices are the points of
X and two vertices are connected by an edge if and
only if they do not see each other. Let x(G) be the
chromatic number of a graph G and let w(G) be its
clique number. For a set X C R? we define y(X) to
be the minimum possible number of convex subsets of
X that cover X. Further, let x(X) := x(/(X)) and
w(X) == w(I(X)).

Sets X with w(X) = n — 1 are sometimes called
n-convez [8].

Observe that w(X) < x(X) < y(X) for any set X.

If a planar set X is closed, then ~(X) can be
bounded by a function of w(X). This was proved
by Breen and Kay [2] and the current best known
upper bound is v(X) < O(w(X)?3) by Matousek and
Valtr [6]. From the other direction, there exist ex-
amples by Matousek and Valtr |6] with v(X) >
Qw(X)?).

However, if we don’t restrict ourselves to closed
sets, there is no upper bound on v(X) even for sets
with w(X) = 3. An example is the disc Dy with A
one-point holes punctured in the vertices of a regu-
lar convex A-gon near the boundary of Dy, for which
w(Dy) =3, but v(Dy) = [A/2] + 1 (see [6]).

A one-point hole in a set X C R? is a point that
forms a path-connected component of R?\ X. Let
A(X) be the number of one-point holes in the set X.

The example of the set D) led to studying the prop-
erties of planar sets with a limited number of one-
point holes by Matousek and Valtr [6]. In particular,
they proved the following theorem.

Theorem 1 (MatouSek and Valtr [6]) Let X C
R? be a set with w(X) =w < 00 and A(X) = A < .
Then

Y(X) < O(w* + Mw?).

For any w > 3 and A\ > 0 they also found sets X
with w(X) = w, A(X) = X and 7(X) > Q(w? + w)).

Matousek and Valtr [6] conjectured that for an ar-
bitrary planar set X, the value of v(X) is bounded by
a function of x(X). Then x(X) cannot be bounded

On three parameters of invisibility graphs

by a function of w(X) as shows the above example
with D).

Lawrence and Morris [4] proved that for every k
there exists ng(k) such that whenever S is a set of
finitely many points in the plane and |S| > no(k),
then y(R?\ S) > k. ! Thus, whenever X is the com-
plement of a finite set of points, A(X) can be bounded
in terms of x(X). This implies, by Theorem 1, that
the value of v(X) can be bounded in terms of x(X),
settling the conjecture of MatouSek and Valtr in the
special case when X is a complement of a finite set of
points.

In this paper, we strengthen the result of Lawrence
and Morris [4] and settle the conjecture for every pla-
nar set X.

The tower function T;(k) is defined recursively as
To(k) = k and Tj,(k) = 27»-1(F) Its inverse is the
iterated logarithm log' (n), that is, log'®) (n) = n and
log" (n) = log(log" =" (n)).

Theorem 2 Any set X C R? with x(X) = x < oo
satisfies
Y(X) < 021007,

The proof of Theorem 2 is omitted from this ex-
tended abstract. In the full version of the paper, we
also show that for every dimension d, A(X) can be
bounded in terms of y(X) for sets X C R? This
answers Question 6 of Lawrence and Morris [4].

A set X is star-shaped if X contains a point z € X
that sees every other point of X.

In Sections 2 and 3 we show that x and v can be
separated in dimensions 5 and more.

Theorem 3 For every positive integer g there exist
star-shaped sets
1. X C RS satisfying x(X) =2 and v(X) > g and
2. X. C RS that is closed and satisfies x(X.) = 4
and y(X.) > g.
Theorem 4 For every positive integer g there exist
star-shaped sets
1. X C R® satisfying x(X) =2 and v(X) > g and
2. X. C R® that is closed and satisfies x(X.) = 6
and y(X.) > g.

Problem 1 Does there exist a function f such that
2(X) < F(x(X)),
1. for every set X C R3?
2. for every set X C R*?

All logarithms in this paper are binary. We use
the notation Ty for the straight line segment between
points z and y.

IThe graph Gs in the paper of Lawrence and Morris is pre-
cisely the invisibility graph of R?\ S.

2 Constructions in dimension 6

2.1 Set with chromatic number 2

We prove part 1 of Theorem 3. Part 2 is omitted from
this extended abstract.

Let P, be the cyclic polytope on n > 7 vertices
(see for example [5]) and V,, its set of vertices. Thus
the convex hull of every triple of points from V,, is a
triangular face of P,.

Lemma 5 Let K, be the complete graph on the set
V of n > 7 vertices and let k := [2log(n) + 2]. It
is possible to orient the edges of K, so that every set
V' CV of size at least k contains a directed triangle.

Proof. For brevity, we call a set V' good if it contains
a directed triangle.

We orient the edges randomly and show that with
positive probability, every set V' C V of size at least
k is good.

First, we will bound the probability by that a given
set V' of k vertices is bad.

If there exists a directed cycle on V' of length
greater than 3, then one of the two cycles created
by adding an arbitrary diagonal to the cycle is again
directed. Thus there exists a directed triangle on V’.

There are 2(:=1)/2 possible orientations of edges
of a complete graph on k vertices out of which k! are
acyclic. Thus

k!

gy = KT

b =
The probability that some k-tuple V’ of vertices is
bad is thus at most

n nk 2
b < b — 2klog(n)fk /2+k/2 _
<k> S

_ 2k(log(n)7k/2+1/2) <

< 2k(log(n)—log(n)—1+1/2) < 2k(—1/2) <1.
(]

We fix the orientation of the edges of P, in which
every k-tuple of vertices is good. A triangular face
of P, has directed boundary if the three edges of the
face form a directed cycle. The set X is constructed
by puncturing a one-point hole in the barycenter of
triangular faces of P, with directed boundary.

Vertices of P, are colored black. Edges are cut in
thirds. In every edge, the interior of the middle third
together with the point at one third closer to the end
of the edge is colored white. The rest of the edges is
black. The coloring of triangular faces with directed
boundary is depicted on Fig. 1. The rest of X is
colored black.

All the edges of the invisibility graph of X are be-
tween pairs of points lying on the same triangular face

104

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Figure 1: Coloring of a face with directed bound-
ary. Lines determined by pairs (p1,p4), (p2,ps) and
(ps, pe) intersect in the barycenter and split the trian-
gle into monochromatic regions. Full lines and gray
areas represent black color, the rest is white.

with directed boundary. The coloring is proper on
each of these faces and thus the 2-coloring of the whole
X is proper.

If a convex set C contains at least k vertices of X,
then it contains a triangular face with directed bound-
ary and thus C contains a one-point hole. Therefore

n

7(X) = 2log(n) +3

3 Constructions in dimension 5

Here we present some parts of the proof of part 1 of
Theorem 4. The rest of the proof is omitted from this
extended abstract.

The constructions are similar to those in dimension
6: for part (1) of the theorem, the set X is a closed
cyclic polytope with one-point holes in some of the
2-dimensional faces. For part (2), instead of points
we remove small 5-dimensional polytopes attached to
the 2-dimensional faces. The difference from the con-
struction in dimension 6 is in the placement of the
holes: here we cannot apply the same argument as in
the previous section since for the cyclic polytope in di-
mension 5 only quadratically many triples of vertices
induce a 2-dimensional face and there is a 2-coloring
of the vertex set in which no 2-dimensional face is
monochromatic.

In the full version of the paper, we show two dif-
ferent ways how to choose the holes. In the first con-
struction we essentially show that randomly chosen
holes will do, but the proof (interestingly) requires a
rather nontrivial result from group theory. Also the
construction proves only part (1) of the theorem. In
the second construction we specify the locations of the
holes precisely. Moreover, we show that the holes can
be enlarged to open pyramids, which shows part (2)
of the theorem. The proof of part (2) of the theorem
is analogous to the proof of part (2) of Theorem 3 and
is omitted from this abstract.

Let P, be the 5-dimensional cyclic polytope on
n > 6 vertices with (ordered) vertex set V, =

105

{v1,v2,...,v,}. For brevity, we call the triangular
face with vertices v;, v; and vy, the ijk triangle. Sim-
ilarly, the 5 edge is the edge between vertices v; and
v;. The 2-dimensional faces of P, are the triangles

e 1ij for every 1 <i < j <n (type lij triangles),
e ijn for every 1 <1i < j < n (type ijn triangles),

o i(i+1)jforeveryl <i< j—1<n (typei(i+1)j
triangles) and

e ij(j+1)foreveryl <i<j<n—1(typeij(j+1)
triangles).

3.1 Covering with convex sets

In the constructions proving part (1) of Theorem 4, we
remove a one-point hole from every type 1¢j triangle.
In the construction proving part (2), we remove an
open flat simplex instead of the point (as in Section 2).
The following lemma shows that in both cases, the
resulting set can not be covered by a bounded number
of convex sets.

Lemma 6 Let X be a subset of P, such that ev-
ery edge of P, is a subset of X and none of the
type lij triangles is a subset of X. Then ~v(X) >
Q(logn/loglogn).

Proof. Let X = C; UCy U ---UC) be a covering of
X with convex subsets of X. The covering induces
a partition of each open edge 1i, 2 < ¢ < n, into
at most k intervals I}, I?,..., I’ where each of the
intervals I7 is covered by one of the convex sets Cy(; ;.
Since the convex sets in the covering may overlap, this
partition need not be unique; in such a case we just
pick one.

We say that the partitions of two edges 1i and 17’
are of the same type if k; = ki, 1(i,p) = (¢, p) for
each p=1,2,...,k; (in other words, the “colors” ap-
pear in the same order along the edges), and for each
p = 1,2,...,k; the type of the interval I? (that is,
closed, open, or half-closed from the left /right) is the
same as the type of the interval I};. Degenerate one-
point intervals are considered as closed. The number
of types of the partitions is at most 2% - k! . 2¥=1, In-
deed, there are at most 2% subsets of “colors”, each of
the subsets can be linearly ordered in at most k! ways,
and there are at most £ — 1 boundary points shared
by two intervals, where one of the intervals is locally
closed and the other one locally open.

It follows that if n > 25 - k! - 28=1 4 1, then there
are two edges 17 and 14’ of the same type. The convex
hulls conv(IP UIY) cover the whole open triangle 144/,
including the one-point hole inside, which is a contra-
diction. Therefore n < 2% . k!- 28~ 41, which implies
that v(X) > Q(logn/loglogn). O

On three parameters of invisibility graphs

4 Concluding remarks

To solve Problem 1 in dimension 4 we could use a
construction similar to those in dimensions 5 and 6
provided the following problem has a positive answer.

Problem 2 Does there exist for every k a convex
simplicial polytope P(k) in R* such that in every col-
oring of vertices of P(k) by k colors we can find a
triangular face whose vertices are monochromatic?

Assuming the polytope P(k) from Problem 2 exists,
the set X from Problem 1 is obtained from P(k) by
making a one-point hole in an arbitrary point inside
every triangular face. Such a set X cannot be covered
by k convex sets since otherwise one of the convex sets
would contain three vertices of a triangular face.

The invisibility graph I(X) can be colored by 13
colors in the following way. All the vertices of P(k)
get color 1. Tancer [7] has shown that the edges of ev-
ery 2-dimensional simplicial complex PL-embeddable
in R? can be colored by 12 colors so that for every
triangular face, the three edges on its boundary have
three different colors. This applies, in particular, to
the 2-skeleton of every 4-dimensional convex simpli-
cial polytope. We use colors 2,3,...,13 to color the
interiors of edges of P(k) in this way. For each tri-
angular face and each point p on its boundary, the
interior of the segment conecting the one-point hole
with p is colored by the color of p. All the remain-
ing points of X are isolated in 7(X) and thus may be
colored arbitrarily.

The boundary complex of a 4-dimensional convex
simplicial polytope is a special case of a triangula-
tion of S3. If we relax the condition on polytopality
in Problem 2 and ask only for a triangulation of S3,
then the answer is yes. Heise et al. [3] constructed,
for every k, a 2-dimensional simplicial complex lin-
early embedded in R? such that in every coloring of
its vertices with k colors at least one of the trian-
gles is monochromatic. We found the same simplicial
complex independently, modifying Boris Bukh’s con-
struction, which was communicated to us by Martin
Tancer. The vertices of the complex are placed on
the moment curve and a suitable noncrossing subset
of triangles is chosen for the faces. It remains to ex-
tend the embedded complex to a triangulation of the
whole R?, or S [1].

References

[1] K. Adiprasito, F. Lutz and J. Moller, unpub-
lished manuscript.

[2] M. Breen and D. C. Kay, General decomposition
theorems for m-convex sets in the plane, Israel
Journal of Mathematics 24 (1976), 217-233.

106

3]

[4]

5]

6]

7]
18]

C. G. Heise, K. Panagiotou, O. Pikhurko and A.
Taraz, Coloring d-embeddable k-uniform hyper-
graphs, arXiv:1209.4879 (2012).

J. Lawrence and W. Morris, Finite sets as com-
plements of finite unions of convex sets, Dis-
crete & Computational Geometry 42 (2009), no.
2, 206—218.

J. Matousek, Lectures on Discrete Geometry,
Springer-Verlag, New York (2002).

J. Matousek and P. Valtr, On visibility and cover-
ing by convex sets, Israel Journal of Mathematics
113 (1999), no. 3, 341-379.

M. Tancer, unpublished manuscript.

F. Valentine, A three point convexity property,
Pacific Journal of Mathematics 7 (1957), no. 2,
1227-1235.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

On making a graph crossing-critical

César Hernandez—Vélez*! and Jesis Leafios’?

nstituto de Fisica, Universidad Auténoma de San Luis Potosi, San Luis Potosi, México 78000
2Unidad Académica de Matematicas, Universidad Auténoma de Zacatecas, Zacatecas, México 98060

Abstract

A graph is crossing-critical if its crossing number de-
creases when we remove any of its edges. Recently
it was proved that if a non-planar graph G is ob-
tained by adding an edge to a cubic polyhedral (pla-
nar 3-connected) graph, then G can be made crossing-
critical by a suitable multiplication of its edges. Here
we show: (i) a new family of graphs that can be trans-
formed into crossing-critical graphs by a suitable mul-
tiplication of its edges, and (ii) a family of graphs that
cannot be made crossing-critical by any multiplication
of its edges.

Introduction

This work is motivated by the following question set-
tled by Beaudou et al. in [1]: to what extent is
crossing-criticality a property that is inherent to the
structure of a graph, and to what extent can it be
induced on a non crossing-critical graph by multiply-
ing (all or some of) its edges? In [1] a family of non
crossing-critical graphs are transformed into crossing-
critical graphs by multiplying (adding parallel) edges.

The use of parallel edges has been essential in many
other important results on crossing number. For ex-
ample, in [2] was proved that for every a > b > 0,
there exist a graph G with crossing number a in the
plane, crossing number b in the torus, and crossing
number 0 in the double torus. This is called the ori-
entable crossing sequence of a graph G. In [4] was
reported a conjecture of R. B. Richter which states
that crossing-critical graphs have bounded maximum
degree. This conjecture was disproved by Dvofak and
Mohar [3], who exhibited crossing-critical graphs with
large maximum degree. In all these papers the use of
weighted (also called “thick”) edges is essential.

No simple graph that satisfies the properties as de-
fined in [2] and [3] are not known. On the other
hand there exist simple non crossing-critical graphs
such that if we multiply its edges (or equivalently,
assign weights on them) then they become crossing-
critical, as in [1]. Thus, important questions remain:

*Email: cesar@ifisica.uaslp.mx.
TEmail: jleanos@matematicas.reduaz.mx.

107

What makes a graph crossing-critical? Does every
non-planar graph become crossing-critical by a weight
assignment to its edge set?

In this paper we give two infinite families G and
G’ of graphs such that (i) every graph in G remains
non crossing-critical even after any multiplications of
its edges, and (ii) every graph in G’ is not crossing-
critical, but after a suitable multiplication of its edges,
it is transformed into a crossing-critical graph. Let us
proceed to define these families.

Let W, be the wheel with n + 1 vertices, n > 5,
and let vy be the degree n vertex. The remaining n
vertices are labeled vy, vs, ..., v, in the order in which
they appear in the n-cycle. We add a new vertex u
to W, which is joined to vertices vg,v; and vs and
denote by G,, the resulting graph. Let G!, be the
graph that results by removing the edges vov; and
vovs from G,. We define G := {G,, : n > 5} and
G = {G), : n > 5}. See Figure 1. Note that each
graph of G U G’ is 3-connected.

It is not difficult to find non-planar graphs which
cannot be made crossing-critical by any multiplica-
tion of its edges. For example, if G is a non-planar
graph and e is a cut edge of GG, then G cannot be made
crossing-critical by any multiplication of its edges be-
cause e cannot be made critical. Thus, some con-
nectivity assumption is needed in order to guarantee
that a non-planar graph can be made crossing-critical.
In [1], for example, the graphs under consideration are
assumed to be internally 3—connected and such an as-
sumption plays a central role in its work. On the
other hand, as we will see in Theorem 1, the family
G is interesting because shows that 3-connectedness
property by itself is not sufficient to ensure that a
non-planar graph can be made crossing-critical.

Our main results are the following.

Theorem 1 Any graph G, € G is not crossing-
critical. Moreover, G, cannot be made crossing-
critical by any multiplication of its edges.

Theorem 2 Every graph G, € G’ is not crossing-
critical, but there exists a suitable multiplication of
its edges such that the resulting graph G, is crossing-
critical.

On making a graph crossing-critical

An edge e of a graph G is a Kuratowski edge if there
is a subgraph H of G which is isomorphic to a subdi-
vision of a K5 or K33 and e lies on H. In [1] was con-
jectured that a graph whose edges are all Kuratowski
becomes crossing-critical after a suitable multiplica-
tion of its edges. In this sense, note that the graphs
in G’ are consistent with this conjecture because any
edge in G}, is a Kuratowski edge (unlike the edges
vov1 and vous in Gy,).

1 Multigraphs and
weighted graphs

We recall that the crossing number cr(G) of a graph
G is the minimum number of pairwise intersections of
edges in a drawing of G in the plane. An edge e of G is
crossing-critical if cr(G — e) < cr(G), and say that G
is crossing-critical if all its edges are crossing-critical.

Recall that a weighted graph is a pair (G, w) where
G is a graph and w is a function (the weight assign-
ment) that assigns to each edge e of G a number w(e)
(the weight). The weight assignment is positive (re-
spectively, integer) if w(e) is a positive (respectively,
integer) number for any edge e of G. We only consider
positive integer weight assignments.

We extend the concept of crossing number to
weighted graphs (G, w) in an analogous way, just tak-
ing to account that a crossing between the edges e and
e’ contributes w(e) - w(e') to cr (G,w). A drawing D
of (G,w) is optimal if cr(D) = cr(G,w).

We now proceed to define what a crossing-critical
edge is in a weighted graph. Let (G, w) be a weighted
graph, an edge e of (G,w) is crossing-critical if
cr (G,we) < cr(G,w), where the weight assignment
we is defined by,

w.(f) = Jwl) if f#e,
(/) {w(f)—l if f=e.

As usual, (G,w) is crossing-critical if all its edges
are crossing-critical.

Let G* be a multigraph, and let G be its underly-
ing simple graph. We define the associated weighted
graph (G, w*) of G* as follows: for every edge e of G,
we define w*(e) as the multiplicity of e in G*. The
following observation is straightforward.

Remark 1 Let G* be a multigraph and let (G, w*) be
its associated weighted graph. Then G* is crossing-
critical if and only if (G,w*) is crossing-critical.

2 Proofs of Theorems 1 and 2

For brevity, let (i) g := vou and «a; := vou;,i =
1,...,n; (i) B == vivip1, i =1,...,nwith v, = vy;

J4
Vg 3”) (%

Figure 1: A drawing D of G¢ (above), and a drawing
D’ of G (below).

and (iii) 71 := wv; and 2 := wvs. Under this nota-
tion, observe that G), = G, — {a1,a3}. See Figure 1.

Lemma 3 Let w' be a positive integer weight assign-
ment on G',. Then there exists an optimal drawing of
(Gh,,w'") in which we can add both edges oy and as
without increasing the crossing number.

Proof. Let D' be an optimal drawing of (G, w’).
We divide the proof according to the edges that are
involved in a crossing in D’.

(A) Suppose that g is crossed in D’ (analogously for
042).

Since D’ is an optimal drawing, oy does not cross
with adjacent edges, therefore o crosses with a (-
edge, say 3;. Let D* be the drawing defined as fol-
lows. Draw a simple regular n-polygon such that
v1,V2,...,0, (in that order) are its vertices, place vg
in the center of such a polygon and add the «;-edge,
1=2,4,5,...,n, as straight line segments. Now draw
ap as an straight line segment crossing the edge §;.
Finally the edges v, and v, can be added around the
n-polygon boundary without introducing new cross-
ings. So D* has just one crossing and therefore
cr(D*) < cr(D’). But since D’ is an optimal drawing,
we must have that cr(D*) = cr(G’, w’). Moreover, we
can add the edges oy and ag as straight line segments
without adding a new crossing, as required.

(B) Both edges in any of {51, B2}, {71,72}s {8172}
{71, B2} are not crossed in D’.

108

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Figure 2: Drawing of G§ where v1, v2, 81, B2, ap and
o form a plane K 3

We only analyze the case in which both edges of
{B1,72} are not crossed in D’ (the rest of the cases can
be verified similarly). By (A) we can assume that nei-
ther ag nor as are crossed in D’. Because none of 31
and 72 has a cross in D', we can add «; (respectively
a3) following the uncrossed path asB; (respectively
p7y2) without introducing new crossings.

(C) Suppose (1 crosses 72 in D’ (analogously, fo
crosses 71).

Draw a plane wheel with vertices v1, . .., v, forming
a n-cycle and the vertex vy as the center. All edges ay,
1 # 1,3 are the spokes of this wheel. Then draw the
path agv1 as a spoke. Finally add the edge v, only
crossing the edge ;. Since the number of crossings
of such a drawing is less than or equal to the number
of crossings of D’, it is optimal. In this new drawing
we can add oy and a3 without increasing the crossing
number.

By (A) and (C) we can assume that neither ~q,
Y2, B1, B2, ag nor ag cross each other. Thus v, 9,
B1, B2, ap and o form a plane Ky 3. Without any
loss of generality, we may assume that vy is in the
bounded region defined by the cycle v;818272. Let
R,S and @ denote the disjoint regions bounded by
the cycles agaz 8171, apy2f202 and y1v282/31, respec-
tively. (See Figure 2)

Let P be the path 83084 ...08,. Let u, v, and p be
the element of {f1,71}, {B2,72}, and {B1, B2, 71,72}
with less weight, respectively.

Now we proceed according to the interior vertices
of P that are in each of R, S and Q.

(D) No interior vertices of P are in Q.

Then, all the interior vertices of P are in R, S, or
both of them.

(D.i) All interior vertices of P are in R (analogously
for S). Since D’ is optimal, B3 is the only edge that
cross the cycle agasB1v1. By (A), 83 does not cross

109

neither o nor as, thus, by optimality, 53 only crosses
with p. Then this case follows from (B).

(D.ii) Both R and S contain interior vertices of P.
Because @ has no interior vertices of P, at least one (-
edge of P goes from R to S. Moreover, such a S-edge
is neither 83 nor fB,. Let 8; be (i # 3,n), the S-edge
of P with less weight. Thus we can get a drawing D*
where the only crossings are those involving 5; with u
and 3; with v. Since D’ is optimal, cr(D*) = cr(D’).
By (B), we can add the edges a; and a3 without in-
creasing the crossing number.

(E) Some interior vertices of P are in Q.

In this case we have three possibilities.

(E.i) All interior vertices of P are in). In this case
we can get a drawing with as many crossings as D’
in which every crossing involves p and some «;, with
i1 =4,5,...,n. This case follows from (B).

(E.ii) Each region R, S and @ contains interior ver-
tices of P. Then there must be a (-edge, say 0;
(respectively f3;), crossing the cycle that bounds the
region R (respectively S). By (A), B; (respectively
B;) must cross either v; or 8 (respectively 7y, or f82).
If w'(B8;) < w'(B;), we can get an optimal drawing
D* by putting all vertices v4,vs,...,v; in S, all ver-
tices vijt1,Vit2,-..,U, in R. Thus we are back in
case (D.i). If w'(8;) < w'(B;) we can proceed analo-
gously.

(E.iii) Both R and @ contain (all the) interior vertices
of P (analogously for S and Q). Let v; be the interior
vertex of P in R with the smallest index. If vy is in R,
then the edge B3 crosses the cycle apgasf1y1 and, by
putting all interior vertices of P in R, we can proceed
as in (D.i). Thus vy must be in @ and so ¢ > 5. By
the choice of v;, and (A), 8;_1 crosses either v; or f,
and all vertices vy, vs,...,v;_1 are in Q.

It is easy to get a drawing D* whose only crossings
are: (i) o, j =4,...,4—1 with p, (ii) B;_1 crosses y;
and in D* all the other vertices v;, ..., v, remain in
R. This implies cr(D*) = cr(D’) and satisfies (B).

O

Proof of Theorem 1. Lemma 3 implies that both
a1 and a3 are not crossing-critical in (G, w) for any
weight assignment w on G,. Theorem 1 follows com-
bining this and Remark 1. O

Finally, consider the following weight assignment
w), on G :

, 1 ife=qa;,i=4,...,n;
wy,(e) = .
n —3 otherwise.

Lemma 4 cr(G,,w)) = (n — 3)? and (G, w),) is

n? n
crossing-critical.

On making a graph crossing-critical

Proof. The proof for the crossing number is essen-
tially that given in Lemma 3. To prove that the graph
is crossing-critical, it is easy to see that for each edge

e there exists an optimal drawing of (G,, w],) where
e is involved in a crossing. ([l
References

[1] L. Beaudou, C. Hernandez-Vélez and G. Salazar,
Making a graph crossing-critical by multiplying its
edges, Electron. J. of Combin., 20(1) (2013), #P61.

[2] M. DeVos, B. Mohar and R. Samal, Unexpected be-
havior of crossing sequences, J. Combin. Theory Ser.
B 101 (6) (2011), 448-463.

[3] Z. Dvoiak and B. Mohar, Crossing-critical graphs
with large maximum degree, J. Combin. Theory Ser.
B 100 (4) (2010), 413-417.

[4] B. Mohar, R. J. Nowakowski and D. B. West, Re-
search problems from the 5th Slovenian Conference
(Bled, 2003), Discrete Math. 307(3-5) (2007), 650—
658.

110

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Witness Bar Visibility

Carmen Cortés*!, Ferran Hurtado'2, Alberto Marquezt!, and Jesus Valenzuela$!

! Departamento de Matemaética Aplicada I, Universidad de Sevilla.
?Departament de Matematica Aplicada II, Universitat Politécnica de Catalunya.

Abstract

Bar visibility graphs were introduced in the seventies
as a model for some VLSI layout problems. They have
been also studied since then by the graph drawing
community, and recently several generalizations and
restricted versions have been proposed.

We introduce a generalization, witness-bar visibil-
ity graphs, and we prove that this class encompasses
all the bar-visibility variations considered so far. In
addition, we show that many classes of graphs are con-
tained in this family, including in particular all planar
graphs, interval graphs, circular arc graphs and per-
mutation graphs.

1 Introduction and preliminary
definitions

Given a set S of disjoint horizontal line segments in
the plane (called bars hereafter) we say that G is a
bar-visibility graph if there is a bijection between S
and the vertices of G, and an edge between two of
these if and only if there is a vertical segment (called
line of sight) between the corresponding bars that
does not intersect any other bar. We also say that
S is a bar visibility representation (or a bar visibility
drawing) of G.

Bar visibility graphs were introduced by Garey,
Johnson and So [13] as a modeling tool for digital
circuit design (see also [16]). These representations
are also a useful tool for displaying diagrams that
convey visual information on relations among data,
which is why many variations of these graphs have
been considered by the graph drawing community
[6,7,8,9,12, 14, 15].

We need some definitions before we can pose pre-
cisely our problem; we use standard terminology as
in [5]. We call v-segment any vertical segment. We

*Email: ccortesQus.es.

TEmail: Ferran.HurtadoQupc.edu. Research supported
by projects MINECO MTM2012-30951, Gen. Catalunya
DGR 2009SGR1040, and ESF EUROCORES programme Eu-
roGIGA, CRP ComPoSe: MICINN Project EUI- EURC-2011-
4306, for Spain.

YEmail: almar@us.es.

$Email: jesusvQus.es.

111

call e-segment any axis aligned rectangle having width
e > 0 (intuitively, a thick vertical segment). Let s and
t be two horizontal bars. We say that a v-segment con-
nects s and t if its endpoints are in s and t. We say
that an e-segment connects s and t if its horizontal
sides are contained in s and f.

Let S be a set of non-overlapping horizontal seg-
ments (bars). Two bars s,t € S are wisible if, and
only if, there is a v-segment connecting s and ¢ in-
tersecting no other segment in S, and we say that s
and t are e-visible if, and only if there is an e—segment
connecting s and ¢ intersecting no other segment in S.

With the preceding definition, bar visibility graphs
as defined in the first paragraph of this section take
as nodes a set of disjoint bars, and there is an edge
between two nodes if and only if the corresponding
bars are visible (this is also called a strong visibility
representation of the graph [17]). If instead of visibil-
ity we require e-visibility, then we get bar e-visibility
graphs or, equivalently, an e-visibility representation
of the graph. The latter have been characterized as
those graphs that admit a planar embedding with all
cutpoints on the exterior face [17, 18].

A graph G is a weak bar visibility graph if its nodes
can be put in bijection with a set of disjoint bars and
the nodes corresponding to every edge in G are e-
visible (note that not every e-visibility need be an
edge). This family of graphs is exactly the class of all
planar graphs [10].

Finally, we say that G is a bar k-visibility graph if
there is a bijection between a set of bars S and the
vertices of G, and an edge between two of these if and
only if there is a v-segment joining the corresponding
bars that intersects at most k other bars. This gener-
alization has been introduced in recent years [8, 12].

In this paper we introduce a stronger generaliza-
tion, witness-bar visibility graphs, and we prove that
this representation approach encompasses all the bar-
visibility variations considered so far. In addition, we
show that many classes of graphs are contained in
this family, including in particular all planar graphs,
interval graphs, circular arc graphs and permutation
graphs.

For the definition of witness-bar visibility graphs
we consider, in addition to the set S of bars that are
in correspondence one-to-one with the vertices of the

Witness Bar Visibility

graph being constructed, a set of green bars that “fa-
vor” visibility, and a set of red bars that “obstruct”
visibility. Green bars act as positive witnesses while
red bars correspond to negative witnesses. The bars
from S neither favor nor obstruct visibilities.

For the ease of description it is useful to consider
also purple bars that obstruct visibility in a slightly
different way than red bars.

Definition 1 Let S, Sg, Sp and Sgr be four sets
of horizontal segments (bars, green-bars, purple-bars,
and red-bars, respectively) such that any two elements
in SU Sg U SR are disjoint. We define:

1. The green-bar visibility graph of S with respect
to S has one vertex for every element in .S, and
two bars s,t € S are adjacent if and only if there
is an e-segment connecting s and ¢ that crosses
at least one green bar.

2. The purple-bar visibility graph of S with respect
to Sp has one vertex for every element in .S, and
two bars s,t € S are adjacent if and only if there
is an e-segment connecting s and ¢ that does not
cross any purple bar.

3. The witness-bar visibility graph of S with respect
to Sg and S has one vertex for every element in
S, and two bars s,t € S are adjacent if and only
if there is an e-segment connecting s and ¢ that
crosses strictly more green bars than red bars.

The class of green, purple and witness-bar visibility
graph are denoted, respectively, by GBG, PBG and
WHBG.

An illustration of the three types of graphs is shown
in Figure 1 (on a black and white printer, node-bars
appear as thin lines, red bars as thick dark lines, pur-
ple lines as thick lines colored light grey, and the green
lines are seen as thick striped lines).

This work is devoted to the study of the classes of
graphs that can be represented via green, purple or
bar-visibility graphs and its properties. We start by
considering the classes GBG and PBG, which will be
proved to be subclasses of WBG. Then we will enu-
merate classes of graphs that are contained in WBG,
as well as properties of this class related to planarity.

The terminology witness-bar visibility graphs is in-
spired by the concept of witness proximity graphs,
which focuses on deciding neighborliness relations
among points in a finite set according to the pres-
ence of some positive and/or negative witness points,
a topic that has been studied in recent years [1, 2, 3,
4, 11].

2 The subclasses GBG and PBG

In this section we study the classes GBG and PBG
and its relationships with other graph classes. The

r OSSITINY g b e
Mlsavuauuuny
c
d
Z EXTITINONY
e ¢ d
a
a
z b b e
Yy
¢ d
z
e c d
a a
2 ETITTTRYY b
¢ J b e
’ v d
——
e
c d

Figure 1: Examples of graphs in the families GBG
(top), PBG (center) and WBG (bottom).

interest of this is made clear by our first result:

Lemma 2 The class of graphs WBG contains strictly
the classes GBG and PBG.

An interval graph is the intersection graph of a set
of (closed) intervals on the real line.

Theorem 3 Let G be a graph. If G is an interval
graph, then G € GBG. The reverse is in general false.

The graph class inclusion in Theorem 3 is strict, as
one can show that Cy, which is not an interval graph,
is in GBG. However, graphs with induced cycles of
length greater than 5 are not in GBG.

Proposition 4 If the girth of a graph in GBG is fi-
nite, then it is at most four.

As a consequence of the previous result, it follows
that the green-bar visibility graph class does not con-
tain any of the bar-visibility classes described in the
introduction of this paper, because C,, can be repre-
sented as weak/e/strong bar visibilty graph for every
n > 3 [17].

Note that even although one may think that the
classes GBG and PBG are related by complementa-
tion, possibly by switching purple and green bar col-
oring, but it is not the case. For example the union of
two disjoint triangular cycles is in GBG, as seen in the
preceding section, but its complement is K3 3, which
is not in PBG, a fact that we will see below.

On the positive side, let us see that interval graphs
admit a purple-bar visibility representation and prove
a useful lemma.

112

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Theorem 5 If G is an interval graph, then G €
PBG.

Lemma 6 Let G be a triangle-free graph. If G €
PBG then G is a planar graph.

Proof. The idea is given in Figure 2.]

Uy

Figure 2: A purple-bar visibility representation of a
triangle-free graph and the corresponding construc-
tion of its planar embedding.

Nevertheless the previous result cannot be extended
to a characterization of the class PBG:

Theorem 7 1. K33 ¢ PBG.
2. K, € PBG, Vn.

3. To admit a purple-bar visibility representation is
not inherited by subgraphs.

Proposition 8 There are nonplanar graphs with tri-
angles that do not admit a purple-bar visibility repre-
sentation.

An example of these graphs is given in Figure 3.

a

Figure 3: A nonplanar graph G with a triangle
(Agjk), which does not admit a purple-bar visibility
representation.

The class PBG generalizes the classical bar-
visibility representations:

Theorem 9 Every graph G that can be represented
as strong/e /weak bar visibility graph admits as well a
purple-bar visibility representation.

Corollary 10 Fuvery graph G that can be represented
as strong/c /weak bar visibility graph admits as well a
witness-bar visibility representation.

113

3 The class WBG of witness-bar
visibility graphs

Witness bar visibility also generalizes k-bar visibility:

Theorem 11 Every graph G that can be represented
as a bar k-visibility graph admits as well a witness-bar
visibility representation.

The idea of the proof is given in Figure 4.

MW zm

[IEAN |
meznm

Figure 4: Assume we have to deal with bar 1-visibility,
and consider a stack of 5 bars in a strip (left). We
subdivide the strip into 7 slabs (right). In the second
bar we mimic 1-visibility using WBG-visibility for the
3 lowest bars. In the fourth bar we do the same for
the 3 intermediate bars, and in the sixth slab for the
3 highest bars.

Theorem 12 The circular arc graphs and permuta-
tion graphs are contained in YWBG

Given a graph G, let G be the graph resulting from
subdividing once every edge in G.

Lemma 13 Let G be a graph. Ifé € WBG then G
is a planar graph.

Lemma 14 1?33 ¢ WBG and I~(§3 € WBG.

As a consequence of the preceding lemma we im-
mediately obtain the following result:

Theorem 15 The class of the graphs that admit o
witness-bar visibility representation is not closed un-
der complementation.

We conclude this section with another result on the
class WBG, that discards the possibility of character-
izing the class by forbidden minors:

Theorem 16 The property of admitting a witness-
bar wvisibility representation is not inherited by sub-
graphs.

Proof. We know that K¢ € WBG from Theorem 7
and Lemma 2. On the other hand K3 3 is a subdivi-
sion of a subgraph of K, but we know from Lemma 14
that K33 is not in WBG. This settles the claim. [

4

Let

Witness Bar Visibility

Concluding remarks

us summarize the properties we have proved for

the class WBG of witness-bar visibility graphs:

Every graph G that can be represented as
strong/e/weak bar visibility graph admits as well
a witness-bar visibility representation.

Every graph G that can be represented as a bar k-
visibility graph admits as well a witness-bar vis-
ibility representation.

The class of interval graphs is contained in the
class WBG.

If G is a circular arc graph or a permutation
graph then G € WBG.

The class of the graphs that admit a witness-
bar visibility representation is not closed under
complementation.

The property of admitting a witness-bar visibil-
ity representation is not inherited by subgraphs,
which discards the possibility of characterizing
the graph class WBG by forbidden minors.

We conclude that the graph class WBG is very rich

and encompasses many other classes.

However, to

obtain a characterization or a recognition algorithm
appear to be quite challenging problems.

References

1

2]

3]

[4]

[5]

O. Aichholzer, R. Fabila, T. Hackl, A.
Pilz, P. Ramos, M. van Kreveld, and B.
Vogtenhuber. Blocking Delaunay triangu-
lations. To appear in Comput. Geom. (ac-
cepted 2012). Ounline version available at
http://dx.doi.org/10.1016/j.comgeo.2012.02.005.

B. Aronov, M. Dulieu and F. Hurtado, Witness
(Delaunay) graphs. Comput. Geom. 44(6-7):329-
344, 2011.

B. Aronov, M. Dulieu and F. Hurtado, Wit-
ness Gabriel graphs. To appear in Comput.
Geom. (accepted 2011). Online version at DOT:
10.1016/j.comgeo.2011.06.004.

B. Aronov, M. Dulieu, and F. Hurtado, Witness
rectangle graphs. In Algorithms and Data Struc-
tures Symposium (WADS), volume 6844 of Lec-
tures Notes in Computer Science, pages 73-85.
Springer, 2011.

G. Di Battista, P. Eades, R. Tamassia, and I. G.
Tollis. Graph Drawing. Prentice Hall Inc., Upper
Saddle River, NJ; 1999.

[6]

7]

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

114

P. Bose, A. M. Dean, J. P. Hutchinson, and T.
C. Shermer. On rectangle visibility graphs. In S.
C. North, editor, Graph Drawing 1996, volume
1190 of Lecture Notes in Comput. Sci., pages 25-
44, Berlin, 1997. Springer- Verlag.

G. Chen, J. P. Hutchinson, K. Keating, and
J. Shen. Characterizations of [1,k]-bar visibility
trees. Electr. J. Comb. 13(1), 2006.

A. M. Dean, W. Evans, E. Gethner, J. D. Lai-
son, M. A. Safari, and W. T. Trotter. Bar k-
visibility graphs. J. Graph Algorithms & Appli-
cations, 11(1):45-59, 2007.

A. M. Dean, E. Gethner, and J. P. Hutchin-
son. Unit bar-visibility layouts of triangulated
polygons: Extended abstract. In J. Pach, edi-
tor, Graph Drawing 2004, volume 3383 of Lecture
Notes in Comput. Sci., pages 111-121, Berlin,
2005. Springer-Verlag.

P. Duchet, Y. Hamidoune, M. L. Vergnas, and
H. Meyniel. Representing a planar graph by ver-
tical lines joining different levels. Discrete Math.,
46:319-321, 1983.

M. Dulieu, Witness proximity graphs and other
geometric problems, Ph.D. thesis, Polytechnic
Institute of New York University, April 2012.

S. Felsner and M. Massow, Parameters of Bar
k-Visibility Graphs. J. Graph Algorithms and
Appl. vol. 12, no. 1, pp. 5-27 (2008).

M. R. Garey, D. S. Johnson, and H. C. So. An
application of graph coloring to printed circuit
testing. IEEE Trans. Circuits and Systems, CAS-
23(10):591-599, 1976.

J. P. Hutchinson. Arc- and circle-visibility
graphs. Australas. J. Combin., 25:241-262, 2002.

J. P. Hutchinson, T. Shermer, and A. Vince.
On representations of some thicknesstwo graphs.
Comput. Geom., 13:161-171, 1999.

M. Schlag, F. Luccio, P. Maestrini, D. Lee, and
C. Wong. A visibility problem in VLSI layout
compaction. In F. Preparata, editor, Advances in
Computing Research, volume 2, pages 259-282.
JAT Press Inc., Greenwich, CT, 1985.

R. Tamassia and I. G. Tollis. A unified approach
to visibility representations of planar graphs. Dis-
crete Comput. Geom., 1(4):321-341, 1986.

S. K. Wismath. Characterizing bar line-of-sight
graphs. In Proceedings of the First Symposium of
Computational Geometry, pages 147-152. ACM,
1985.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

The alternating path problem revisited

Mercé Claverol!, Delia Garijo?, Ferran Hurtado!, Dolores Lara®, and Carlos Searal

L3 Universitat Politécnica de Catalunya, Barcelona, Spain
2Universidad de Sevilla, Spain

Abstract

It is well known that, given n red points and n blue
points on a circle, it is not always possible to find a
plane geometric Hamiltonian alternating path. In this
work we prove that if we relax the constraint on the
path from being plane to being 1-plane, then the prob-
lem always has a solution, and even a Hamiltonian al-
ternating cycle can be obtained on all instances. We
also extend this kind of result to other configurations
and provide remarks on similar problems.

Introduction

A geometric graph is a graph drawn in the plane
whose vertex set is a set of points and whose edges
are straight-line segments connecting pairs of vertices.
Two edges of a geometric graph cross if they have
an intersection point lying in the relative interior of
both edges. A plane geometric graph is a geometric
graph without any edge crossings. A 1-plane geomet-
ric graph is a geometric graph in which every edge
has at most one crossing. Notice that the terms plane
graph and 1-plane graph refer to a geometric object,
while to be planar or 1-planar are properties of the
underlying abstract graph. We use here standard no-
tation for geometric graphs as in [3] and [12].

Let P be a set of points in the plane in general
position (i.e., no three points are collinear), and let
CH(P) denote its convex hull. A geometric spanning
tree on P, generically denoted by tree(P), is any span-
ning tree on P whose edges are straight-line segments
connecting two points on P. Observe that if |P| =1,
the tree on P is a single vertex. When the tree is
a path, we write path(P). The geometric complete
graph K(P) on P is the complete geometric graph
with vertex set P. Notice that tree(P) is a spanning
tree of K(P).

1 Email: merce@mad.upc.edu, ferran.hurtadoQupc.edu,
carlos.seara@upc.edu. Partially supported by projects
MINECO MTM2012-30951, Gen. Cat. DGR2009SGR1040,
and ESF EUROCORES programme EuroGIGA, CRP Com-
PoSe: MICINN Project EUI-EURC-2011-4306.

2Email: dgarijoQus.es. Partially supported by projects
2009/FQM-164 and 2010/FQM-164.

3Email: maria.dolores.lara@upc.edu.

115

Let R and B be two disjoint sets of red and blue
points in the plane such that no three points of RUB
lie on the same line. The geometric complete bipartite
graph K (R, B) is the graph with vertex set RUB and
whose edges are all the straight-line segments connect-
ing any point in R and any point in B. A line segment
defined by two red points is a red segment, and one de-
fined by two blue points is a blue segment. More gen-
erally, an edge is said to be monochromatic when the
two endpoints have the same color, and bichromatic
otherwise. The intersections between red segments
and blue segments are called bichromatic crossings,
and those between segments having the same color
are called monochromatic crossings.

Problems on adding edges to a given graph to ob-
tain a new graph with some desirable properties are,
in general, called augmentation problems. Among
these, plane augmentation considers an initial plane
graph G = (V, E) (possibly empty, i.e., only the point
set V is given) that has to be augmented to another
plane supergraph G’ = (V, EUE') by adding a set F’
of edges to G, see the survey [7].

In this work we focus on problems in which the ini-
tial point set is a bicolored set R U B. This family
of problems has attracted a substantial amount of re-
search, see for instance the surveys [8, 7].

We first consider alternating graphs, i.e., those in
which every edge is bichromatic. A well known fact
[2, 1, 10, 11] is that given n red points and n blue
points on a circle (equivalently, in convex position),
one cannot always obtain a plane geometric Hamilto-
nian alternating path. In this paper we prove that, if
we relax the constrain on the geometric Hamiltonian
alternating path from being plane to being 1-plane,
then a solution always exists, even yielding stronger
properties. We also show that the same result holds
for some other configurations. These results appear
in Section 1.

Regarding monochromatic graphs, i.e, graphs in
which every edge is monochromatic, it is easy to
see that one cannot always construct a plane perfect
matching in K(R)UK(B). A trivial example is given
by the vertices of a convex quadrilateral in which two
opposite vertices are colored red and the other two are
colored blue. The same example shows that it is not
always possible to obtain two geometric monochro-

The alternating path problem revisited

matic spanning trees, tree(R) and tree(B), such that
their union is plane.

The proven nonexistence of plane configurations
had already suggested to researchers to allow some
relaxation in the constraint, but the focus was put
on constructing geometric graphs having globally few
crossings [9, 13]. However, one of the constructions in
[13] is in fact a 1-plane graph. We include some re-
marks on that particular result and its consequences
in Section 2.

We conclude in Section 3 with some additional com-
ments.

1 Alternating graphs: paths and
cycles

In this section we study geometric alternating span-
ning graphs on R U B, i.e., spanning subgraphs of
K(R,B). We focus on geometric Hamiltonian alter-
nating paths and cycles, which visit red points and
blue points alternately. Notice that when there are no
crossings at all, geometric Hamiltonian paths and cy-
cles are also called simple polygonals and simple poly-
gons, respectively.

1.1 Convex position

The problem of restricting the bicolored point set to
lay on a circle has attracted a lot of attention. It is
eagy to see that there are sets R and B with the same
number of points, say n, such that RU B is in convex
position, and a plane geometric Hamiltonian alter-
nating path on RU B cannot exist. Erdds (see [10])
proposed in 1989 to study the value ¢(n) such that
no matter how the colors are distributed a plane geo-
metric alternating path of length at least ¢(n) always
exists. About the same time, Akiyama and Urrutia [2]
considered independently the same problem: they
proved a necessary and sufficient condition for the ex-
istence of a plane geometric Hamiltonian alternating
path and derived an O(n?) time algorithm to find one,
if it exists. Abellanas et al. [1], and independently
Kynél et al. [10], proved that £(n) < 3n + O(y/n),
and Cibulka et al. [4] showed that £(n) > n+ Q(y/n).
These bounds are the best to date. Remind that the
total number of points is 2n. Also, notice that we
slightly abuse the notation by using inequalities, and
that the two bounds have to be read together, not
independently. For more information and details, see
Mészaros’ PhD Thesis [11].

We next show that if R U B is in convex position
then a 1-plane geometric Hamiltonian alternating cy-
cle —not only a path— can always be drawn. The fol-
lowing lemma is the key tool.

Lemma 1 Let R and B be two disjoint sets of red
and blue points in the plane such that R U B s in
convex position, and |R| = |B| =n > 2. Let S be a
set of disjoint bichromatic segments on the boundary
of the convex hull of RU B, and |S| = s > 2. Then,
there exists a 1-plane geometric Hamiltonian alternat-
ing cycle on R U B that contains each segment of S
as an edge.

If RU B is in convex position and |R| = |B| =
n > 2 then there are at least two disjoint bichromatic
segments on the boundary of CH(R U B), say s1, So.
Let S = {s1,s2}. By Lemma 1, one can draw a 1-
plane geometric Hamiltonian alternating cycle on RU
B that contains each segment of S as an edge. This
argument proves our main result in this section.

Theorem 2 Let R and B be two disjoint sets of red
and blue points in the plane such that RUB 1is in con-
vex position, and |R| = |B| =n > 2. Then, there ex-
ists a 1-plane geometric Hamiltonian alternating cycle
on RU B.

1.2 Double chain

We next consider the problem of drawing a 1-plane
geometric Hamiltonian alternating cycle on a double
chain whose points are colored red and blue.

The double chain (formally defined below) is
a configuration that has been intensively stud-
ied since it admits many triangulations, many
polygonizations, many crossing-free matchings, etc.,
and for several families of graphs yields the
maximum number known to date of such pos-
sible configurations among point sets with the
same cardinality (see http://www.cs.tau.ac.il/ shef-
fera/counting/PlaneGraphs.html).

A double chain (C1,C2) consists of two opposite
convex chains C7 and Cjy, facing each other, such that
the convex hull of C1UCY is a quadrilateral, each point
of C5 lies strictly below every line determined by two
points of C', and each point of C] lies strictly above
every line determined by two points of Cy. When the
points of (C1,Cs) are colored red and blue, (Cq,C>)
is said to be a bicolored double chain (see Figure 1),
and 7;,b; denote the number of red and blue points,
respectively, of C; for ¢ = 1,2. Note that the sizes of
C1 and C3 may be different.

° Cl °

[] C2 []

Figure 1: A bicolored double chain (Cy, Cs).

116

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Cibulka et al. [4] proved the following theorem:

Theorem 3 [4] (i) If |C;| > L(|C1] + |Cs) for i =
1,2, then there exists a non-crossing geometric Hamil-
tonian alternating path on (C1, Cs); (i) there exist bi-
colored double chains in which one of the chains con-
tains at most 1/29 of all the points, which do not ad-
mit a non-crossing geometric Hamiltonian alternating
path.

Theorem 4 below states that when r1 +75 = by + b,
allowing at most one crossing per edge is strong
enough to let us always draw a geometric Hamilto-
nian alternating cycle on (C1,C5). The main idea to
obtain this cycle is to use Theorem 2 to construct
two l-plane geometric alternating cycles A; and As
in CH(C) and CH(C5), respectively, and to connect
them drawing another 1-plane geometric alternating
cycle A in the exterior of CH(Cy) and CH(C5). This
process is described next.

Let E;, i = 1,2, be the set of edges in CH(C;) that
connect consecutive points of C;. Suppose first that
3<b+1<rand 3 <ry+1 < by. Then there
exist at least two monochromatic edges in Fy U Es: a
red edge r’ € Ey and a blue edge bb’ € F5. Contract
them obtaining a red point 7’/ and a blue point b”.
By Theorem 2, we can draw a cycle A; on the point
set formed by the b; blue points of C7, the red point
r”, and by — 1 red points of Cy \ {r,r'}. Analogously,
As is constructed on the point set formed by the ro
red points of Cs, the blue point b”, and r2 — 1 blue
points of Cy\ {b,b'}. Finally, the cycle A is drawn, as
in Figure 2, on the remaining r; — by — 1 red points
of C1, the remaining by —rg —1 = r1 — by — 1 blue
points of Cs, and the points 7" and b”. Observe that
r"” and b” connect A with A; and As, respectively.
By reversing the contraction and deleting the edges
rr’ and bb’, we "open" the three cycles obtaining the
desired cycle on (Cy, Cs).

Note that the preceding argument can easily be
adapted for b; or ry equal to zero or one. Observe
also that if all the edges in F; (analogous for E;) are
bichromatic then either 1 = b; (and so 19 = by) or
r1 = b1 + 1 (and by = r9 + 1). For these values, even
if there are monochromatic edges in E;, we need to
use slightly different arguments which are omitted for
the sake of brevity.

Theorem 4 Let R and B be the sets of red and
blue points of a bicolored double chain (C1,C3), and
|R| = |B| > 2. Then, there exists a 1-plane geometric
Hamiltonian alternating cycle on (C1,C2).

1.3 General position

The positive results for convex position and for the
double chain make one wonder whether a similar re-
sult holds for any set of points in general position:

117

Question 1 Let R and B be any two disjoint sets
of red and blue points in the plane such that no three
points of RUB lie on the same line, and |B| = |R| > 2.
Does there always exist a 1-plane geometric Hamilto-
nian alternating cycle on RU B?

We do not know the answer to the preceding ques-
tion. Geometric Hamiltonian cycles with few cross-
ings were obtained by Kaneko et al. [9], who gave
a tight upper bound of |R| — 1 for the number of
crossings of a geometric Hamiltonian alternating cy-
cle. Figure 2 illustrates a configuration R U B for
which this upper bound is best possible.

Figure 2: A 1-plane geometric Hamiltonian alternat-
ing cycle, on a point set RU B, with |R| — 1 crossings.

To be precise, Kaneko et al. [9] proved the following
result.

Theorem 5 [9] Let R and B be two disjoint sets of
points in the plane such that |R| = |B| and no three
points of RU B are on the same line. Then we can
draw a geometric Hamiltonian alternating cycle on
R U B which has at most |R| — 1 crossings. More-
over there exist configurations R U B for which this
upper bound |R| — 1 is the best possible.

To prove this theorem, the authors use several lem-
mas that we have carefully examined to see whether
it is possible to adapt their proof to obtain a 1-plane
graph. However, as far as we can see, there are cases
in which the connection of the paths that exist by
induction is not necessarily 1-plane.

It is unclear to us which is the right answer to Ques-
tion 1, yet our study leads us to believe that it is
negative in general, yet positive if only a Hamiltonian
path is required, which we state as a conjecture:

Conjecture 1 Let R and B be two disjoint sets of red
and blue points in the plane such that no three points
of RUB lie on the same line, and |B| < |R| < |B|+1.
There always exists a 1-plane geometric Hamiltonian
alternating path on RU B.

Let us mention that this is ongoing research, cur-
rently focusing on the preceding conjecture, which we
hope to answer in the next version of this paper.

The alternating path problem revisited

2 A remark on monochromatic
graphs

In this section we would like to remark that a result
obtained by Tokunaga in 1996 can be rephrased in
terms of 1-plane graphs, hence giving support to the
idea that exploring this relaxation may be worth the
effort for more problems.

On one hand, it is not always possible to construct
a non-crossing perfect matching in K(R) U K(B) as
proved by Dumitrescu and Steiger [6]. The original
result was improved by Dumitrescu and Kaye [5], who
proved that for given R and B, with |R| + |B| = n,
there always exists a non-crossing matching in K (R)U
K (B) which covers at least 0.8571 - n points of R U
B, while for some configurations every non-crossing
matching in K(R) U K(B) covers at most 0.9871 - n
points of RUB. On the other hand, drawing plane red
and blue geometric spanning trees on R and B that
avoid bichromatic crossings is not always possible, and
Tokunaga [13] characterized their existence in terms
of the bichromatic edges on CH(R U B).

One may wonder whether using 1-plane graphs
would always yield a positive solution to the above
problems. The answer is affirmative: Tokunaga [13]
also proved that for given R and B, there exists a pair
(path(R), path(B)) of red and blue geometric simple
Hamiltonian paths such that each edge of path(R) in-
tersects at most one edge of path(B) and vice versa.
Having the red and blue geometric simple Hamilto-
nian paths from that result, with at most one bichro-
matic crossing per edge, we already have got 1-plane
spanning trees, and taking in each path one segment
out of any two consecutive we get a l-plane perfect
matching with no monochromatic crossings. This 1-
plane matching can also be obtained by using the
Ham-sandwich theorem and induction on |R U B.

We include this remark because the focus in [13] was
to get few crossings rather than achieving the 1-plane
character, but the consequences show that pursuing
the latter line of research may be of interest.

3 Conclusion

We have proved that several problems on bicolored
point sets asking for the construction of a plane geo-
metric graph with some requisites, and that have in
general negative answer, turn out to have a solution if
the requirement of the graphs being plane is relaxed
to being 1-plane.

As mentioned in a previous section, this is ongoing
research and answering Conjecture 1 is our priority.
On the other hand, we are also studying the same
relaxation for other problems in which 1-plane graphs
may provide a solution where plane graphs are not
sufficient.

References

[10]

[11]

[12]

[13]

118

[1] M. Abellanas, A. Garcia, F. Hurtado, and J. Tejel,
Caminos alternantes, in: Actas X Encuentros de Ge-
ometria Computacional (in Spanish), 2003, 7-12.

[2] J. Akiyama and J. Urrutia, Simple alternating path
problem, Discr. Math. 84 (1990), 101-103.

[3] P. Brass, W. Moser, and J. Pach, Research Problems
in Discrete Geometry, Springer, 2005.

[4] J. Cibulka, J. Kyn¢l, V. Mészaros, R. StolaF, and
P. Valtr, Hamiltonian alternating paths on bicol-
ored double-chains, in: Graph Drawing 2008, Lecture
Notes in Computer Science 5417 (2009), 181-192.

[5] A. Dumitrescu and R. Kaye, Matching colored points
in the plane: Some new results, Comput. Geom. The-
ory Appl. 19 (2001), 69-85.

[6] A. Dumitrescu and W. Steiger, On a matching prob-
lem in the plane, Discr. Math. 211 (2000), 183-195.

[7] F. Hurtado and C. D. Téth, Plane geometric graph
augmentation: a generic perspective, Chapter 16
in: Thirty Essays on Geometric Graph Theory (J.
Pach, ed.), vol. 29 of Algorithms and Combinatorics,
Springer, 2013, 327-354.

[8] A. Kaneko and M. Kano, Discrete geometry on red
and blue points in the plane - a survey, in: Discrete
and Computational Geometry, The Goodman-Pollack
Festschrift; edited by B. Aronov et al., Springer, 2003,
551-570.

[9] A. Kaneko, M. Kano, and Y. Yoshimoto, Alternating
Hamiltonian cycles with minimum number of cross-
ings in the plane, Int. J. Comput. Geom. Appl. 10
(2000), 73-78.

J. Kynél, J. Pach, and G. Toth, Long alternating
paths in bicolored point sets, in: Graph Drawing
2004 (J. Pach, ed.), Lecture Notes in Computer Sci-
ence 3383 (2004), 340-348. Also in Discr. Math. 308
(2008), 4315-4322.

V. Mészaros. Extremal problems on planar point sets
PhD Thesis, University of Szeged, 2011.

J. Pach, ed. Thirty Essays on Geometric Graph
Theory, vol. 29 of Algorithms and Combinatorics,
Springer, 2013.

S. Tokunaga, Intersection number of two connected
geometric graphs, Information Proc. Discrete Math.
150 (1996), 371-378.

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Phase transitions in the Ramsey-Turan theory

Jozsef Balogh*!

!Department of Mathematics, University of Illinois, Urbana, IL 61801, USA

Abstract

Let f(n) be a function and L be a graph. Denote
by RT(n, L, f(n)) the maximum number of edges
of an L-free graph on n vertices with independence
number less than f(n). FErdés and Sos [7] asked
if RT (n,Ks,cy/n) = o(n?) for some constant c.
We answer this question by proving the stronger
RT (n, K5, 0 (v/nlogn)) = o (n?). It is known that
RT (n,[@,cdnlogn) = n?/4 + o(nQ) for ¢ > 1,
so one can say that K5 has a Ramsey-Turan-phase
transition at cy/nlogn. We extend this result to
several other K,’s and functions f(n), determining
many more phase transitions. We shall formulate
several open problems, in particular, whether vari-
ants of the Bollobas-Erdés graph, which is a geo-
metric construction, exist to give good lower bounds
on RT (n, K, f(n)) for various pairs of p and f(n).
These problems are studied in depth by Balogh-Hu-
Simonovits [1], where among others, the Szemerédi’s
Regularity Lemma and the Hypergraph Dependent
Random Choice Lemma are used.

Notation

Definition 1 Denote by RT(n, L, m) the maximum
number of edges of an L-free graph on n vertices with
independence number less than m.

We are interested in the asymptotic behavior of
RT(n, L, f(n)) and its “phase transitions”, i.e., in the
question, when and how the asymptotic behavior of
RT(n, L, f) changes sharply when we replace f by a
slightly smaller g.

Definition 2 Let

RT(n,L, f(n))

P7(L, f) = limsup .

n—o0 n
and RT(n L
p7(L, f) = liminf M

— n— 00 n

If p7(L, f p7(L, f), then we write RT(L, f) =

f) =
pr(L, f) = p7(L, f), and call RT the Ramsey-Turdn

*Research is partially supported by NSF CAREER Grant
DMS-0745185 and Arnold O. Beckman Research Award (UIUC
Campus Research Board 13039). jobal@math.uiuc.edu

119

density of L with respect to f, pT the upper, p7 the
lower Ramsey-Turdn densities, respectively.

1 Introduction

Szemerédi [10], using his regularity lemma [11],
proved p7(Ky4,0(n)) < 1/8. Bollobas and Erdds [4]
constructed the so-called Bollobas-Erdés graph, one
of the most important constructions in this area,
which shows that p7(Ky,0(n)) > 1/8. Indeed, the
Bollobas-Erdés graph on n vertices is Ky-free, with
(3 + o(1))n* edges and independence number o(n).
Later, Erdds, Hajnal, S6s and Szemerédi [5] extended
these results, determining RT(Ka,, o(n)).

Our focus here is somewhat different; we are inter-
ested exploring the situation when the independence
number is really small.

In [7], Erdés and So6s proved that
RT(n, Ks,cyn) < in? + o(n?) for every ¢ > 0.
They also asked if RT(n,Ks,cy/n) = o(n?) for
some ¢ > 0. They also suggested the following
construction, which with the current state of the
art yields RT (n7K5,c\/n10gn) = n?/4 + 0(n2)
for ¢ > 1: Into each of the parts of a complete
balanced bipartite graph place a triangle-free graph
with as small independence number as possible.
Then we obtain a Ks-free graph with (1/4 + o(1))n?
edges, with low independence number. One of our
main results answers the question of Erdds and Sos;
practically saying that this construction is optimal.

Theorem 3
RT (n,K570 (m)) = o(n?).

We finish this section with an observation, a result
and an open question on Kg.
For any ¢ > 1,

pT (Kﬁ,c\/nlogn> > pT (K5,c\/nlogn) >1/4.
(1)
Sudakov [9] using the dependent random choice
proved that y/n is the proper range for the phase-
transition for Kg.

Ramsey-Turan theory

Theorem 4 RT (Kg,7 \/ﬁe’”log") = o(n?).

Problem 1 Is p7 (Kg,O.ls/nlogn) =07

Balogh and Lenz [2, 3] using some variants of
the Bollobas-Erdés graph solved some longstanding
open problems in this field. Therefore there is a
chance that using discrete geometry, someone can
solve Problem 1. Here we describe the Bollobéas-Erdés
graph, and provide the argument for the K5 case.
These problems are studied in depth by Balogh-Hu-
Simonovits [1], where among others, the Szemerédi’s
Regularity Lemma and the Hypergraph Dependent
Random Choice Lemma are used.

2 Proof of Theorem 3

The next lemma is taken from the survey of Fox and
Sudakov [§].

Lemma 5 (Dependent Random Choice Lemma) Let
a,d,m,n,r be positive integers. Let G = (V,E) be a
graph with n vertices and average degree d = 2e(G)/n.
If there is a positive integer t such that

N AT

then G contains a subset U of at least a vertices such
that every r wvertices in U have at least m common
neighbors.

We actually prove the following quantitive version
of the theorem.

Theorem 6 For every k > 3, if w(n) — oo then

Vnlogn n? 9
RT K < = .3
(15 ™) < g =26 ©
Proof. In Theorem 6, we have fixed a k£ > 3 and an
w — oo. If n is large enough, then ¢ > w(n)~'/*.
Agsume that there is a Ks-free graph G,, with
vnl
e(Gp) > en? and o(G,,) < 72(;)5” 4)

We apply Lemma 5 with

na = %, r=3 d=2n m=/nlgn,
and t=k+3.

Now the condition of Lemma 5, (2) is satisfied as

dt n\ /myt . s (logn\'"?
nt_l_<r><n> 2(2€)n—n n >emn
n
= w(n)1+3/k

So there exists a vertex subset U of G with |U| =
4n/w(n)? such that all subsets of U of

> a.

a =

size 3 have at least m common neighbors. Fi-
ther U has an independent set of size at least

(o) y ction () > @), ox Gul

contains a triangle. In the latter case, denote by W
the common neighborhood of the vertices of the tri-
angle. Tt follows that |W| > m = /nlogn > a(G,),
s0 G, [W] contains an edge, and this edge forms a K
with the triangle. O

3 The Bollobas-Erdés Graph

The Bollobas-Erdés Graph [4] is a surprising con-
struction, which we describe in this section. First we
list some properties of the high dimensional sphere
Sk, Denote () the ‘normalized’ measure on SF,
i.e., u(S¥) = 1. The following properties of the high
dimensional sphere is crucial: Given any «a, 3 > 0, it
is possible to select € > 0 small enough and then k
large enough so that Properties (P1), (P2), and (P3)
below are satisfied.

(P1) Let C be a spherical cap in S* with height h,
2
where 2h = (\/§ - e/\/E) (this means that all

points of the spherical cap are within distance
V2 — e/\/E of the center). Then u(C) > % — .
(PQ) Let Cl, .

2
h, where 2h = (x/?—é/\/E) . Let z be the
center of C;. Assume for all 1 < ¢ < j <t that
d(zi,2;) < V2. Then p(Cr N...NCy) > % — tav.

.., C; be spherical caps in S¥ with height

(P3) Let C be a spherical cap with diameter 2 —
¢/(2vk). Then u(C) < B.

We also use the following properties of high dimen-
sional spheres.

(P4) For any 0 < v < 1, it is impossible to have
P1,P2,q1,q2 € SF such that d(p1,p2) > 2 — 7,
d(q1,q2) > 2 — 7, and d(p;, qj) < V2 — v for all

1<i,j<2.

(P5) Let A C S* and let C be a spherical cap of the
same measure. Then diam(A) > diam(C).

(P6) Let A, B C S* with equal measure and let C be
a cap of the same measure. Then dpay(A, B) >
diam(C).

Properties (P1) and (P2) follow directly from the
formula for the measure of a spherical cap, Proper-
ties (P3), (P5), and (P6) are all folklore results that
are easy corollaries of the isoperimetric inequality on
the sphere, and Property (P4) can be proved by ex-
amining distances and using the triangle inequality.

120

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

In order to prove that RT(n, K4,0(n)) > %2, we
need to construct, for every a, 8 > 0, a Ky-free graph
G with n vertices, independence number at most n,
and at least %2(1 — «) edges. Given o, > 0, take
€ small enough and k large enough so that Proper-
ties (P1) and (P3) hold. Divide the k-dimensional
unit sphere S¥ into n/2 domains having equal mea-
sure and diameter at most ﬁ. Choose a point from
each domain and let P be the set of these points. Let
¢ : P — P(S*) map points of P to the correspond-
ing domain of the sphere. Take as vertex set of G
the disjoint union of two sets V; and V5 both isomor-
phic to P. For z,y € V; we make zy an edge of G if
d(z,y) > 2—6/\/%. For z € V1,y € V5 we make xy an
edge of G if d(z,y) < v/2—¢/Vk. Then Property (P1)
shows that every vertex in V; has at least 3 [V2| (1—a)
neighbors in V5 so the total number of edges is at least
sn?(1—a). If I'is aset in Vi with |I| > 3 [V1| = 8%,
then u(o(I)) = |I|/|P] > B. Let C be a spherical cap
of measure p(¢(I)). Properties (P3) and (P5) show
that 2—¢/(2vk) < diam(C) < diam(¢(I)). Forp € I,
each ¢(p) has diameter at most ¢/(10v/k) so we can
find two points py,ps € I with d(py,p2) > 2 — ¢/Vk,
showing that I is not independent. Finally, Prop-
erty (P4) shows this graph has no K, as a subgraph
since any K4 must take two vertices from V; and two
vertices from V5 (the graph spanned by V; is triangle-
free). To summarize, we have constructed a Ky-free
graph G on n vertices with independence number at
most An and at least tn?(1 — «) edges. Since this
construction holds for any «, 5 > 0, we have proved
that p7(K4,0(n)) < 1/8.

4 Conclusion

The aim of this note was to raise awareness for a prob-
lem in extremal graph theory, where a solution could
come by geometric tools.

Acknowledgement: We thank for the anonymous
referee pointing out several typoes of the manuscript.

References

[1] J. Balogh, P. Hu, and M. Simonovits, Phase transi-
tions in the Ramsey-Turan theory, manuscript.

[2] J. Balogh and J. Lenz, On the Ramsey-Turdn num-
bers of graphs and hypergraphs, Israel J. Math. 194
(2013) 45-68.

[3] J. Balogh and J. Lenz, Some exact Ramsey-Turan
numbers, Bull. London Math. Soc.

[4] B. Bollobas and P. Erdds, On a Ramsey-Turan
type problem., J. Combinatorial Theory Ser. B,
21(2):166-168, 1976.

[5] P. Erdés, A. Hajnal, V. T. Sés, and E. Szemerédi,
More results on Ramsey-Turén type problems, Com-
binatorica, 3(1):69-81, 1983.

121

[6]

[7]

18]

[9]

[10]

[11]

P. Erdés, A. Hajnal, M. Simonovits, V. T. Sos, and
E. Szemerédi, Turan- Ramsey theorems and simple
asymptotically extremal structures. Combinatorica,
13 (1):31-56, 1993.

P. Erdgs and V. T. S6s, Some remarks on Ramsey’s
and Turan’s theorem. In Combinatorial theory and its
applications, II (Proc. Colloq., Balatonfiired, 1969),
pages 395-404. North-Holland, Amsterdam, 1970.

J. Fox and B. Sudakov. Dependent random choice.
Random Structures & Algorithms, 38 (1-2):68-99,
2011.

B. Sudakov. A few remarks on Ramsey-Turan-type
problems, J. Combin. Theory Ser. B, 88(1):99-106,
2003.

E. Szemerédi. On graphs containing no complete sub-
graph with 4 vertices, Mat. Lapok, 23:113-116, 1973.

E. Szemerédi. Regular partitions of graphs. In Prob-
lémes combinatoires et théorie des graphes (Colloq.
Internat. CNRS, Univ. Orsay, Orsay, 1976), vol-
ume 260 of Collog. Internat. CNRS, pages 399-401.
CNRS, Paris, 1978.

Ramsey-Turan theory

122

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

On 4-connected geometric graphs

Alfredo Garcia*!, Clemens Huemert?, Javier Tejel*!, and Pavel Valtr$?

!Dept. Métodos Estadisticos. Universidad de Zaragoza. Spain.
2Dept. Matematica Aplicada IV. Universitat Politécnica Catalunya, Spain.
3Department of Applied Mathematics. Charles University, Czech Republic.

Abstract

Given a set S of n points in the plane, in this paper we
give a necessary and sometimes sufficient condition to
build a 4-connected non-crossing geometric graph on
S.

Introduction

Given a set S of n points in the plane, a non-crossing
geometric graph on S is a graph in which its vertices
are the points of S and its edges are straight-line seg-
ments between these points such that no edge passes
through a vertex different from its endpoints and any
two edges may intersect only at a common endpoint.

Since all the geometric graphs considered in this
paper are non-crossing, throughout the paper we will
use the term geometric graph, meaning that the geo-
metric graph is non-crossing.

The study of geometric graphs and, in particular,
the study of problems on how to embed planar graphs
as geometric graphs on given point sets is a very active
area of research (for a review on geometric graphs and
some related topics, see for example [1, 4]). One of
these problems is the problem of building geometric
graphs with a certain connectivity on a set of points
S.

We will say that a set of points S is k-connectible
if it admits a k-connected geometric graph on it. For
k =1,2,3, it is well-known when S is k-connectible
and how to build a k-connected geometric graph (see
[2, 3]). Given S, it is enough to build a non-crossing
tree on S (for example the minimum spanning tree of

*Email: olaverriQunizar.es. Research partially supported
by projects Gob. Arag. E58-DGA, MINECO MTM2012-30951
and ESF EUROCORES programme EuroGIGA, CRP Com-
PoSe: MICINN Project EUI-EURC-2011-4306.

TEmail: clemens.huemer@upc.edu. Research partially sup-
ported by projects MINECO MTM2012-30951 and ESF EU-
ROCORES programme EuroGIGA, CRP ComPoSe: MICINN
Project EUI-EURC-2011-4306.

tEmail: jtejel@unizar.es. Research partially supported by
projects Gob. Arag. E58-DGA, MINECO MTM2012-30951
and ESF EUROCORES programme EuroGIGA, CRP Com-
PoSe: MICINN Project EUI-EURC-2011-4306.

$Email: valtr@kam.mff.cuni.cz.

123

S) when k = 1, and it is enough to build a simple
polygonization of S when k = 2. For the case k = 3,
the only set of points not admitting a 3-connected
geometric graph is the convex case. Otherwise, in [3]
the authors give an algorithm to build a 3-connected
geometric graph using max{[3n/2],n+m — 1} edges,
where m is the number of points on the boundary of
the convex hull of S, and they prove that there is no
3-connected plane graph on S with less edges.

However, for k£ > 3, little is known about when a
set of points is k-connectible. For k = 4, Dey et al. [2]
show points sets that do not admit any 4-connected
geometric graph on them and they provide a neces-
sary and sufficient condition for point sets whose con-
vex hull consists of exactly three points. A general
characterization of 4- or 5-connectible sets of points
is not known.

In this paper, we study sets of points that are 4-
connectible. We define a condition (the U-condition)
that any set of points must satisfy to be 4-connectible
and we show that the U-condition is always sufficient
for some sets of points. By denoting the convex hull of
S by CH(S) and the set of points on the boundary of
the convex hull of S by H(S),if @ = H(S), I = S\Q
and P = H(I), then the U-condition is sufficient for
sets of points in which QU P satisfies the U-condition.

1 The U-condition

In this section, we will define the U-condition and
we will see that it is a necessary condition to get 4-
connected geometric graphs.

A subset C of points of @ is connected if it consists
of consecutive points of). We will denote by h(C)
the number of connected components of a subset C' of

Q.

Definition 1 A set S of points satisfies the U-
condition if

i) QI < |1

ii) For any set C C @, |[H(S\ C)| <|I|+ h(C).

Lemma 2 FEvery 4-connectible set S satisfies the U-
condition.

On 4-connected geometric graphs

Proof. Let us prove that if G(S) is a 4-connected
graph drawn on S, then S has to satisfy i) and ii).
In G(S5), each vertex must have degree at least 4, and
since there are no edges linking non-consecutive points
of @ (otherwise G(S) would not be 3-connected), then
there are at least 2|Q| edges having an endpoint in
@ and the other one in I. On the other hand, as
G(S) is 4-connected, each point of I can be linked
to a maximum of two (and consecutive) points of Q.
Hence, at most there are 2|I| edges with an endpoint
in @ and the other one in I. Therefore, 2|Q| < 2|I|
and the necessity of i) is proved.

Now, suppose C # () is a subset of points of Q
and C1,Cy,...,Chc) are its connected components.
Let us denote by C; the points of Q placed between
component C; and component C; 1. Thus, @) consists
of the points 01,61, 02,62, RN Oh(C)7€h(C) in this
order. When we remove the points of C, all the points
in the subsets C; remain in H(S \ C) and perhaps,
between C; and C;1; (mod h(C)), a subset I;;1 of
points of I appears in H(S\ C). Either I, is empty or
it consists of consecutive points of P (see Figure 1).
Let I be the set I\ (I; Ul U...UIy(cy) and let C be
the set @\ C. Observe that proving ii) is equivalent
to proving |C| < |I| + h(C).

[

Figure 1: Illustration of Lemma 2.

Suppose that I1 = {p1, ..., pr } is nonempty and let
¢1 and g be the points of C placed on the boundary
of CH(S \ C) just after and before the points of Iy,
respectively (see Figure 1). Without loss of generality,
we can assume that G(S) is a triangulation. So, each
point of I; must be connected in G(5) to some point
of C; and, since G(5) is 4-connected, they cannot be
connected to a point of C, except for the edges pi/qi
and ggp1- Therefore, for an edge linking a point of
C with an interior point (at least 2|C| edges), the
interior endpoint must be in I \ I, except for the
two mentioned edges prrq1 and qipi. We can repeat
the same reasoning for every subset I;, obtaining that
there must be at least 2|C| — 2h(C) edges with an
endpoint in C and the other one in I. On the other

hand, as before, there are at most 2/1| connections of
this type, so it follows that 2|C| — 2h(C) < 2/I]. O

Observe that if |Q| = 3, then |I|+1 = n—2. Hence,
part ii) can only fail if we remove one point ¢ of @) and
the boundary of CH(S'\ ¢) contains all the remaining
points. In [2], this is the condition that is proved
to be necessary and sufficient to build a 4-connected
geometric graph (in fact a triangulation) on S.

Lastly, let us point out that, given S, checking
whether S satisfies the U-condition or not can be
done in O(|Q| + |P]) steps, after calculating @ and
P. The algorithm is based in the observation (not
easy to prove) that it is not necessary to compute
CH(S\ C) for all the possible subsets C, but only for
a linear number of them.

2 Some 4-connectible sets

In this section, we will give some sets of points for
which the U-condition is sufficient. In particular, we
will see that if Q U P satisfies the U-condition for a
set of points S, then S is 4-connectible. We will use

Q (P) to refer to the convex polygon defined by the
points of @ (P).

Let us start with the case in which S is precisely
QU P and |Q| = |P].

Lemma 3 Let Q = {q1,...,qn} be a set of points in
convez position and let P = {p1,...,pn} be another
set of points in convex position such that P is inside
Q. Suppose that the set of points S = Q U P satisfies
the U-condition. Then S is 4-connectible.

Proof. Let M be the region CH(Q) \ CH(P). To
prove the lemma, it is enough to obtain a crossing
free zig-zag cycle Z = p;qjpi+1¢j+1 - - - Pi—1¢j—1D; such
that its edges are in M, because then the edges of Z
and the edges of Q and P define a 4-connected graph
(see Figure 2).

Q

Figure 2: A 4-connected geometric graph when S =
QUP.

We will say that a triangle g;p;p;+1 is legal if it

is contained in region M. Proving the lemma is
equivalent to proving that there is a sequence of n

124

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

consecutive legal triangles q;p;pi+1, ¢j+1Pi+1Pit+2, - - -,
@j+n—1Pi+n—1Pi+n, Where points with equal subscripts
modulo n are considered identical.

Let us assume that {qi,...,¢n} is the set of clock-
wise points of) on the left of the line pyps. The
following algorithm computes a sequence of n consec-
utive legal triangles.

Begin

Doi=j5=2

While (i <n) Do

(* Imvariant (1): Triangles of the sequence
qj-1Pi—1Di, 45—2Pi—2Pi—1, - - -, §j—(i—1)P1P2 are legal.*)

If (Triangle ¢;jp;p;+1 is legal) then

Do{i=i+1;5=5+1}

Else

(* Invariant (2): ¢; is between ¢;_; and the first
crossing of line p;p;11 with @ *)

Doj=j5+1

End of While

(* After finishing the algorithm, all the triangles

of the sequence q;_np1p2, ¢j—(n—1)P2P3, - - - » §j—1PnP1
are legal.¥)

Let us see that assertions (1) and (2) are always
true, so they are invariant in the algorithm.

Trivially, assertion (1) is true the first time because
q1p1p2 is legal by hypothesis. Now, suppose that as-
sertions (1) and (2) are true in the iterations 1,2, ..., k
of the loop and let us prove that (1) is still true in the
following iteration. If we begin the k + 1 iteration af-
ter exploring a legal triangle in the iteration k, then
clearly (1) is still true (because we are adding the last
explored triangle to a previous legal sequence). If we
begin iteration k4 1 after exploring an illegal triangle
¢jpipi+1 in iteration k, then we need to check that
the new sequence ST = ¢;pi—1pi, .- -,qj—i+2p1p2 of
triangles (where j has been increased by one) is legal.
Assume to the contrary that in this sequence ST a
first illegal triangle g;_pp;—n—1Pi—n appears, so gj_p
is the first clockwise point of @ on the right of line
Pi—h—1Pi—h. By removing the points of @ from gj41
to gj_n—1 (see Figure 3 left), then the points of P
from p; to p;—p (n—h+1 points) and the points of @
from g;_p, to g; (h+1 points) appear in the boundary
of the new convex hull, contradicting the U-condition
(at most n + 1 points can appear in the boundary of
the new convex hull). Therefore (1) is invariant.

For assertion (2), the first time that the algo-
rithm goes to the else branch, we are exploring
the illegal triangle g¢;p;pj+1, being the triangles
qj—1Dj—1Pj, - - -, q1p1p2 legal. If ¢; was on the right
side of p;p;11 and after the second crossing point of
that line with @, then, by removing the points of Q
from ¢; to g;—1 (remember that g, is the first point of
Q to the left of p1ps), the U-condition is contradicted
because in the boundary of the new convex hull n + 2

125

Figure 3: Illustration of Lemma 3. Left: Supposing
gj—n is on the right of p;_p_1p;—n, the U-condition
fails if @)1 is removed. Right: Supposing ¢; is on the
right of p;p;1, the U-condition fails if @)1 is removed.

points appear (the points of P from p; to p;y1 and
the points of @ from g; to ¢,). Therefore, in the first
visit to the else branch assertion (2) is true.

Suppose that the last illegal triangle explored is
G, Pi,Pi;+1 and the algorithm is exploring a new il-
legal triangle ¢;p;pi+1. As (2) was true in the pre-
vious iterations, point g;, has to be placed between
¢j,—1 and the first crossing of line p;, p;, 11 with Q.
After exploring this triangle, subscript j; is increased
by one, and then h operations (perhaps h = 0) of
increasing both subscripts (¢ and j) are done. There-
fore, it must be j = j; + h+ 1 and ¢ = i1 + h,
for some h > 0. Since (1) is invariant, the h + 1
triangles q;—1pi—1pi, ¢j—2Di—2Pi—1, - - -, 4jy Piy —1Pi, are
legal. Therefore, if g; is placed after the second cross-
ing of line p;p;11 with @, then, by removing the h
points of @ from ¢j,+1 to gj—1, the h 4+ 2 points of
P from p;, +1 to piy1 appear in the boundary of the
new convex hull, contradicting the U-condition (see
Figure 3 right). Hence, (2) is invariant.

Lastly, since (1) is invariant and the last triangle,
qj—(i—1)P1P2, is legal, then the subscript j — ¢ + 1
has to be between 1 and m. This implies that
7 < v+ m — 1 in the algorithm. Hence, the al-
gorithm can go to the else branch a maximum of
m — 1 times, and finishes in a maximum number
of n +m — 1 steps. When the algorithm finishes,
then i = n 4+ 1 and the triangles of the sequence
4j—1PnPn+1,4j—2Pn—1Pn; - - -, j—nP1D2 are legal be-
cause (1) is invariant. O

Now, assume that |Q| = |P|, @ U P satisfies the
U-condition, there are more points inside P and that
|Q| > 3 (the case |Q| = 3 was solved in [2]). To get a
4-connected geometric graph, we proceed as follows.
First draw the zig-zag including alternatively the
points of P and @, according to the previous lemma.
Then, take a diagonal of P, for example diagonal p;ps.
This diagonal divides P into two subpolygons P, =
{p1.p3,-...pn,p1} and Pi = {p1,p2,p3, p1}. If the in-
terior I(P;) of P; is nonempty, then let P, be the con-
vex polygon defined by the points H(I(P;)Upy,ps). If
the interior I(Ps) of this polygon is again nonempty,

On 4-connected geometric graphs

then we define Ps; as the convex polygon defined by
the points H(I(P,) U p1,ps3), and so on, until we ob-
tain an empty convex polygon P,. Thus, we have
a sequence P, C P,_1 C ... C P, C P; of nested
polygons (see Figure 4 left). The same process can
be done starting at Pj, obtaining another sequence
P/, C Pj,_, C ... C P; C P| of nested polygons.
Observe that the region M; (M!) bounded by the con-
secutive polygons P,y and P; (P/,_; and P/) has the
shape of a “half-moon”. It is not difficult to prove
that M; (M]) can be triangulated such that points p;
and p3 are not used, and each one of the added edges
has an endpoint in P; (P/) and the other one in P14
(P/,1). Then, we triangulate all the half-moons in this
way (using edges connecting points placed in different
polygons) and we triangulate the convex polygon Py,
formed by concatenating P, and Pj,, such that the
only points with degree two are p; and ps. It can be
easily checked that the triangulation obtained in this
way is 4-connected (see Figure 4 right).

Figure 4: The general construction when [Q| = |P]|
and there are points inside P.

The case in which |Q| < |P|] and Q U P satisfies
the U-condition is solved in a similar way. First a
graph based on a zig-zag is built, although this start-
ing graph cannot be a zig-zag as in the previous case,
because |@Q| < |P|. Now, the starting graph is a zig-
zag connecting the points of @ to some points of P
plus some additional edges connecting the points of P
not belonging to the zig-zag to some points of @ (bold
edges in Figure 5 left). After building this starting
graph, we take a diagonal of P connecting two points
of P, consecutive in the zig-zag but not consecutive in
P (points p;, and p;, in Figure 5), and we proceed as
in the previous case, adding the triangulations of the
different half-moons and the final triangulation of the
convex polygon Py (see Figure 5 right). The resulting
triangulation is 4-connected.

The U-condition is the key to finding this starting
graph (the zig-zag plus some additional edges), al-
though proving the existence of such a graph is not
obvious. Due to space limitations, we do not include
this proof.

Therefore, we have proved the following theorem.

Theorem 4 Let S be a set of points. If Q = H(S),
P = H(S\ Q) and QU P satisfies the U-condition,

Figure 5: The general construction when |Q| < |P]
and there are points inside P.

then S is 4-connectible.

3 Conclusions

In this paper, we have defined a condition, the U-
condition, that any set of points S must satisfy to be
4-connectible. Moreover, we have proved that the U-
condition is also sufficient for sets of points in which
Q@ U P satisfies the U-condition.

In [2], the case |Q| = 3 is completely solved. Given
a set S of points such that |Q| = 3, the authors show
how to build a 4-connected triangulation on .S, except
for a particular configuration of points. This particu-
lar configuration is precisely the only one not satisfy-
ing the U-condition, among all the configurations of
points such that |Q| = 3.

Using different techniques not included in this pa-
per, we can extend the family of 4-connectible sets.
For any set S of points satisfying the U-condition (it is
not required that QU P satisfies the U-condition) such
that |P| = 3 or |P| = 4, we can built a 4-connected
geometric graph on S.

Finally, we conclude with the following conjecture.

Conjecture 1 If a set of points S satisfies the U-
condition, then S is /-connectible.

References

[1] P. Brass, W. Moser and J. Pach, Research Problems
in Discrete Geometry, Springer-Verlag, Berlin, 2005.

[2] T.K. Dey, M.B. Dillencourt, S.K. Ghosh and J.M.
Cahill, Triangulating with high connectivity, Com-
put. Geom. Theory Appl. 8 (1997), 39-56.

[3] A. Garcia, F. Hurtado, C. Huemer, J. Tejel and P.
Valtr, On triconnected and cubic plane graphs on
given point sets, Comput. Geom. Theory Appl. 42
(2009), 913-922.

[4] J. Pach (ed.), Thirty Essays on Geometric Graph
Theory, Springer Science+Business Media, New
York, 2013.

126

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Monotone crossing number of complete graphs

Martin Balko*!, Radoslav Fulek'!, and Jan Kyncl*2

!Department of Applied Mathematics, Charles University, Faculty of Mathematics and Physics, Malostranské
nam. 25, 118 00 Praha 1, Czech Republic;
2Department of Applied Mathematics and Institute for Theoretical Computer Science, Charles University,
Faculty of Mathematics and Physics, Malostranské nam. 25, 118 00 Praha 1, Czech Republic;

Abstract

In 1958, Hill conjectured that the minimum number
of crossings in a drawing of K, is exactly Z(n) =
$12) 252] [252] [252] - Generalizing the result by
Abrego et al. for 2-page book drawings, we prove
this conjecture for plane drawings in which edges
are represented by z-monotone curves. In fact, our
proof shows that the conjecture remains true for z-
monotone drawings in which adjacent edges do not
cross and we count only pairs of edges which cross
odd number of times. We also discuss a combinato-
rial characterization of these drawings.

1 Introduction

Let G be a graph with no loops and multiple edges.
In a drawing D of a graph G in the plane, the vertices
are represented by distinct points and each edge is
represented by a simple continuous arc connecting the
images of its endpoints. As usual, we identify the
vertices and their images, as well as the edges and the
arcs representing them. It is required that the edges
pass through no vertices other than their endpoints.
We also assume for simplicity that any two edges have
only finitely many points in common, no two edges
touch at an interior point and no three edges meet at
a common interior point.

A crossing in D is a common interior point of two
edges where they properly cross. The crossing number
cr(D) of a drawing D is the number of crossings in
D. The crossing number cr(G) of a graph G is the

*Email: balko@kam.mff.cuni.cz. Research supported by the
grant GACR GIG/11/E023 GraDR in the framework of ESF
EUROGIGA program, by the Grant Agency of the Charles
University, GAUK 1262213, and by the grant SVV-2013-267313
(Discrete Models and Algorithms).

TEmail: radoslav@kam.mff.cuni.cz. Research supported by
the grant GACR GIG/11/E023 GraDR in the framework of
ESF EUROGIGA program.

fEmail: kyncl@kam.mff.cuni.cz. Research supported by the
grant GACR GIG/11/E023 GraDR in the framework of ESF
EUROGIGA program, by the Grant Agency of the Charles
University, GAUK 1262213, and by the grant SVV-2013-267313
(Discrete Models and Algorithms).

127

minimum of cr(D), taken over all drawings D of G.
A drawing D is called simple if no two adjacent edges
cross and no two edges have more than one common
crossing. It is well known and easy to see that every
drawing of G which minimizes the crossing number is
simple.

According to the famous conjecture of Hill [7], [§]
(also known as Guy’s conjecture), the crossing num-
ber of the complete graph K, on n vertices satisfies
cr(K,) = Z(n), where

lin||n=-1||n-2||n—-3
o= =] 7] 1)
This conjecture has been verified for n < 12 [12] and
for each n, there are drawings of K,, with Z(n) cross-
ings [6], [7, 8, 9].

A curve « in the plane is z-monotone if every verti-
cal line intersects « in at most one point. A drawing
of a graph G in which every edge is represented by an
z-monotone curve and no two vertices share the same
z-coordinate is called z-monotone (or monotone, for
short). The monotone crossing number mon-cr(G) of
a graph G is the minimum of cr(D), taken over all
monotone drawings D of G.

The rectilinear crossing number ct(G) of a graph
G is the smallest number of crossings in a drawing
of G where every edge is represented by a straight-
line segment. Since every rectilinear drawing of G in
which no two vertices share the same x-coordinate is
x-monotone, we have cr(G) < mon-cr(G) < ¢r(G) for
every graph G.

We call a drawing of a graph semisimple if adja-
cent edges do not cross but independent edges may
cross more than once. The monotone semisimple odd
crossing number of G (called monotone odd + by
Schaefer [14]), denoted by mon-ocr (G), is the small-
est number of pairs of edges that cross an odd num-
ber of times in a monotone semisimple drawing of G.
Clearly, mon-ocr; (G) < mon-cr(G).

The monotone crossing number has been intro-
duced by Valtr [15] and recently further investigated
by Pach and T6th [11], who showed that mon-cr(G) <
2cr(G)? holds for every graph G. On the other hand,

Monotone crossing number of complete graphs

they showed that the monotone crossing number and
the crossing number are not always the same: there
are graphs G with arbitrarily large crossing numbers
such that mon-cr(G) > Zer(G) — 6.

We study the monotone crossing numbers of com-
plete graphs. The drawings of complete graphs with
Z(n) crossings obtained by Blazek and Koman [6]
(see also [9]) are 2-page book drawings, which may
be considered as a strict subset of x-monotone draw-
ings. Thus we have mon-cr(K,) < Z(n). Abrego
et al. [I] recently proved Hill’s conjecture for 2-page
book drawings of complete graphs. We generalize
their techniques and show that Hill’s conjecture holds
for all z-monotone drawings of complete graphs, even
for the monotone semisimple odd crossing number.

Theorem 1 For every n € N, we have
mon-ocry (K,) = mon-cr(K,) = Z(n).

The rectilinear crossing number of K, is known
to be asymptotically larger than Z(n): this fol-
lows from the best current lower bound er(K,) >
(277/729) (') —O(n?) [3, 5] and from the simple upper
bound Z(n) < 2(1}) + O(n?).

See a recent survey by Schaefer [14] for an ency-
clopedic treatment of all known variants of crossing
numbers.

After submitting this extended abstract, we were
informed that the authors of [1] achieved the result
mon-cr(K,,) = Z(n) already during discussions after
their presentation at SoCG 2012, and that it will ap-
pear in the proceedings of LAGOS 2013 [2].

2 Monotone Crossing Number

To prove the upper bound on the 2-page crossing num-
ber of K,, Abrego et al. [I] generalized the notion
of k-edges to arbitrary simple drawings of complete
graphs. They also introduced the notion of <<k-
edges. These capture the essential properties of 2-
page book drawings better than <k-edges, which had
been successfully used before for rectilinear and pseu-
dolinear drawings [10, [, [3]. We show that the ap-
proach using <<k-edges can be generalized to arbi-
trary semisimple z-monotone drawings.

For a semisimple drawing D of K,, and distinct ver-
tices u and v of K, let v be the oriented arc repre-
senting the edge {u, v}. If w is a vertex of K, different
from w and v, then we say that w is on the left (right)
side of « if the topological triangle wvw with vertices
u, v and w traced in this order is oriented counter-
clockwise (clockwise, respectively). This generalizes
the definition introduced by Abrego et al. [I] for sim-
ple drawings. However, we were not able to find a
meaningful generalization of this notion to drawings

that are not semisimple, where the edges of the trian-
gle uvw can cross several times.

A k-edge is an edge {u,v} of D that has exactly k
points on the same side (left or right). Since every
k-edge has n — 2 — k points on the other side, every k-
edge is also an (n—2—k)-edge and so every edge of D
is a k-edge for some integer k where 0 < k < |n/2]—1.

An i-edge with i < k is called a <k-edge. Let E;(D)
be the number of i-edges and E<y(D) the number
of <k-edges of D. Clearly, E<;(D) = Zf:o E;(D).
Similarly, the number of <<k-edges of D, E<<(D),
is defined by the following identity.

k

k
E<<k(D) = ZESJ’<D> = Z(k +1-i)E;(D) (1)

Considering the only three different simple draw-
ings of K4 up to a homeomorphism of the plane,
Abrego et al. [I] showed that the number of cross-
ings in a simple drawing D of K,, can be expressed in
terms of the number of k-edges in the following way.

Lemma 2 ([I]) For every simple drawing D of K,
we have

n |n/2]—1
cr(D) = 3(4> - Y k(n—-2-k)ED), (2)

k=0
which can be equivalently rewritten as

cr(D) = 2 Lnnggszﬂ(D) - ;(Z) V] 2J

a % (L4 (=1)") E<<[n/2)-2(D).

In fact, Lemma [2] can be easily generalized to
semisimple drawings of K, where cr(D) is replaced
by ocr(D), which counts the number of pairs of edges
that cross an odd number of times in D. The main
reason is that the cycle C4 cannot be drawn in the
plane in such a way that both its pairs of opposite
edges cross oddly while adjacent edges do not cross.

By Lemma [2} lower bounds on Ey(D) imply lower
bounds on cr(D) and ocr(D). Considering <k-edges,
Abrego and Fernandez-Merchant [4] and Lovész et
al. [I0] proved that for rectilinear drawings of K,
the inequality E<j > 3(k‘52) together with gives
cr(G) > Z(n). However, there are simple z-monotone
(even 2-page) drawings of K, where E<), < 3(*3?)
for k =1 [1]. Abrego et al. [1] showed that similar in-
equality for <<k-edges is satisfied by all 2-page book
drawings. We show that the same inequality is satis-
fied by all x-monotone semisimple drawings of K.

Let {v1,va,...,v,} be the vertex set of K,. Note
that we can assume that all vertices in an z-monotone

128

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

drawing lie on the z-axis. We also assume that the
x-coordinates of the vertices satisfy z(v1) < z(v2) <
s < z(vg).

Observation 3 Let D be a semisimple drawing of
K, not necessarily r-monotone. Let v be a vertex
incident with the outer face of D and let ~y; be the ith
edge incident with v in the counter-clockwise cyclic or-
der such that v1 and v,—1 are incident with the outer
face in a small neighborhood of v. Let vy, be the other
endpoint of v;. Then for everyi,j, 1 <i<j<mn-—1,
the triangle vi,vvy, is oriented clockwise. Conse-
quently, for every k, 1 < k < (n —1)/2, the edges
Vi and v,—i are (k — 1)-edges. For even n, the edge
Tn/2 18 a halving edge. O

For an xz-monotone drawing D of K,,, we use Ob-
servation [3| directly for the vertex v, and then for
each i, for the vertex v; and the subgraph induced by
Vi Vit1ly- -+, Un-

The following definitions were introduced by
Abrego et al. [I] for 2-page book drawings. Let D
be a semisimple z-monotone drawing of K, and let
D’ be a drawing obtained from D by deleting the ver-
tex v, together with its adjacent edges. A k-edge in
D is a (D, D')-invariant k-edge if it is also a k-edge
in D'. Tt is easy to see that every <k-edge in D’ is
also a <(k+1)-edgein D. If 0 < j <k < [n/2] — 1,
then a (D, D’)-invariant j-edge is called a (D, D’)-
invariant <k-edge. Let E<j(D,D’) denote the num-
ber of (D, D')-invariant <k-edges.

For i < j, the edge v;v; is called the right edge at
v;. The right edges at v; have a natural vertical order.

Lemma 4 Let k be a fized integer such that 0 < k <
(n—3)/2. For everyi € {1,2,...,k+1}, thek+2—14
bottommost and the k 4+ 2 — ¢ topmost right edges at
v; are < k-edges in D. Moreover, at least k + 2 — i of
these < k-edges are (D, D')-invariant <k-edges.

Proof. The first part of the lemma follows directly
from Observation If the edge v;v, is one of the
k + 2 — i topmost right edges at v;, then the k +2 — 4
bottommost right edges at v; are (D, D’)-invariant
<k-edges. Otherwise the k+ 2 — 4 topmost right
edges at v; are (D, D’)-invariant <k-edges. O

Corollary 5 We have

k+1 k42

E<,(D,D") > k+2—1 :()

w0023 Gr2=0=("57)

The following theorem gives the lower bound on
the number of <<k-edges. The proof is essentially
the same as in [I], we only extracted Lemma 4] which
needed to be generalized. Together with Lemma |2}
Theorem [6] yields Theorem

129

Theorem 6 Letn > 3 and let D be a semisimple x-
monotone drawing of K,,. Then for every k, 0 < k <
n/2 —1, we have E<<y(D) > 3(’“;3).

Proof. The proof proceeds by induction on n where
the case n = 3 is trivially true. Let n > 4 and let D
be a semisimple z-monotone drawing of K,. For the
induction step we remove the point v,, together with
its adjacent edges to obtain a drawing D’ of K, 1,
which is also semisimple and x-monotone.

Using Observation [3| we see that for 0 < i < k <
n/2 —1 there are two i-edges adjacent to v, in D and
together they contribute with QZfZO(k +1—-4) =
2(*$%) to E<<i(D) by (1)-

Let v be an i-edge in D’. Then ~ contributes by
(k—1i) to the sum E<cj_1(D') = Y5 (k—i)E; (D).
We already observed that v is either an i-edge or an
(i + 1)-edge in D. If ~ is also an i-edge in D (that is,
v is a (D, D')-invariant i-edge), then it contributes by
(k4+1—1) to E<<,(D). This is a gain of +1 towards
E<<p_1(D'). If v is an (¢ + 1)-edge in D, then it
contributes only (k — i) to E<<i(D). Therefore we
have

kE+2

E<<x(D) = 2(9

) + Eggk_l(D/) + Egk(D,D/).

By the induction hypothesis we know that
E<<i—1(D') > 3(*?) and thus we obtain

E<<i(D) = 3<k;3> - (k ; 2) + E<i(D,D").

The theorem follows by plugging the lower bound
from Corollary O

3 Combinatorial Description

In this section we develop a combinatorial charac-
terization of z-monotone drawings which is based on
the signature function introduced by Peters and Szek-
eres [13] for describing order types of points sets. Let
T, be the set of ordered triples (i,j,k) of the set
[n] = {1,2,...,n} and let X,, be the set of signature
functions o: T,, — {—,+}.

Let D be an xz-monotone drawing of the complete
graph K, = (V| E) with vertices v1,vs,...,v, such
that their z-coordinates satisfy z(vi) < z(vz) < --- <
x(vy,). We assign a signature function o € %,, to the
drawing D according to the following rule. For each
e = {v;,vp} € E and every integer j, i < j < k,
let o(i,j,k) = — if the point v; lies above the arc
representing the edge e and (i, j, k) = + otherwise.

Note that if the drawing D is also semisimple,
then a triangle v;viv;, j € (i,k), is oriented coun-
terclockwise (clockwise) if and only if o(i,j, k) = —
(o(i,j,k) = +, respectively). It is easy to see that

Monotone crossing number of complete graphs

for every signature function o € X, there is an z-
monotone drawing D which induces o. However,
such a drawing does not have to be semisimple. We
show a characterization of simple and semisimple x-
monotone drawings by small forbidden configurations
in the signature functions.

For a,b,c,d € [n] with a < b < ¢ < d and a
signature function ¢ € X,, we say that the 4-tuple
(a,b,c,d) is of the form £1&2€3€4 in o if o(a,b,c) =
517 0((17 b7 d) = 527 O’(CL, ¢, d) = 53 and U(ba) d) = 54'

Theorem 7 A signature function o € X,, can be re-
alized by a semisimple x-monotone drawing if and
only if each ordered 4-tuple of indices is of one of
the forms ++++, ————, ++——, —++, —++—,
+—t, ——+, +++—, +———, —F+++ ino. The
signature function o can be realized by a simple x-
monotone drawing if, in addition, there is no 5-tuple
(a,b,c,d,e), a <b<c<d<e, wih

o(a,b,e) =o(a,d,e) = o(b,c,d) = —o(a,c,e).

Note that in a simple z-monotone drawing of
K, the crossings can appear only between edges
whose endpoints induce a 4-tuple of one of the forms
++++,-——++——, —++, —F++— +—+.
Analogously to a similar correspondence in recti-
linear drawings of K,,, we may call these 4-tuples
convex. Then for a simple z-monotone drawing D of
K, the crossing number of D equals the number of
convex 4-tuples.

A similar notion of convexity for general k-tuples
was used by Peters and Szekeres [I3]. This description
of crossings is convenient for computer calculations.
Using it, we have obtained a complete list of optimal
z-monotone drawings of K, for n < 10.

4 Concluding remarks

It is an interesting direction of further research to see
if similar techniques can be helpful in proving Hill’s
conjecture for general drawings of complete graphs.
We note that the same approach does not generalize
to all drawings: for example, a particular planar re-
alization of the so-called cylindrical drawing |7, 8] of
K1, with crossing number Z(10), does not satisfy the
lower bound on <<1l-edges in Theorem [6] It would
also be interesting to further generalize Theorem
to monotone drawings where also adjacent edges are
allowed to cross.

Acknowledgments

We would like to thank Pavel Valtr for initializing the
research which led to this problem and Marek Elias for
developing visualization tools that were helpful during
the research.

References

[10]

[11]

[12]

[13]

[14]

[15]

130

[1] B. M. Abrego, O. Aichholzer, S. Fernandez-Merchant,
P. Ramos, and G. Salazar, The 2-page crossing num-
ber of K, preprint, 2012, arXiv:1206.5669.

[2] B. M. Abrego, O. Aichholzer, S. Fernandez-Merchant,
P. Ramos, and G. Salazar, More on the crossing num-
ber of K,: Monotone drawings, Proceedings of the
VII Latin-American Algorithms, Graphs and Opti-
mization Symposium (LAGOS) 2013, Playa del Car-
men, Mexico (to appear).

[3] B. M. Abrego, M. Cetina, S. Fernandez-Merchant, J.
Leanos, and G. Salazar, On <k-edges, crossings, and
halving lines of geometric drawings of K,, Discrete
Comput. Geom. 48 (2012), 192-215.

[4] B. M. Abrego and S. Fernandez-Merchant, A lower
bound for the rectilinear crossing number, Graphs
Combin. 21 (2005), 203-300.

[5] B. M. Abrego, S. Fernandez-Merchant, J. Leafios,
and G. Salazar, A central approach to bound the
number of crossings in a generalized configuration,
in: The IVLatin-American Algorithms, Graphs, and
Optimization Symposium, Electron. Notes Discrete
Math., 30, Elsevier Sci. B. V., Amsterdam, 2008,
273-278.

[6] J. Blazek and M. Koman, A minimal problem con-
cerning complete plane graphs, in: Theory of Graphs
and its Applications, Proc. Sympos. Smolenice, 1963,
Publ. House Czechoslovak Acad. Sci., Prague, 1964,
113-117.

[7] R. K. Guy, A combinatorial problem, Nabla (Bull.
Malayan Math. Soc) 7 (1960), 68-72.

[8] F. Harary and A. Hill, On the number of crossings
in a complete graph, Proc. Edinburgh Math. Soc. (2)
13 (1963), 333-338.

[9] H. Harborth, Special numbers of crossings for com-
plete graphs, Discrete Mathematics 244 (2002), 95—
102.

L. Lovéasz, K. Vesztergombi, U. Wagner, and E.
Welzl, Convex quadrilaterals and k-sets, in: Towards
a theory of geometric graphs, Contemp. Math., 7034,
Amer. Math. Soc., Providence, RI, 2004, 139-148.

J. Pach and G. To6th, Monotone Crossing Number,
in: Graph drawing, Lecture Notes in Comput. Sci.,
7034, Springer, Berlin Heidelberg, 2012, 278-289.

S. Pan and B. R. Richter, The crossing number of
K1 is 100, J. Graph Theory 56 (2007), 128-134.

G. Szekeres and L. Peters, Computer solution to
the 17-point Erdés-Szekeres problem, ANZIAM J. 48
(2006), 151-164.

M. Schaefer, The Graph Crossing Number and its
Variants: A Survey, Electronic Journal of Combina-
torics, Dynamic Survey 21 (2013).

P. Valtr, On the pair-crossing number, in: Combina-
torial and computational geometry, Math. Sci. Res.
Inst. Publ., 52, Cambridge Univ. Press, Cambridge,
2005, 569-575.

http://arxiv.org/abs/1206.5669

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Flips in combinatorial pointed pseudo-triangulations
with face degree at most four (extended abstract)

Oswin Aichholzer*!, Thomas Hackl*!, David Orden’?, Alexander Pilz*!, Maria Saumell*®, and
Birgit Vogtenhuber*!

Unstitute for Software Technology, Graz University of Technology, Austria.
?Departamento de Fisica y Matematicas, Universidad de Alcala, Spain.
3Département d’Informatique, Université Libre de Bruxelles, Belgium.

Abstract

In this paper we consider the flip operation for com-
binatorial pointed pseudo-triangulations where faces
have size 3 or 4, so-called combinatorial 4-PPTs. We
show that every combinatorial 4-PPT is stretchable
to a geometric pseudo-triangulation, which in general
is not the case if faces may have size larger than 4.
Moreover, we prove that the flip graph of combina-
torial 4-PPTs with triangular outer face is connected
and has diameter O(n?).

1 Introduction

Given a graph of a certain class, a flip is the op-
eration of removing one edge and inserting a differ-
ent one such that the resulting graph is again of the
same class. For the class of maximal planar (sim-
ple) graphs, any combinatorial embedding (clockwise
order of edges around each vertex) has only faces of
size 3 and hence is called a combinatorial triangu-
lation. Flips in combinatorial triangulations remove
the common edge of two triangular faces and replace
it by the edge between the two vertices not shared by
the faces, provided that these two vertices where not
already joined by an edge. Combinatorial triangula-
tions have a geometric counterpart in triangulations
of point sets in the plane, which are maximal plane

*Email: [oaich|thackl|apilz|bvogt]@ist.tugraz.at. Research
of OA and BV partially supported by the ESF EUROCORES
programme EuroGIGA — CRP ‘ComPoSe’;, Austrian Science
Fund (FWF): 1648-N18. Research of TH supported by the Aus-
trian Science Fund (FWF): P23629-N18 ‘Combinatorial Prob-
lems on Geometric Graphs’. AP is a recipient of a DOC-
fellowship of the Austrian Academy of Sciences.

TEmail: david.orden@uah.es. Research partially supported
by MICINN Project MTM2011-22792, ESF EUROCORES
programme EuroGIGA - ComPoSe 1P04 - MICINN Project
EUI-EURC-2011-4306 and Junta de Castilla y Le6n Project
VA172A12-2.

{Email: maria.saumell. m@Qgmail.com. Research supported
by ESF EuroGIGA project ComPoSe as F.R.S.-FNRS - EU-
ROGIGA NR 13604 and by ESF EuroGIGA project GraDR as
GACR GIG/11/E023.

131

geometric (straight-line) graphs with predefined ver-
tex positions. In this geometric setting there is also a
flip operation, for which a different restriction applies:
An edge can be flipped if and only if the two adjacent
triangles form a convex quadrilateral (otherwise the
new edge would create a crossing).

Flips in (combinatorial) triangulations have been
thoroughly studied. See [4] for a survey. A promi-
nent question about flips is to study the flip graph.
This is an abstract graph whose vertices are the mem-
bers of the same graph class having the same number
of vertices, and in which two graphs are neighbors
if and only if one can be transformed into the other
by a single flip. For both, combinatorial triangula-
tions and triangulations (with fixed vertex positions),
the flip graph is connected. However, the different
settings imply linear and quadratic diameter, respec-
tively (see [4] for references).

Triangulations have a natural generalization in
pseudo-triangulations. They have become a popu-
lar structure in Computational Geometry within the
last two decades, with applications in, e.g., rigid-
ity theory and motion planning. See [7] for a sur-
vey. A pseudo-triangle is a simple polygon in the
plane with exactly three convex vertices (i.e., vertices
whose interior angle is smaller than 7). A pseudo-
triangulation T of a finite point set S in the plane
is a partition of the convex hull of S into pseudo-
triangles such that the union of the vertices of the
pseudo-triangles is exactly S. Triangulations are a
particular type of pseudo-triangulations, actually the
ones with the maximum number of edges. Those
with the minimum number of edges are the so-called
pointed pseudo-triangulations, in which every vertex is
pointed, i.e., incident to a reflex angle (an angle larger
than 7).

Flips can also be defined for the class of pseudo-
triangulations of point sets in the plane. The flip
graph for general pseudo-triangulations is known to
be connected, as well as the subgraph induced by
pointed pseudo-triangulations. The currently best
known bound on the diameter is O(nlogn) for both

Flips in combinatorial pointed pseudo-triangulations with face degree at most four (extended abstract)

flip graphs [2, 3].

In a pseudo-triangulation, the pseudo-triangles can
have linear size. Hence, in contrast to triangula-
tions, the flip operation can no longer be computed
in constant time. This fact led to the consideration of
pseudo-triangulations in which the size of the pseudo-
triangles is bounded by a constant. Kettner et al. [5]
showed that every point set admits a pointed pseudo-
triangulation with face degree at most four (except,
maybe, for the outer face). We call such a pseudo-
triangulation a 4-PPT.

On the one hand, 4-PPTs behave nicely for prob-
lems which are hard for general pseudo-triangulations.
For instance, they are always properly 3-colorable,
while 3-colorability is NP-complete to decide for gen-
eral pseudo-triangulations [1]. On the other hand,
known properties of general pseudo-triangulations re-
main open for 4-PPTs. For instance, it is not known
whether the flip graph of 4-PPTs is connected, even
for the basic case of a triangular convex hull.

The aim of this paper is to make a step towards
answering this last question, by considering the com-
binatorial counterpart of 4-PPTs.

A combinatorial pseudo-triangulation [6] is a topo-
logical embedding of a planar simple graph together
with an assignment of labels reflex/convex to its an-
gles such that (1) every interior face has exactly three
angles labeled convex, (2) all the angles of the outer
face are labeled reflex, and (3) no vertex is incident
to more than one reflex angle.

Note that this labeling fulfills the same proper-
ties as actual reflex/convex angles in a (geometric)
pseudo-triangulation. This analogy with the geomet-
ric case goes on by calling pointed vertices in a com-
binatorial pseudo-triangulation those which, indeed,
are incident to one angle labeled reflex. Then, com-
binatorial pointed pseudo-triangulations are those in
which every vertex is pointed. Combinatorial pointed
pseudo-triangulations with face degree at most four
(except, maybe, for the outer face), will be called com-
binatorial 4-PPTs.

2 Properties

Lemma 1 Let G be a combinatorial 4-PPT and H
be a subgraph of G with |V (H)| > 3. Then H has at
least 3 vertices whose reflex angle is contained in the
outer face of H (corners of first type in [6]).

Corollary 2 In any combinatorial 4-PPT of the in-
terior of a simple cycle with b vertices, of which c
have the reflex angle inside the cycle, the number t of
triangular faces is given by t = b — 2¢c — 2.

A combinatorial pseudo-triangulation has the gen-
eralized Laman property if every subset of x non-poin-
ted vertices and y pointed vertices, where x+y > 2,

induces a subgraph with at most 3z + 2y — 3 edges.
Both this property and the number of reflex angles
from Lemma 1 are related to the stretchability of a
combinatorial pseudo-triangulation into a geometric
one. A face of a combinatorial pseudo-triangulation
is called degenerate if it contains edges which appear
twice on the boundary of this face.

Proposition 3 [6, Corollary 2] The following prop-
erties are equivalent for a combinatorial pseudo-
triangulation G: (1) G can be stretched to become
a pseudo-triangulation. (2) G has the generalized
Laman property. (3) G has no degenerate faces and
every subgraph of G with at least three vertices has at
least three corners of first type.

Since, by definition, combinatorial 4-PPTs have no
degenerate faces, we can use Proposition 3 to conclude
the following.

Theorem 4 FEvery combinatorial 4-PPT can be
stretched to become a 4-PPT with the given assign-
ment of angles. Furthermore, combinatorial 4-PPTs
have the generalized Laman property.

Note that there exist non-stretchable combinato-
rial pointed pseudo-triangulations with faces of size
at most 5. See Figure 1. There and in the forthcom-
ing figures, arcs denote angles labeled as reflex.

Figure 1: A non-stretchable combinatorial pointed
pseudo-triangulation [6].

3 Flips

In the following we focus on combinatorial 4-PPTs
with a fixed triangular outer face. For such a com-
binatorial 4-PPT, Corollary 2 implies that there is
only one interior triangular face. Before defining flips
between combinatorial 4-PPTs, we make some obser-
vations about their geometric counterpart.

Geometric 4-PPTs with triangular convex hull also
have only one interior triangle. Furthermore, every
edge of the triangle (except for those being part of the
convex hull) is flippable [7]. Observe that the removal
of the edge e to be flipped merges the triangle and
the 4-face adjacent at e into a 5-face, which might
be degenerate if the triangle and the 4-face share two
edges. See Figure 2. Note that this is the only case
in which the triangle and the 4-face can share three
vertices, as there are no multiple edges in geometric
graphs.

132

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

<>

A &
Figure 2: Geometric flip of an edge of a triangle. In

the lower case, removal of the flipped edge gives a
degenerate 5-face.

Similar to the geometric case, we consider flips of
an edge e of the (unique) interior triangular face T in
a combinatorial 4-PPT (with triangular outer face):
Consider the 4-face F' sharing e with T. A flip of e
consists in replacing e by another edge e’ such that
(1) € splits (TUF)\e into a triangular face 77 and a
4-face F' and (2) the result is a combinatorial 4-PPT.
In particular, and in contrast to the geometric case, in
the combinatorial setting we have to explicitly avoid
multiple edges and thus to ensure that the edge ¢’
we insert is not already contained in the combinato-
rial 4-PPT (as an edge outside TUF'). The following
lemma shows that every interior edge of the interior
triangular face can be flipped.

Lemma 5 In a combinatorial 4-PPT, every edge e
of an interior triangular face that is not an edge of
the outer face is flippable. Furthermore: (1) If the
removal of e results in a degenerate 5-face, then there
is a unique valid flip for e. (2) If removing e results
in a non-degenerate 5-face, then there are at least two
valid flips for e.

Observe that, given a combinatorial flip between
two combinatorial 4-PPTs, by Theorem 4 we know
that both of them can be stretched into geometric 4-
PPTs with straight edges. However, it might not be
possible to use the same geometric embedding for the
vertices in both of them.

4 Flip graph connectivity

Lemma 6 For a given combinatorial 4-PPT with tri-
angular outer face and for any edge b of this outer
face, there is a sequence of flips resulting in a combi-
natorial 4-PPT whose interior triangular face is inci-
dent to b.

Once the interior triangular face is incident to an
edge b of the outer face, the next step will be flipping
away interior edges incident to one endpoint of b.

133

Lemma 7 Given a combinatorial 4-PPT with tri-
angular outer face, in which the interior triangular
face T is incident to the edge b of the outer face, there
is a sequence of flips resulting in a combinatorial 4-
PPT in which the endpoint v of b = uv has no interior
incident edges.

Proof. We describe a flip sequence that flips all in-
ner edges incident to v. This flip sequence can be
partitioned into two phases and some cases. Let the
vertices neighbored to the vertex v be ordered radi-
ally around v, starting with u. In each case, let the
vertices in that order be u = wy, ..., wy.

Phase 1: During this phase, the inner triangular face
T has wv as a side, i.e., T = vuw;. We distinguish
three different cases:

Case 1: wvw; is the only inner edge incident
to v, i.e., kK = 2. If T is incident to only one 4-face
F (i.e., TUF is degenerate), we can flip the edge vw,
and are done. Otherwise, let the 4-face F' incident to
vwy be vwysws. See Figure 3. The reflex angle inside
I is either at s or wy. If it is at s, we flip vw; to wys,
obtaining the 4-face vwgsw,. Otherwise, the reflex
angle is at wy and we flip vw; to wiws, obtaining the
4-face vwowyws. Either way, the degree of v is 2 and
we are done.

v v

U = wo w2 wo w2

Figure 3: Phase 1, Case 1: Only one interior edge is
incident to v.

Case 2: at least two inner edges are incident
to v and there does not exist an edge wows. See
Figure 4. Since the reflex angle of v is at the outer face
we can replace the edge vw; by wows. This reduces
the degree of v by one. The inner triangular face is
again adjacent to wov, and we remain in Phase 1.

v

ST

U = wo wo

—>»

Figure 4: Phase 1, Case 2: Several interior edges are
incident to v and wgow, does not exist.

Flips in combinatorial pointed pseudo-triangulations with face degree at most four (extended abstract)

Case 3: at least two inner edges are incident
to v and there exists an edge wows. See Figure 5.
If the two inner edges of T' are incident to a single
4-face, we have a degenerate case; we flip the edge
wowi to wyws, making vwywsy the inner triangular
face. Otherwise, let the 4-face F' incident to vw; be
vwyiswy; we flip vw; to vs (this is possible since if
vs already existed, it would have to cross the cycle
uwyswy). Either way, the flip does not reduce the
degree of v, but the inner triangular face is now inside
the 3-cycle vwows. We switch to Phase 2.

v v
5 >
) } C
= 0
v
>

o

U = Wo w
v
>

—>

2
>

U = Wo wo

Figure 5: Phase 1, Case 3: The possible transitions
to Phase 2.

Phase 2: During this phase, the inner triangular face
is vwiwsy, and w; stays fixed for the whole phase.
Further, we know that w; was enclosed by a 3-cycle
(at the transition to this phase), which implies that
there are no edges from w; to w; for any i > 2. We
decrease the degree of v in the following manner.
Case 1: there is a 4-face F incident to vw,.
There cannot be an edge wjws since w; was enclosed
by a 3-cycle. Further, the reflex angle of F' is not
at v. Hence, we can flip vws to wiws, which reduces
the degree of v and we remain in Phase 2, with vw,ws
being the new inner triangular face.

Case 2: there is no 4-face incident to vws, i.e.,
k = 2. This case is symmetric to Case 1 of Phase 1.
The edge vw; is flipped in one of the two described
ways, reducing the degree of v to 2 and thus ending
the process. ([

Theorem 8 The graph of flips in combinatorial /-
PPTs with n vertices and triangular outer face is con-
nected and has diameter O(n?).

Proof. Given such a combinatorial 4-PPT, follow the
steps in Lemmas 6 and 7, then use induction for the
combinatorial 4-PPT obtained by removing v. This
leads to the unique canonical combinatorial 4-PPT
with triangular outer face, where two of the vertices
in the outer face are adjacent to all other vertices,
while the third one has degree 2. See Figure 6.

Figure 6: A canonical combinatorial 4-PPT.

Furthermore, the number of flips needed in Lemmas 6
and 7 is at most linear in the number of vertices of
the combinatorial 4-PPT. O

The presented basic case of combinatorial 4-PPTs
with triangular outer face is extendible to an arbi-
trarily sized outer face, to labeled vertices, and also
to the general case of combinatorial 4-PPTs with an
arbitrarily sized outer face on labeled vertices. Elabo-
rating on these extensions would go beyond the scope
of this extended abstract, though. Details (and omit-
ted proofs) can be found in a forthcoming full version.

Acknowledgments.
the 9" European Research Week on Geometric Graphs
and Pseudo-Triangulations, held May 14-18, 2012 in Al-
cala de Henares, Spain. We thank Vincent Pilaud, Pedro

This work was initiated during

Ramos, and André Schulz for helpful comments.

References

[1] O. Aichholzer, F. Aurenhammer, T. Hackl,
C. Huemer, A. Pilz, and B. Vogtenhuber. 3-
colorability of pseudo-triangulations. In FuroCG
2010, pages 21-24, 2010.

[2] O. Aichholzer, F. Aurenhammer, H. Krasser, and
P. Braf. Pseudotriangulations from surfaces and
a novel type of edge flip. SIAM J. Comput.,
32(6):1621-1653, 2003.

[3] S. Bereg. Transforming pseudo-triangulations.
Inf. Process. Lett., 90(3):141-145, 2004.

[4] P. Bose and F. Hurtado. Flips in planar graphs.
Comput. Geom., 42(1):60-80, 2009.

[5] L. Kettner, D. Kirkpatrick, A. Mantler,
J. Snoeyink, B. Speckmann, and F. Takeuchi.
Tight degree bounds for pseudo-triangulations of
points. Comput. Geom., 25(1-2):3-12, 2003.

[6] D. Orden, F. Santos, B. Servatius, and H. Ser-
vatius. Combinatorial pseudo-triangulations. Dis-
crete Math., 307(3-5):554-566, 2007.

[7] G. Rote, F. Santos, and I. Streinu. Pseudo-
triangulations — a survey. Contemp. Math. AMS,
2008.

134

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Recent developments on the crossing number of the complete graph

Pedro Ramos*

Department of Physics and Mathematics, University of Alcala, Alcala de Henares, Spain.

Introduction

There are two well defined periods in the history of the
problem of finding the crossing number of the com-
plete graph. Before 2004, the lack of tools to study
the problem restricted the developments to the study
configurations with a small number of points, the find-
ing of conjectured optimal solutions for arbitrary n,
and some fairly basic counting strategies. [4] is an
excellent survey for the main results in this period,
including the early history of the problem.

In 2004, and independently, Abrego and Fernandez-
Merchant [1] and Lovasz et al [5] discovered a very
strong relation between the number of crossings of
a rectilinear drawing of the complete graph and an-
other well known object in combinatorial geometry:
the number of j-edges of the set of vertices. This
lead to a series of improvements on the known lower
bounds and, although still only one very basic prop-
erty of optimal configurations is known (the set of ver-
tices has three extreme points), the gap in the leading
term of the known lower and upper bounds has been
greatly reduced. A very recent survey of all this de-
velopments can be found in [2].

Recently [3] the concept of j-edge has been gener-
alized to topological drawings of the complete graph,
and the relation between crossings and j-edges has
emerged as a promising tool for the general problem.
The conjectured bound has already proven to be op-
timal for some families of drawings, including 2-page
drawings and monotone drawings.

References

[1] B. M. Abrego and S. Fernandez-Merchant. A lower
bound for the rectilinear crossing number. Graphs
and Combinatorics, 21:293-300, 2005.

[2] B. M. Abrego and S. Fernandez-Merchant, and G.
Salazar. The rectilinear crossing number of Kn: Clos-
ing in (or are we?). In Thirty essays in geometric
graph theory, J. Pach (Ed), Springer, XVI, pp 504,
2013.

*Email: pedro.ramos@Quah.es. Partially supported by MEC
grant MTM2011-22792 and by the ESF EUROCORES pro-
gramme EuroGIGA, CRP ComPoSe, under grant EUI-EURC-
2011-4306.

135

[3] B.M. Abrego, O. Aichholzer, S. Fernandez-Merchant,
P. Ramos, and G. Salazar. The 2-page crossing num-
ber of K. Discrete and Computational Geometry, to
appear.

[4] L. Beineke and R. Wilson. The early history of the
brick factory problem. Math. Intelligencer, 32:41-48,
2010.

[5] L. Lovasz, K. Vesztergombi, U. Wagner, and E. Welzl.
Convex quadrilaterals and k-sets. In J. Pach, ed-
itor, Contemporary Mathematics Series, 842, AMS
2004, volume 342, pp. 139-148. American Mathemat-
ical Society, 2004.

Index of Authors

Abanades, Miguel A.; 77
Aichholzer, Oswin; 81, 131
Bajuelos, Antonio L.; 7
Balko, Martin; 127

Balogh, Jozsef; 85, 119
Bereg, Sergey; 3, 65

Botana, Francisco; 77
Cabello, Sergio; 39

Canales, Santiago; 7, 51
Cano, Javier; 91

Chévez, Maria José; 43
Chimani, Markus; 39
Cibulka, Josef; 103

Claverol, Merce; 115

Coll, Narcis; 23

Cortés, Carmen; 111

de Miguel, David N.; 69
Diaz-Banez, José Miguel; 3
Dorzan, Maria Gisela; 27
Enrique, Lluis; 95
Fabila-Monroy, Ruy; 65, 89
Fernandez-Fernandez, Encarnacion; 69
Flores-Penaloza, David; 65
Fort, Marta; 3, 15, 19

Fulek, Radoslav; 127
Gagliardi, Edilma Olinda; 73
Garcia, Alfredo; 123

Garijo, Delia; 115
Gonzélez-Aguilar, Hernan; 85
Guerreri, Marité; 23

Hackl, Thomas; 81, 131
Hernéndez, Gregorio; 7, 27, 51, 73
Hernandez-Vélez, César; 107
Hlimény, Petr; 39

Huemer, Clemens; 89, 123
Hurtado, Ferran; 91, 111, 115
Jaume, Rafel; 95
Kirkpatrick, David; 35
Klein, Rolf; 55

Korbelat, Miroslav; 103
Kynd¢l, Jan; 61, 99, 103, 127
Lara, Dolores; 115
Lawrencenko, Serge; 43
Leanos, Jests; 107
Leguizamoén, Mario Guillermo; 27, 73
Lépez, Mario A.; 3, 65
Marquez, Alberto; 111
Martins, Mafalda; 7, 51
Matos, Inés; 7, 51

Mészaros, Viola; 103
Mezura-Montes, Efrén; 27
Orden, David; 69, 131

Pérez-Lantero, Pablo; 3, 65
Pilz, Alexander; 131
Plastria, Frank; 31
Portillo, José R.; 43
Ramos, Pedro; 57, 135
Rodriguez-Nogales, José M.; 69
Sacristén, Vera; 81
Safernové, Zuzana; 61
Salazar, Gelasio; 85
Saumell, Maria; 131

Seara, Carlos; 115

Sellarés, J. Antoni; 15, 19
Steiger, William; 57
Stolat, Rudolf; 103

Tejel, Javier; 123

Tomas, Ana Paula; 11, 47
Tramuns, Eulalia; 89
Urrutia, Jorge; 1, 3, 91
Valenzuela, Jests; 111
Valladares, Nacho; 19
Valtr, Pavel; 103, 123
Vila-Crespo, Josefina; 69
Villar, M. Trinidad; 43
Vogtenhuber, Birgit; 81, 131
Wallner, Reinhard; 81
Yang, Boting; 35

Zilles, Sandra; 35

	portada-actas-EGC-2013-3-(2)
	blanco
	preface+committees+index
	blanco
	papers
	1-egc_inv1_final
	2-egc_paper_21_final
	Introduction
	Points and floodlights on a line
	Many points and two lights
	Many lights and two points

	3-egc_paper_5_final
	4-egc_paper_26_final
	5-egc_paper_4_final
	6-egc_paper_23_final
	7-egc_paper_36_final
	8-egc_paper_10_final
	9-egc_inv2_final
	10-egc_paper_12_final
	11-egc_paper_19_final
	12-egc_paper_27_final
	13-egc_paper_30_final
	14-egc_paper_6_final
	15-egc_inv3_final
	16-egc_paper_29_final
	17-egc_paper_11_final
	Introduction
	Angles in simplices and Coxeter diagrams
	A simple proof of Theorem 1
	The proof of Theorem 2

	18-egc_paper_2_final
	Introduction
	Double circle construction
	Construction correctness
	Future work

	19-egc_paper_34_final
	20-egc_paper_22_final
	21-egc_paper_7_final
	22-egc_paper_28_final
	23-egc_paper_33_final
	24-egc_paper_20_final
	25-egc_paper_37_final
	26-egc_paper_14_final
	27-egc_paper_13_final
	Introduction and the results
	A few open problems

	28-egc_paper_31_final
	29-egc_paper_32_final
	30-egc_paper_15_final
	31-egc_paper_8_final
	32-egc_paper_8_final_1
	33-egc_paper_24_final
	34-egc_paper_35_final_1
	Introduction
	Monotone Crossing Number
	Combinatorial Description
	Concluding remarks

	35-egc_paper_18_final
	36-egc_inv4_final

	authors

