Solutions of the Laplacian flow and coflow of a Locally Conformal Parallel G_2-structure

Raquel Villacampa Gutiérrez

Centro Universitario de la Defensa de Zaragoza, IUMA.

XXVII International Fall Workshop on Geometry and Physics

Sevilla, September 6th, 2018

Joint work with Victor Manero and Antonio Otal.
Available on arXiv:1711.08644v1
Outline

1. Motivation and G_2 background.
2. Laplacian flow and coflow.
3. Laplacian flow and coflow of an LCP G_2-structure.
4. Results.
The holonomy group of a linear connection

Suppose M^m simply connected.

Let ∇ be a linear connection on M, $p \in M$ and $\gamma: [0, 1] \rightarrow M$ a curve such that $\gamma(0) = \gamma(1) = p$.

The parallel transport along γ defines an endomorphism:

$$P_\gamma: T_p M \rightarrow T_p M.$$

The holonomy group $Hol_p(\nabla)$ of ∇ based at p:

$$\{P_\gamma\} \subset GL(m, \mathbb{R}).$$

For all $p, q \in M$, $Hol_p(\nabla)$ is conjugated to $Hol_q(\nabla)$:

the holonomy group $Hol(\nabla)$ of ∇.

In particular, if g is a Riemannian metric and $\nabla = \nabla^g$ is the Levi-Civita connection, then $Hol(\nabla^g) \subset O(m)$ ($SO(m)$ if M is orientable).
Riemannian holonomy

[Berger'55]: Some of the possible holonomy groups of a Riemannian, simply connected, irreducible and nonsymmetric \((M, g)\) are:

\[
Hol(\nabla^g) \subseteq SU(n) \quad \text{in dimension } m = 2n \quad \text{(Calabi-Yau)};
\]

\[
Hol(\nabla^g) \subseteq G_2 \quad \text{in dimension } m = 7;
\]

\[
Hol(\nabla^g) \subseteq \text{Spin}(7) \quad \text{in dimension } m = 8.
\]

In these cases, the metric \(g\) is \text{Ricci flat}.

Question: “Are there Riemannian metrics \(g\) with special \(Hol(\nabla^g)\)?”

A 7-dimensional manifold M has a G_2-structure \iff exists a global 3-form (fundamental form) $\sigma \in \Omega^3(M)$ having the local expression

$$\sigma = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}$$

where $\{e^1, \ldots, e^7\}$ is a local coframe and e^{ij} stands for $e^i \wedge e^j$.

- **The metric induced by σ:**

$$g(X, Y)vol = \frac{1}{6} \iota_X \sigma \wedge \iota_Y \sigma \wedge \sigma$$

for any $X, Y \in \mathfrak{X}(M)$.

- **Volume form:**

$$vol = e^{1234567}$$

- **The 4-form $\psi = *\sigma$:**

$$\psi = *\sigma = e^{1234} + e^{1256} + e^{3456} + e^{1367} + e^{1457} + e^{2357} - e^{2467}$$
Fernández-Gray classification

[Fernández-Gray’82]

\[\nabla^{LC} \sigma \in \Omega^1 \otimes \Omega^3_7 = X. \]

Under the action of the group \(G_2 \), \(X \) can be decomposed into 4 irreducible components

\[X = X_1 \oplus X_2 \oplus X_3 \oplus X_4 \]

Therefore, there exist 16 different classes of \(G_2 \)-structures, called the Fernández-Gray classes. Some examples:

<table>
<thead>
<tr>
<th>Type</th>
<th>Class</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel</td>
<td>(\mathcal{P})</td>
<td>(d\sigma = d\ast\sigma = 0)</td>
</tr>
<tr>
<td>Calibrated</td>
<td>(X_2)</td>
<td>(d\sigma = 0)</td>
</tr>
<tr>
<td>Cocalibrated</td>
<td>(X_1 \oplus X_3)</td>
<td>(d(\ast\sigma) = 0)</td>
</tr>
<tr>
<td>Locally Conformal Parallel</td>
<td>(X_4)</td>
<td>(d\sigma = 3\tau_1 \wedge \sigma,) (d(\ast\sigma) = 4\tau_1 \wedge (\ast\sigma))</td>
</tr>
</tbody>
</table>

\(\tau_1 \in \Omega^1(M) \).
Laplacian flow of a G_2-structure

[Bryant’06] introduced the Laplacian flow (LF)

$$\frac{d}{dt} \sigma_t = \Delta_t \sigma_t$$

where Δ is the Hodge Laplacian $\Delta = \delta d + d\delta$, with $\delta : \Omega^p \rightarrow \Omega^{p-1}$ such that $\delta = (-1)^p \ast d \ast$.

Properties:

- $\{ \sigma_t \text{ solution of (LF)} \}$
- $\sigma_0 \text{ calibrated } (d\sigma_0 = 0) \implies \sigma_t \text{ also calibrated.}$

- Laplacian flow can be considerate as the gradient flow of the Hitchin’s volume functional.

- If there exist solution, it converges to a torsion-free (parallel) G_2-structure, i.e. $\text{Hol}(\nabla^{g_{\infty}}) = G_2$.

Results:

- [Bryant-Xu’11] Short time existence and uniqueness of solution for compact manifolds (DeTurck’s Trick).

- [Lotay-Wei’15] Long time existence of solution starting near a torsion free structure.

- [Fernández-Fino-Manero’16] First examples of long time existence of solution.
Solutions of the Laplacian flow and coflow of an LCP G_2-structure

Raquel Villacampa Gutiérrez

Motivation and G_2 background
Laplacian flow and coflow
Laplacian flow and coflow of a LCP G_2-structure
Results

Laplacian coflow of a G_2-structure

[Karigiannis-McKay-Tsui’12] introduced the Laplacian coflow (LcF)

$$\frac{d}{dt} \psi_t = -\Delta_t \psi_t$$

where $\psi = \ast \sigma$.

Properties:

- σ_t solution of (LcF)
 - σ_0 cocalibrated ($d \ast \sigma_0 = 0$) $\implies \sigma_t$ also cocalibrated.
- If there exist solution, it converges to a torsion-free (parallel) G_2-structure, i.e. $\text{Hol}(\nabla_{g_\infty}) = G_2$.

Results:

- Short time existence and uniqueness of solution is not known.
- [Grigorian’13] Introduced the modified Laplacian coflow and proved short time existence and uniqueness of solution.
- [Bagaglini-Fernández-Fino’17] First examples of long time existence of solution for coflow and modified coflow.
Laplacian flow and coflow of a Locally Conformal Parallel G_2-structure

In [Manero-Otal-V.’17] we study the (LF) and (LcF) starting from an LCP G_2-structure.

Questions:
- There exists solution for these flows?
- The solutions remain LCP?
- Is there any correspondence between solutions?

We want to solve:

\[
\begin{align*}
\frac{d}{dt} \sigma_t &= \Delta_t \sigma_t, \\
\sigma_0 &= \sigma, \\
d\sigma_t &= 3 \tau_1(t) \wedge \sigma_t, \\
d * t \sigma_t &= 4 \tau_1(t) \wedge * t \sigma_t.
\end{align*}
\]

\[
\begin{align*}
\frac{d}{dt} \psi_t &= -\Delta_t \psi_t, \\
\psi_0 &= \psi, \\
d\psi_t &= 4 \tau_1(t) \wedge \psi_t, \\
d * t \psi_t &= 3 \tau_1(t) \wedge * t \psi_t.
\end{align*}
\]

Let us study them independently for a particular ansatz.
Our ansatz

Suppose that \(\{e^1, \ldots, e^7\} \) is an orthonormal local coframe in a \(G_2 \)-manifold \((M^7, \sigma) \).

Defomation: Consider a time-dependent coframe \(\{x^1(t), \ldots, x^7(t)\} \)

\[x^k(t) = h_k(t)e^k, \]

with \(h_k(t) \) differentiable functions, \(h_k(t) \neq 0 \) and \(h_k(0) = 1 \).

Notation: \(x^k \equiv x^k(t) \).

We define a one-parameter family of \(G_2 \)-structures on \(M \) as:

\[\sigma_t = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}, \]

\[\psi_t = x^{3456} + x^{1256} + x^{1234} - x^{2467} + x^{2357} + x^{1457} + x^{1367}. \]

In terms of the basis \(\{e^1, \ldots, e^7\} \):

\[\sigma_t = h_{127}e^{127} + h_{347}e^{347} + h_{567}e^{567} + h_{135}e^{135} \]
\[- h_{146}e^{146} - h_{236}e^{236} - h_{245}e^{245}, \]

\[\psi_t = h_{3456}e^{3456} + h_{1256}e^{1256} + h_{1234}e^{1234} - h_{2467}e^{2467} \]
\[+ h_{2357}e^{2357} + h_{1457}e^{1457} + h_{1367}e^{1367}, \]

where \(h_{ijk} \) stands for the product \(h_i(t)h_j(t)h_k(t) \).
LCP flow: Solving $\frac{d}{dt}\sigma_t = \Delta_t\sigma_t$

Our ansatz:

- $x^k = h_k(t)e^k$, ($h_k(t)$ are the unknowns!!)
- $\sigma_t = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}$.
- $\{e^1, \ldots, e^7\}$ is orthonormal.

Direct computations:

$$\frac{d}{dt}\sigma_t = \sum_{(i,j,k) \in I} \left(\frac{h_i'}{h_i} + \frac{h_j'}{h_j} + \frac{h_k'}{h_k} \right) x^{ijk} - \sum_{(i,j,k) \in J} \left(\frac{h_i'}{h_i} + \frac{h_j'}{h_j} + \frac{h_k'}{h_k} \right) x^{ijk},$$

where $I = \{(127), (135), (347), (567)\}$ and $J = \{(146), (236), (245)\}$.

- Now, σ_t solves the evolution equation for the 3-form, if and only if Δ has the following expression:

$$\Delta_t\sigma_t = \sum_{(i,j,k) \in I} \Delta_{ijk} x^{ijk} - \sum_{(i,j,k) \in J} \Delta_{ijk} x^{ijk},$$

where

$$\Delta_{ijk} = \frac{h_i'}{h_i} + \frac{h_j'}{h_j} + \frac{h_k'}{h_k}, \quad (i,j,k) \in I \cup J.$$

- Moreover:

$$\Delta_{abc} = \Delta_{pqr} \Rightarrow h_a h_b h_c = h_p h_q h_r.$$
Example

Consider a solvmanifold (compact quotient of solvable Lie group by lattice of maximal rank, $M = G/\Gamma$) whose Lie algebra is defined by:

▶ **Structure equations** in terms of basis $\{e^1, \ldots, e^7\}$:

$$c_p_1 = (-e^{17}, -e^{27}, -e^{37}, -e^{47}, -e^{57}, -e^{67}, 0) \quad (\leadsto de^1 = -e^1 \wedge e^7)$$

▶ *(invariant)* LCP G_2-structure:

$$\sigma_0 = e^{127} + e^{347} + e^{567} + e^{135} - e^{146} - e^{236} - e^{245}.$$

▶ In terms of basis $x^k = h_k(t)e^k$:

$$c_p_1 = \left(-\frac{1}{h_7}x^{17}, -\frac{1}{h_7}x^{27}, -\frac{1}{h_7}x^{37}, -\frac{1}{h_7}x^{47}, -\frac{1}{h_7}x^{57}, -\frac{1}{h_7}x^{67}, 0\right).$$

▶ **Family of G_2-structures**: (We do not know if they are LCP!!)

$$\sigma_t = x^{127} + x^{347} + x^{567} + x^{135} - x^{146} - x^{236} - x^{245}.$$

▶ **Laplacian**:

$$\Delta_t \sigma_t = -\frac{1}{h_7^2} \left[8 \left(x^{127} + x^{347} + x^{567}\right) + 9 \left(x^{135} - x^{146} - x^{236} - x^{245}\right) \right].$$
Example

Laplacian:

\[
\Delta_t \sigma_t = - \frac{1}{h_7^2} \left[8 \left(x^{127} + x^{347} + x^{567} \right) + 9 \left(x^{135} - x^{146} - x^{236} - x^{245} \right) \right].
\]

Laplacian:

\[
\Delta_t \sigma_t = - \frac{1}{h_7^2} \left[8 \left(x^{127} + x^{347} + x^{567} \right) + 9 \left(x^{135} - x^{146} - x^{236} - x^{245} \right) \right].
\]

Thus:

\[
\begin{align*}
\Delta_{127} &= \Delta_{347} = \Delta_{567} = -\frac{8}{h_7^2} \implies h_1 h_2 h_7 = h_3 h_4 h_7 = h_5 h_6 h_7. \\
\Delta_{135} &= \Delta_{146} = \Delta_{236} = \Delta_{245} = -\frac{9}{h_7^2} \implies h_1 h_3 h_5 = h_1 h_4 h_6 = h_2 h_3 h_6 = h_2 h_4 h_5.
\end{align*}
\]

Solving the blue system: \(h_1 = h_2 = h_3 = h_4 = h_5 = h_6 = h(t) \).

The evolution equation is equivalent to the system...
Example

The evolution equation is equivalent to the system

\[
\begin{align*}
 \frac{-2}{h_7^2} &= \frac{h'_7}{h_7} \\
 \frac{-3}{h_7^2} &= \frac{h'_7}{h}
\end{align*}
\]

Solution: \(h(t) = (1 - 4t)^{3/4} \) and \(h_7(t) = (1 - 4t)^{1/2} \).

Conclusion:

\[
\sigma_t = (1 - 4t)^2(e^{127} + e^{347} + e^{567}) + (1 - 4t)^{9/4}(e^{135} - e^{146} - e^{236} - e^{245})
\]

for \(t \in (-\infty, \frac{1}{4}) \) solves the evolution equation \(\frac{d}{dt} \sigma_t = \Delta_t \sigma_t \).

Moreover, can be checked that it remains LCP for any \(t \):

\[
\begin{align*}
 d\sigma_t &= 3\tau_1(t) \wedge \sigma_t, \\
 d \ast \sigma_t &= 4\tau_1(t) \wedge (\ast \sigma_t),
\end{align*}
\]

with \(\tau_1(t) = e^7 \).

Therefore, it is a solution for the LCP Laplacian flow.

Finally, observe that the metric \(g_t \) remains Einstein for all \(t \in (-\infty, \frac{1}{4}) \) since

\[
Ric(g_t) = -\frac{6}{1 - 4t} g_t.
\]
LCP coflow: Solving \[\frac{d}{dt} \psi_t = -\Delta_t \psi_t \]

Similarly as the LCP flow, using \(x^k = h_k(t)e^k \), and taking into account that

\[
\psi_t = x^{3456} + x^{1256} + x^{1234} - x^{2467} + x^{2357} + x^{1457} + x^{1367}.
\]

\[
\frac{d}{dt} \psi_t = \sum_{(l,m,n,o)\in K} \left(\frac{h'_l}{h_l} + \frac{h'_m}{h_m} + \frac{h'_n}{h_n} + \frac{h'_o}{h_o} \right) x^{lmno} - \left(\frac{h'_2}{h_2} + \frac{h'_4}{h_4} + \frac{h'_6}{h_6} + \frac{h'_7}{h_7} \right) x^{2467},
\]

where \(K = \{(1234), (1256), (1367), (1457), (2357), (3456)\} \).

- Now, \(\sigma_t \) solves the evolution equation for the 4-form, if and only if \(\Delta \) has the following expression:

\[
\Delta_t \psi_t = \sum_{(l,m,n,o)\in K} \Delta_{lmno} x^{lmno} - \Delta_{2467} x^{2467},
\]

where

\[
\Delta_{lmno} = \frac{h'_l}{h_l} + \frac{h'_m}{h_m} + \frac{h'_n}{h_n} + \frac{h'_o}{h_o}, \quad (l, m, n, o) \in K \cup \{2467\}.
\]

- Moreover:

\[
\Delta_{lmno} = \Delta_{pqrs} \Rightarrow h_l h_m h_n h_o = h_p h_q h_r h_s.
\]
Solutions of the Laplacian flow and coflow of an LCP G_2-structure

Raquel Villacampa Gutiérrez

Motivation and G_2 background

Laplacian flow and coflow

Laplacian flow and coflow of a LCP G_2-structure

Results

Solvmanifolds with an LCP G_2-structure

[Chiossi-Fino’06] Obtained a family of solvmanifolds endowed with an LCP G_2-structure as a rank one solvable extension of 6-dim nilpotent Lie groups endowed with SU(3)-structure.

.cp_1 = (-e^{17}, -e^{27}, -e^{37}, -e^{47}, -e^{57}, -e^{67}, 0);

.cp_2 = \left(-\frac{4}{3} e^{17} + \frac{2}{3} e^{36}, -e^{27}, -\frac{2}{3} e^{37}, -e^{47}, -e^{57}, -\frac{2}{3} e^{67}, 0 \right);

cp_3 = \left(-\frac{3}{2} e^{17} + \frac{1}{2} e^{36}, e^{45}, -\frac{3}{4} e^{27}, -\frac{3}{4} e^{37}, -\frac{3}{4} e^{47}, -\frac{3}{4} e^{57}, -\frac{3}{4} e^{67}, 0 \right);

cp_4 = \left(-\frac{7}{5} e^{17} + \frac{2}{5} e^{36}, \frac{2}{5} e^{45}, -\frac{6}{5} e^{27} - \frac{2}{5} e^{46}, \frac{4}{5} e^{37}, -\frac{4}{5} e^{47}, -\frac{4}{5} e^{57}, -\frac{4}{5} e^{67}, 0 \right);

cp_5 = \left(-\frac{5}{4} e^{17} + \frac{1}{2} e^{45}, -\frac{5}{4} e^{27} - \frac{1}{2} e^{46}, \frac{1}{2} e^{37}, -\frac{1}{2} e^{47}, -\frac{1}{2} e^{57}, -\frac{1}{2} e^{67}, 0 \right);

cp_6 = \left(-\frac{4}{3} e^{17} + \frac{1}{3} e^{36}, \frac{1}{3} e^{45}, -\frac{4}{3} e^{27} + \frac{1}{3} e^{35}, -\frac{1}{3} e^{46}, -\frac{2}{3} e^{37}, -\frac{2}{3} e^{47}, -\frac{2}{3} e^{57}, -\frac{2}{3} e^{67}, 0 \right);

cp_7 = \left(-\frac{6}{5} e^{17} + \frac{2}{5} e^{36}, -\frac{3}{5} e^{27}, -\frac{3}{5} e^{37}, \frac{2}{3} e^{26} - \frac{6}{5} e^{47}, \frac{2}{5} e^{35} - \frac{6}{5} e^{57}, -\frac{3}{5} e^{67}, 0 \right);

Main result: Every 7-dimensional rank-one solvable extension of a nilpotent Lie group with a Locally Conformal Parallel G_2-structure admits

- ▶ a long time LCP solution to the Laplacian flow.
- ▶ a long time LCP solution to the Laplacian coflow.
More solutions to the LCP Laplacian flow & coflow

For the rest of the cases \(c p_i \) with \(i = \{2, \ldots, 7\} \), we consider a basis \(\{x^1, \ldots, x^7\} \) of 1-forms given by \(x^k = h_k(t) e^k \), and a particular type of functions \(h_k(t) \), inspired by the previous example:

\[
\begin{align*}
\text{flow} &\Rightarrow h_k(t) = (1 - \alpha t)^{\beta_k}, \\
\text{coflow} &\Rightarrow h_k(t) = (1 - \gamma t)^{\delta_k}.
\end{align*}
\]

<table>
<thead>
<tr>
<th>(c p_i)</th>
<th>(\alpha)</th>
<th>((\beta_1, \ldots, \beta_7))</th>
<th>(\gamma)</th>
<th>((\delta_1, \ldots, \delta_7))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c p_1)</td>
<td>4</td>
<td>(\left(\frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, 1\right))</td>
<td>-6</td>
<td>(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 1\right))</td>
</tr>
<tr>
<td>(c p_2)</td>
<td>(\frac{10}{3})</td>
<td>(\left(\frac{9}{10}, \frac{4}{5}, \frac{7}{10}, \frac{4}{5}, \frac{7}{10}, \frac{1}{2}\right))</td>
<td>(\frac{-16}{3})</td>
<td>(\left(\frac{1}{4}, \frac{5}{16}, \frac{5}{8}, \frac{5}{16}, \frac{3}{8}, \frac{1}{2}\right))</td>
</tr>
<tr>
<td>(c p_3)</td>
<td>3</td>
<td>(\left(1, \frac{5}{6}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, 1\right))</td>
<td>-5</td>
<td>(\left(\frac{1}{5}, \frac{3}{10}, \frac{7}{20}, \frac{7}{20}, \frac{7}{20}, \frac{7}{20}, 1\right))</td>
</tr>
<tr>
<td>(c p_4)</td>
<td>(\frac{14}{5})</td>
<td>(\left(1, \frac{13}{14}, \frac{11}{14}, \frac{5}{7}, \frac{11}{14}, \frac{5}{7}, 1\right))</td>
<td>(\frac{-24}{5})</td>
<td>(\left(\frac{5}{24}, \frac{1}{4}, 1, \frac{3}{8}, \frac{1}{3}, 1, 1\right))</td>
</tr>
<tr>
<td>(c p_5)</td>
<td>3</td>
<td>(\left(\frac{11}{12}, \frac{11}{12}, \frac{5}{6}, \frac{2}{3}, \frac{3}{4}, \frac{3}{4}, 1\right))</td>
<td>-5</td>
<td>(\left(\frac{1}{4}, \frac{1}{4}, \frac{3}{10}, \frac{2}{5}, \frac{7}{20}, \frac{7}{20}, 1\right))</td>
</tr>
<tr>
<td>(c p_6)</td>
<td>(\frac{8}{3})</td>
<td>(\left(1, 1, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}, 1\right))</td>
<td>(\frac{-14}{3})</td>
<td>(\left(\frac{3}{14}, \frac{3}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, \frac{5}{14}, 1\right))</td>
</tr>
<tr>
<td>(c p_7)</td>
<td>(\frac{14}{5})</td>
<td>(\left(\frac{13}{14}, \frac{10}{14}, \frac{10}{14}, \frac{13}{14}, \frac{13}{14}, \frac{10}{14}, 1\right))</td>
<td>(\frac{-24}{5})</td>
<td>(\left(\frac{1}{4}, \frac{3}{8}, \frac{1}{4}, 1, \frac{3}{8}, \frac{1}{2}\right))</td>
</tr>
</tbody>
</table>
Relation Theorem

The founded solutions for the LCP flow and the LCP coflow are related, as the following Theorem shows:

Theorem

Let σ_t and $\tilde{\sigma}_t$ be two different families of G_2 structures on \mathfrak{cp}_i with $i = 1, \ldots, 7$, where

$$h_k(t) = (1 - \alpha t)^{\beta_k}, \quad \beta_7 = \frac{1}{2}, \quad \text{and} \quad \tilde{h}_k(t) = (1 - \gamma t)^{\delta_k}, \quad \delta_7 = \frac{1}{2}.$$

If the defining parameters of the functions $h_i(t)$ and $\tilde{h}_i(t)$ are related by:

$$\gamma = \alpha \left(\frac{2 - \sum_{j=1}^{7} \beta_j}{2} \right), \quad \delta_k = \frac{1}{2} + \frac{1 - 2 \beta_k}{-2 + \sum_{j=1}^{7} \beta_j} \quad \text{for} \quad k \in \{1, \ldots, 7\}.$$

Then:

(i) σ_t is LCP if and only if $\tilde{\sigma}_t$ is LCP.

(ii) σ_t solves the Laplacian flow if and only if $\tilde{\psi}_t = \ast \tilde{\sigma} \tilde{\sigma}_t$ solves the Laplacian coflow.
Open problems

We have obtained some long-time solutions to the LCP flow and coflow.

Open problems:
- Study short time-existence and uniqueness of solution.
- Study the behavior of limit of solutions. Are they parallel structures?

Thank you!!