Noncommutative gauge theories
through twist deformation quantization

Chiara Pagani

Università del Piemonte Orientale, Alessandria, Italy

XXVII International Fall Workshop on Geometry and Physics

Sevilla, September 3–7, 2018
Gel’fand Naimark Theorem (1943)
The notion of a noncommutative space

NCG is based on the correspondence between

\[
\begin{array}{c}
\{ \text{compact Hausdorff spaces} \} \\
\{ \text{commutative unital } C^* \text{algebras} \}
\end{array}
\]^{\text{op}}

\[X \to \mathcal{C}(X)\]

\(\mathcal{C}(X) = \text{algebra of continuous complex valued functions on } X \text{ with pointwise multiplication, involution } f \mapsto f^*, f^*(x) = \overline{f(x)} \text{ and } \|f\|_{\infty} := \sup_{x \in X} |f(x)|.\)

\[\hat{A} = \{ \chi : A \to \mathbb{C} \text{ character} \} \leftarrow A\]
Motivated by Gelfand-Naimark theorem

\[
\left\{ \begin{array}{c}
NC \text{ compact} \\
Hausdorff \text{ spaces}
\end{array} \right\} := \left\{ \begin{array}{c}
\text{(not necessarily commutative)} \\
\text{unital } C^* \text{-algebras}
\end{array} \right\}^{op}
\]

- While a commutative C^*-algebra has many characters, one for each point of the underlying space, for a noncommutative C^*-algebra characters can be fairly scarce \implies NCG is a "point-free" geometry.

- some spaces are better studied by examining algebras of functions on them;
- in part inspired by quantum mechanics:
 from commutative algebras of classical observables (= functions on a space)
 to noncommutative algebras of quantum observables (= operators on a Hilbert space).
More in general, a NC space is an algebra equipped with some additional structures
\((C^*, \text{von Neumann, quantum group, spectral triple, ...})\)

Example: NC 2-sphere [Podleś]. \(*\)-algebra \(\mathcal{O}(S^2_q)\) generated by elements \(a, a^*, b = b^*\)
subject to the relations

\[
aa^* + q^{-4}b^2 = 1, \quad a^*a + b^2 = 1; \quad ab = q^{-2}ba, \quad a^*b = q^2ba^*, \quad q \in \mathbb{R}
\]

When \(q = 1\) one recovers the classical commutative algebra \(\mathcal{O}(S^2)\) of polynomials functions on \(S^2\).

NCG has classical geometry (expressed in algebraic terms) as its classical limit.
Bundle theory in noncommutative geometry

Serre-Swan Theorem (1962): the notion of a noncommutative vector bundle

\[
\begin{aligned}
\left\{ \text{vector bundles over } X \right\} & \cong \left\{ \text{projective } \mathcal{C}(X) - \text{modules of finite type} \right\} \\
E & \longrightarrow \mathcal{C}(X)\text{-module } \Gamma(E) \text{ of sections} \\
E_p = \{(x, v) \in X \times \mathbb{C}^N | p(x)v = v\} & \leftarrow \mathcal{E}_p \cong p(\mathcal{C}(X) \otimes \mathbb{C}^N)
\end{aligned}
\]
Bundle theory in noncommutative geometry

Serre-Swan Theorem (1962): the notion of a noncommutative vector bundle

\[\left\{ \text{vector bundles over } X \right\} \cong \left\{ \text{projective } \mathcal{C}(X) - \text{modules of finite type} \right\} \]

\[E \rightarrow \mathcal{C}(X)\text{-module } \Gamma(E) \text{ of sections} \]

\[E_p = \{(x, v) \in X \times \mathbb{C}^N | p(x)v = v\} \leftarrow \mathcal{E}_p \cong p(\mathcal{C}(X) \otimes \mathbb{C}^N) \]

\[\left\{ \text{vector bundles over a nc space } A \right\} := \left\{ \text{projective } A - \text{modules of finite type} \right\} \]
Bundle theory in noncommutative geometry
Serre-Swan Theorem (1962): the notion of a noncommutative vector bundle

\[
\begin{align*}
\left\{ \text{vector bundles over } X \right\} & \cong \left\{ \text{projective } \mathcal{C}(X) - \text{modules of finite type} \right\} \\
E & \longrightarrow \mathcal{C}(X)\text{-module } \Gamma(E) \text{ of sections} \\
E_p = \{(x, \nu) \in X \times \mathbb{C}^N | p(x)\nu = \nu\} & \longleftarrow \mathcal{E}_p \cong p(\mathcal{C}(X) \otimes \mathbb{C}^N)
\end{align*}
\]

\[
\begin{align*}
\left\{ \text{vector bundles over a nc space } A \right\} & := \left\{ \text{projective } A - \text{modules of finite type} \right\}
\end{align*}
\]

Remark: Finite projective modules correspond to idempotents in matrix algebras:

\[
\begin{align*}
\mathcal{E} \text{ finite projective over } A & \iff \exists N \in \mathbb{N} / A \otimes \mathbb{C}^N = \mathcal{E} \oplus \mathcal{E}' \\
& \iff \exists N \in \mathbb{N}, p = p^2 = p^* \in \text{Mat}_N(A) / \mathcal{E} \cong p(A \otimes \mathbb{C}^N)
\end{align*}
\]
Example. Podleś 2-sphere S^2_q with generators $a, a^*, b = b^*$ subject to the relations

$$aa^* + q^{-4}b^2 = 1, \quad a^* a + b^2 = 1; \quad ab = q^{-2}ba, \quad a^* b = q^2 ba^*, \quad q \in \mathbb{R}^+$$

The matrix

$$p_q := \frac{1}{2} \begin{pmatrix} 1 + q^{-2}b & q a \\ q^{-1}a^* & 1 - b \end{pmatrix} \in \text{Mat}(2, S^2_q)$$

is an idempotent \twoheadrightarrow vector bundle over S^2_q (monopole)

(p_q is the Bott projection in the classical limit $q = 1$).
Example. Podleś 2-sphere S^2_q with generators $a, a^*, b = b^*$ subject to the relations

$$aa^* + q^{-4}b^2 = 1, \quad a^*a + b^2 = 1; \quad ab = q^{-2}ba, \quad a^*b = q^2ba^*, \quad q \in \mathbb{R}^+$$

The matrix

$$pq := \frac{1}{2} \begin{pmatrix} 1 + q^{-2}b & qa \\ qa^* & 1 - b \end{pmatrix} \in \text{Mat}(2, S^2_q)$$

is an idempotent \leadsto vector bundle over S^2_q (monopole) (pq is the Bott projection in the classical limit $q = 1$).

- notion of equivalence of idempotents \leadsto K-theory;
- topological invariants (via Connes-Chern pairing);
- purely algebraic def. of differential calculus $(\Omega^n A, d)$ on a (nc) algebra A;
- connection on \mathcal{E} is $\nabla : \mathcal{E} \to \mathcal{E} \otimes_A \Omega^1 A$ satisfying Leibniz rule (for \mathcal{E} finite projective module, always \exists Grassmann connection: $\nabla := pd$);
- ∇^2 curvature \leadsto gauge theories on NC spaces.
Symmetries: from groups to Hopf algebras.

G group of matrices ($G = SL(n, \mathbb{C}),\ SO(n, \mathbb{C}), \ldots$)

\[
\begin{align*}
\mu : G \times G &\to G, \ (g, h) \mapsto gh \\
e &\in G \\
\text{inv} : G &\to G, \ g \mapsto g^{-1}
\end{align*}
\]

$\mapsto \mathcal{O}(G)$ is a Hopf algebra: unital algebra H with

\[
\Delta : H \to H \otimes H \text{ coproduct } , \quad h \mapsto h_{(1)} \otimes h_{(2)}
\]

$\varepsilon : H \to \mathbb{C} \text{ counit}$

$S : H \to H \text{ antipode}$

satisfying prop. 1 – 3 below.

indeed the group structure induces on $H := \mathcal{O}(G)$ the maps

\[
\Delta = \mu^* \quad \varepsilon = \text{ev}_e \quad S = \text{inv}^*
\]

1. μ associative $\Rightarrow (\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$

2. $ge = g = eg$ $\Rightarrow (\varepsilon \otimes id)\Delta = id = (id \otimes \varepsilon)\Delta$

3. $gg^{-1} = e = g^{-1}g$ $\Rightarrow m(S \otimes id)\Delta = \varepsilon(1) = m(id \otimes S)\Delta$
The theory of Hopf algebras has its roots in algebraic topology (Hopf ’40s, Sweedler ’60s). Later in the 80’s: quantum group theory (Faddeev-Reshetikhin-Takhtajan, Drinfeld, Woronowicz, Majid,...).

- Coordinate algebras of quantum groups (FRT bialgebras): $SO_q(n)$, $U_q(n)$, $Sp_q(2n)$, ..., $SU_q(2)$ (Woronowicz)
- Quantized universal enveloping algebras (Drinfeld-Jimbo algebras): $U_q(g)$
The theory of Hopf algebras has its roots in algebraic topology (Hopf ’40s, Sweedler ’60s). Later in the 80’s: quantum group theory (Faddeev-Reshetikhin-Takhtajan, Drinfeld, Woronowicz, Majid,...).

- Coordinate algebras of quantum groups (FRT bialgebras): \(SO_q(n), \ U_q(n), \ Sp_q(2n),\ldots\); \(SU_q(2)\) (Woronowicz)
- Quantized universal enveloping algebras (Drinfeld-Jimbo algebras): \(\mathcal{U}_q(\mathfrak{g})\)

Definition

Let \(H\) be a Hopf algebra, an \(H\)-comodule algebra is an algebra \(A\) together with an algebra morphism \(\delta : A \to A \otimes H\) (coaction) such that

\[(\Delta \otimes \text{id})\delta = (\text{id} \otimes \delta)\delta\ , \ (\varepsilon \otimes \text{id})\delta = \text{id}\]

\(G\)-spaces: \(\alpha : X \times G \to X\) action dualizes to \(\delta := \alpha^* : \mathcal{C}(X) \to \mathcal{C}(X) \otimes \mathcal{C}(G)\)

\[x(gh) = (x(g))h \quad \sim \quad (\text{id} \otimes \Delta) \circ \delta = (\delta \otimes \text{id}) \circ \delta\]

\[(x)e = x \quad (\text{id} \otimes \varepsilon)\delta = \text{id}\]
Noncommutative gauge theories through twist deformation quantization

NC principal bundles & Hopf-Galois extensions [Kreimer, Takeuchi 1981]

- H Hopf algebra (structure group)
- A an H-comodule algebra (total space) with coaction the algebra map
 \[\delta : A \rightarrow A \otimes H, \ a \mapsto a_{(0)} \otimes a_{(1)} \]
- B algebra (base space), $B \simeq A^{\text{co}(H)} := \{ b \in A | \delta(b) = b \otimes 1_H \}$
- Principality condition: the algebra extension $B \subseteq A$ is Hopf-Galois:
 \[\chi = (m_A \otimes id)(id \otimes_B \delta) : A \otimes_B A \rightarrow A \otimes H \]
 \[a \otimes_B a' \mapsto a a'_{(0)} \otimes a'_{(1)} \]
 (canonical map) is bijective.
Example: the 2nd Hopf bundle (instanton bundle)

\[S^7 \times SU(2) \xrightarrow{\alpha} S^7 \]

\[S^4 \cong S^7 / SU(2) \]

\[A = O(S^7) \xleftarrow{\delta = \alpha^*} O(S^7) \otimes O(SU(2)) \]

\[B = O(S^4) \cong O(S^7)^{co H} \]

principal bundle

Hopf-Galois extension
Example: the 2nd Hopf bundle (instanton bundle)

\[S^7 \times SU(2) \xrightarrow{\alpha} S^7 \]
\[S^4 \cong S^7 / SU(2) \]

\[A = O(S_q^7) \xleftarrow{\delta} O(S_q^7) \otimes O(SU_q(2)) \]

\[B = O(S_q^4) \cong O(S_q^7)^{co H} \]

principal bundle \hspace{5cm} (family of) Hopf-Galois extensions
Example: the 2nd Hopf bundle (instanton bundle)

\[
S^7 \times SU(2) \xrightarrow{\alpha} S^7 \quad \quad \quad \quad A = \mathcal{O}(S^7_q) \xleftarrow{\delta} \mathcal{O}(S^7_q) \otimes \mathcal{O}(SU_q(2))
\]

\[
S^4 \cong S^7 / SU(2) \quad \quad \quad \quad B = \mathcal{O}(S^4_q) \cong \mathcal{O}(S^7_q)^{co H}
\]

principal bundle \quad \quad \quad \quad (family of) Hopf-Galois extensions

- various constructions on different noncommutative spheres, e.g.
 - from FRT-bialgebras with S^7_q as quantum homog. space of $\mathcal{O}(Sp_q(2))$. Here $q \in \mathbb{R}$, with $q = 1$ classical case. [Landi, P., Reina 2006]
 - or isospectral deformations $\mathcal{O}(S^m_{\Theta})$. Here $\Theta \in \text{Mat}(n, \mathbb{R})$, $m = 2n, 2n + 1$ antisymmetric, with $\Theta = 0$ classical case. [Landi, Brain, P., Reina, van Suijlekom, ... 2005–]
- monopole bundle $S^3 \rightarrow S^2$ [Brzezinski, Majid, 1993]
- associated vector bundles $p = p^2$ and (instanton) connections $\nabla = pd$.
use the theory of Drinfeld to deform algebra extensions into new algebra extensions in such a way to preserve the condition to be Hopf-Galois, i.e. the invertibility of the canonical map

$$\chi : A \otimes_B A \rightarrow A \otimes H \in \text{Mor}(A, \mathcal{M}_A^H)$$

deform (classical or nc) principal bundles into (nc) principal bundles.
Drinfel’d theory of twists

Definition

A linear map $\gamma : H \otimes H \rightarrow \mathbb{K}$ is called a **(unital) 2-cocycle** on H provided

$$
\gamma \left(g(1) \otimes h(1) \right) \gamma \left(g(2) h(2) \otimes k \right) = \gamma \left(h(1) \otimes k(1) \right) \gamma \left(g \otimes h(2) k(2) \right)
$$

$$
\gamma \left(h \otimes 1_H \right) = \varepsilon(h) = \gamma \left(1_H \otimes h \right)
$$

for all $g, h, k \in H$ (where $h(1) \otimes h(2) = \Delta(h)$ coproduct, sum understood).

Twisting Hopf-algebras:

Let γ be a convolution invertible 2-cocycle on (H, Δ, ε) with inverse $\tilde{\gamma}$. Then

$$
m_\gamma(h \otimes k) := h \cdot_\gamma k := \gamma \left(h(1) \otimes k(1) \right) h(2) k(2) \tilde{\gamma} \left(h(3) \otimes k(3) \right)
$$

defines a new associative product on (the \mathbb{K}-module underlying) H.

The resulting algebra $H_\gamma := (H, m_\gamma, 1_H)$ with unchanged coproduct Δ and counit ε and twisted antipode $S_\gamma := u_\gamma \ast S \ast \tilde{u}_\gamma$ is a Hopf algebra.
Deforming spaces carrying H as a symmetry:

\[(A, \delta^A) \in A^H \quad \rightsquigarrow \quad (A_\gamma, \delta^{A_\gamma}) \in A^{H_\gamma}\]

If \((A, \delta^A) \in A^H\) is a right H-comodule algebra with coaction

\[\delta^A : A \to A \otimes H, \quad a \mapsto a_{(0)} \otimes a_{(1)}\]

then A, with same coaction, is an H_γ-comodule algebra when endowed with the new product

\[a \otimes a' \mapsto a \blacktriangledown a' := a_{(0)} a'_{(0)} \tilde{\gamma} (a_{(1)} \otimes a'_{(1)})\]

We denote it by A_γ.
Twisting of Hopf-Galois extensions

Case 1: cocycle $\gamma : H \otimes H \to \mathbb{K}$ on the ‘structure group’ H

- $H \rightsquigarrow$ twisted Hopf-algebra H_γ

 with twisted product $h \cdot_{\gamma} k := \gamma(h(1) \otimes k(1)) h(2) k(2) \tilde{\gamma}(h(3) \otimes k(3))$

- $A \in \mathcal{A}^H \rightsquigarrow$ twisted comodule-algebra $A_\gamma \in \mathcal{A}^{H_\gamma}$ with same coaction and twisted product $a \cdot_{\gamma} a' := a(0) a'(0) \tilde{\gamma}(a(1) \otimes a'(1))$

- $B \subseteq A$ is unchanged!

- \rightsquigarrow apply to HG extensions:

\[
\begin{array}{c}
A \\
H \uparrow \\
B = A^{coH}
\end{array}
\quad \rightsquigarrow \gamma \text{ on } H \quad \rightsquigarrow
\begin{array}{c}
A_\gamma \\
H_\gamma \uparrow \\
B = A_\gamma^{coH_\gamma}
\end{array}
\]
Theorem

The following diagram in $A^\gamma \mathcal{M}^H_{A^\gamma}$ commutes:

\[
\begin{array}{ccc}
A^\gamma \otimes_B^\gamma A^\gamma & \xrightarrow{\chi^\gamma} & A^\gamma \otimes^\gamma (H^\gamma) \\
\downarrow \varphi_{A,A} & & \downarrow \text{id} \otimes^\gamma Q \\
(A \otimes_B^\gamma A)^\gamma & \xrightarrow{\Gamma(\chi) = \chi} & (A \otimes^\gamma H)^\gamma \\
\end{array}
\]

Corollary

The extension $B = A^{\text{co}H} \subset A$ is H-Galois \iff the extension $B \simeq A^{\text{co}H^\gamma}_{A^\gamma} \subset A^\gamma$ is H^γ-Galois.
Case 2: cocycle σ on an external Hopf algebra of symmetries

Let K be a Hopf algebra and σ a 2-cocycle on it.

Suppose that the total space A carries an additional structure of left K-comodule algebra $A \in {}^K A$ s.t. the coaction $\rho^A : A \to K \otimes A$ is H-equivariant:

$$(\rho^A \otimes \text{id})\delta^A = (\text{id} \otimes \delta^A)\rho^A$$

- σA still carries the coaction of H!
- the base space B is twisted! (while H is unchanged)

Theorem

$B \subseteq A$ is Hopf-Galois if and only if $\sigma B \subseteq \sigma A$ is Hopf-Galois.
EXAMPLE. The quantum Hopf bundle on the Connes-Landi sphere S^4_{θ}

- Let $K = O(\mathbb{T}^2)$ be the (commutative) algebra of functions on the 2-torus \mathbb{T}^2, \exists a left coaction of $O(\mathbb{T}^2)$ on the algebra $O(S^7)$:

$$\rho : O(S^7) \to O(\mathbb{T}^2) \otimes O(S^7), \quad z_i \mapsto \tau_i \otimes z_i$$

which is $O(SU(2))$-equivariant.

- Let σ be the exponential 2-cocycle on $O(\mathbb{T}^2)$ determined by setting

$$\sigma\left(t_j \otimes t_k\right) = \exp(i\pi \Theta_{jk}); \quad \Theta = \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix}; \quad \theta \in \mathbb{R}$$

The resulting bundle is the quantum Hopf bundle on the Connes-Landi sphere $O(S^4_{\theta})$ [Landi, van Suijlekom, 2005].

Remark: Its principality follows from the theory and doesn’t need to be proved!
Case 3: combination of deformations

Case 1. γ on H: $(A, H, B) \mapsto (A_\gamma, H_\gamma, B)$
Case 2. σ on K: $(A, H, B) \mapsto (\sigma A, H, \sigma B)$

- Let as before A be a right H-comodule algebra with an equivariant left coaction of K
- Let γ a 2-cocycle on H and σ a 2-cocycle on K

\[
\begin{array}{c}
A \\
\downarrow H \\
B
\end{array} \quad \xrightarrow{\text{double twisting}} \quad \begin{array}{c}
\sigma A_\gamma \\
\downarrow H_\gamma \\
\sigma B
\end{array}
\]

Theorem

$B \subseteq A$ is H-Hopf Galois if and only if $\sigma B \subseteq \sigma A_\gamma$ is H_γ-Hopf Galois.

Application: quantum homogeneous spaces
The gauge group

For a principal G-bundle $\pi : P \to X$, the group \mathcal{G}_P of gauge transformations is

- the subgroup of principal bundle automorphisms which are vertical:

 $\mathcal{G}_P = \text{Aut}_V(P) := \{ \varphi : P \to P; \varphi(pg) = \varphi(p)g, \pi \circ \varphi = \pi \}$

 with group law given by the composition of maps;

- the group of G-equivariant maps,

 $\mathcal{G}_P = \{ \sigma : P \to G; \sigma(pg) = g^{-1}\sigma(p)g \}$

 with pointwise product, $(\sigma \cdot \tau)(p) := \sigma(p)\tau(p) \in G$.

 (Locally, $x \in X \to g(x) \in G$)
The group of gauge transformations acts by pullback on the set A_P of connections of the bundle $\pi : P \to X$.

ω, η connection forms are gauge equivalent iff $\exists \varphi \in G_P$ such that $\varphi^* \omega = \eta$.

Indeed gauge equivalence defines an equivalence relation on A_P

$$\sim \Rightarrow \mathcal{M} = A_P/G_P \quad \text{moduli space of connections}$$
The group of gauge transformations acts by pullback on the set A_P of connections of the bundle $\pi : P \to X$.

ω, η connection forms are gauge equivalent iff $\exists \varphi \in G_P$ such that $\varphi^* \omega = \eta$.

Indeed gauge equivalence defines an equivalence relation on A_P

$$\sim \rightarrow \mathcal{M} = A_P/G_P \quad \text{moduli space of connections}$$

Aim: extend the notion of gauge transformations to the algebraic framework of (NC) Hopf-Galois extensions.

- [Brzeziński (1996)]

Problem: In the classical limit (commutative case) it doesn’t give the expected result, but a group bigger than the gauge group of the bundle....

- [Aschieri, Landi, P. (2018)] in the framework of coquasitriangular Hopf algebras
Coquasitriangular Hopf algebras

A Hopf algebra H is called coquasitriangular if it is endowed with a linear map

$$R : H \otimes H \to \mathbb{K} \quad \text{(universal r-form)}$$

(with some properties) such that $m_{op} = R \ast m \ast \bar{R}$, i.e. for all $h, k \in H$

$$kh = R\left(h_{(1)} \otimes k_{(1)}\right)h_{(2)}k_{(2)}\bar{R}\left(h_{(3)} \otimes k_{(3)}\right)$$

Examples

- commutative Hopf algebras with trivial universal r-form $R = \varepsilon \otimes \varepsilon$;
- the noncommutative FRT bialgebras $O_q(G)$ deformations of the algebras of coordinate functions on Lie groups;
- 2-cocycle deformations of coquasitriangular Hopf algebra (H, R) with universal r-form

$$R_\gamma := \gamma_{21} \ast R \ast \bar{\gamma} : h \otimes k \mapsto \gamma\left(k_{(1)} \otimes h_{(1)}\right)R\left(h_{(2)} \otimes k_{(2)}\right)\bar{\gamma}\left(h_{(3)} \otimes k_{(3)}\right)$$
Some useful facts from the theory of cqt Hopf algebras:

- The category $\mathcal{A}_H^H, \boxtimes$ of H-comodule algebras is monoidal: $(A, \delta^A), (C, \delta^C) \in \mathcal{A}_H^H$, then the H-comodule $A \otimes C$ with tensor product coaction
 \[\delta^{A\otimes C} : a \otimes c \mapsto a_{(0)} \otimes c_{(0)} \otimes a_{(1)} c_{(1)} \]
is a right H-comodule algebra,

\[A \boxtimes C := (A \otimes C, \bullet) \quad \text{(braided product algebra)} \]

when endowed with the product

\[(a \otimes c) \bullet (a' \otimes c') := a \, R_{C,A}(c \otimes a') c' = a \, a'_{(0)} \otimes c_{(0)} c' \, R\left(c_{(1)} \otimes a'_{(1)}\right) . \]

- The right H-comodule $\underline{H} = (H, \text{Ad})$ becomes an H-comodule algebra $\underline{H} = (H, \star, \text{Ad})$ when endowed with the product

\[h \star k := h_{(2)} k_{(2)} R\left(S(h_{(1)}) h_{(3)} \otimes S(k_{(1)})\right) \]

$(\underline{H}, \star, \eta, \Delta, \epsilon, S, \text{Ad})$ is a braided Hopf algebra (associated with H).
Hopf-Galois extensions for coquasitriangular Hopf algebras and their gauge groups. [P. Aschieri, G. Landi, C.P. (2018)]

Theorem

Let \((H, R)\) be a coquasitriangular Hopf algebra and \(A \in A_{qc}^{(H,R)}\) a quasi-commutative \(H\)-comodule algebra. Let \(B \subseteq Z(A)\) be the corresponding subalgebra of coinvariants. Then the canonical map

\[
\chi = (m \otimes \text{id}) \circ (\text{id} \otimes_B \delta^A) : A \otimes_B A \longrightarrow A \otimes H, \\
\quad a' \otimes_B a \longmapsto a' a_{(0)} \otimes a_{(1)}
\]

is an algebra map, thus a morphism in \(A^H\).

Definition

Let \((H, R)\) be a coquasitriangular Hopf algebra. A right \(H\)-comodule algebra \(A\) is quasi-commutative (with respect to the universal \(r\)-form \(R\)), \(A \in A_{qc}^{(H, R)}\) if

\[
m_A = m_A \circ R_{A,A}, \quad ac = c_{(0)} a_{(0)} R(a_{(1)} \otimes c_{(1)}) \quad a, c \in A
\]
Examples

- Clearly, for \((H, \varepsilon \otimes \varepsilon)\), every commutative algebra \(A \in A^H\) is quasi-commutative.
- Twist deformations \(A_{\gamma} \in A^{H_{\gamma}}\) of quasi-commutative algebras \(A\) via a 2-cocycle on \(H\) are quasi-commutative algebras.
- A main example of quasi-commutative comodule algebra is the \(H\)-comodule algebra \((H, \star, \text{Ad})\) associated with a cotriangular Hopf algebra \((H, R)\).
- \(H = \mathcal{O}(GL_q(2))\) is coquasitriangular with (not cotriangular) universal \(r\)-form

\[
R(u_{ij} \otimes u_{kl}) = q^{-1}R^{ik}_{jl}, \quad R(D^{-1} \otimes u_{ij}) = R(u_{ij} \otimes D^{-1}) = q \delta_{ij},
\]

The quantum plane \(\mathcal{O}(\mathbb{C}_q^2) = \mathbb{C}[x, x_2]/\langle x_1 x_2 - q x_2 x_1 \rangle\) is a quasi-commutative \(\mathcal{O}(GL_q(2))-\)comodule algebra with coaction \(\delta(x_i) = \sum_j x_j \otimes u_{ji}\).
The gauge group of a (coquasi\(\triangle\)) Hopf-Galois extension.

Let \(B \subseteq A \in \mathcal{A}_{qc}^{(H,R)}\) be an \(H\)-Hopf-Galois extension, with \(H\) coquasitriangular.

Theorem

The \(K\)-module of left \(B\)-module, right \(H\)-comodule algebra morphisms

\[
\text{Aut}_V(A) := \text{Hom}_{BAH}(A,A) = \{ \mathcal{F} \in \text{Hom}_{AH}(A,A), \text{such that } \mathcal{F}|_B = \text{id}\}
\]

is a group with respect to map composition \(\mathcal{F} \cdot G := G \circ \mathcal{F}\).
The gauge group of a (coquasi\(\Delta\)) Hopf-Galois extension.

Let \(B \subseteq A \in \mathcal{A}_{qc}^{(H,R)}\) be an \(H\)-Hopf-Galois extension, with \(H\) coquasitriangular.

Theorem

The \(\mathbb{K}\)-module of left \(B\)-module, right \(H\)-comodule algebra morphisms

\[
\text{Aut}_V(A) := \text{Hom}_{B,\mathcal{A}_H}(A, A) = \{F \in \text{Hom}_{\mathcal{A}_H}(A, A), \text{such that } F|_B = \text{id}\}
\]

is a group with respect to map composition \(F \cdot G := G \circ F\).

Theorem

The \(\mathbb{K}\)-module of \(H\)-equivariant algebra maps \(H \rightarrow A\)

\[
\mathcal{G}_A := \text{Hom}_{\mathcal{A}_H}(H, A)
\]

is a group with respect to the convolution product, with inverse \(\overline{f} := f \circ S\) for \(f \in \text{Hom}_{\mathcal{A}_H}(H, A)\). Moreover, the groups \((\mathcal{G}_A, \ast)\) and \((\text{Aut}_V(A), \cdot)\) are isomorphic.
Twisting gauge groups

Theorem

Let $B = A^{coH} \subseteq A$ be a Hopf-Galois extension and γ a 2-cocycle on H, with H coquasitriangular and $A \in A_{qc}^{(H,R)}$. The gauge group $G_{A,\gamma}$ of the twisted Hopf-Galois extension $B = A^{coH,\gamma} \subseteq A_\gamma \in A_{qc}^{(H,\gamma,R,\gamma)}$ is isomorphic to the gauge group G_A of the initial Hopf-Galois extension.
Twisting gauge groups

Theorem

Let $B = A^{coH} \subseteq A$ be a Hopf-Galois extension and γ a 2-cocycle on H, with H coquasitriangular and $A \in A_{qc}^{(H,R)}$. The gauge group $\mathcal{G}_{A,\gamma}$ of the twisted Hopf-Galois extension $B = A^{coH,\gamma} \subseteq A_{\gamma} \in A_{qc}^{(H'_{\gamma},R_{\gamma})}$ is isomorphic to the gauge group \mathcal{G}_{A} of the initial Hopf-Galois extension.

Next

- gauge group of a Hopf-Galois extension obtained by twisting for a 2-cocycle on an external Hopf algebra of symmetries K (e.g. instanton bundle on Connes-Landi sphere S^4_θ)

- Gauge group of a generic Hopf-Galois extension? Group or Hopf algebra?