Introduction
Variational integrators
Nonholonomic integrators
Lie group integrators

Short talk: High-order geometric methods for nonholonomic mechanical systems.

Rodrigo T. Sato Martín de Almagro

Supervisor:
David Martín de Diego

Sept, 2018 - XXVII IFWGP

The author has been partially supported by Ministerio de Economía, Industria y Competitividad (MINEICO, Spain) under grants MTM 2015-64166-C2-2P, MTM 2016-76702-P.
Table of Contents

1. Introduction
2. Variational integrators
 - High-order variational integrators
3. Nonholonomic integrators
4. Lie group integrators
Table of Contents

1 Introduction

2 Variational integrators
 • High-order variational integrators

3 Nonholonomic integrators

4 Lie group integrators
Mechanical systems

- Described via Lagrangian or Hamiltonian formulation
- Built-in geometric properties (Manifold structure of configuration space, symplecticity)
- Built-in conservation laws due to symmetries (Noether theorem)

Question 1
Can we find numerical methods that respect / preserve these?
Mindful integration

As it turns out, mostly yes.

Structure preserving algorithms ([Hairer], [Sanz-Serna], [Munthe-Kaas], ...)

- We can try to respect the manifold structure of the configuration space.
- We can preserve at least first or second order invariants (energy, symplectic form).

For mechanical systems we take special interest in a set of constant step-size methods called *symplectic methods*.
Symplectic integrators

Why do we like symplectic integrators?

- Good qualitative and quantitative behaviour.
Why do we like symplectic integrators?

- Good qualitative and quantitative behaviour.
- Preserve state-space properties (symplecticity).
Why do we like symplectic integrators?

- Good qualitative and quantitative behaviour.
- Preserve state-space properties (symplecticity).
- Energy not exactly preserved... [Ge & Marsden]
Why do we like symplectic integrators?

- Good qualitative and quantitative behaviour.
- Preserve state-space properties (symplecticity).
- Energy not exactly preserved... [Ge & Marsden]
- ... but good long-term energy behaviour.

Figure 1. Energy computed with variational Newmark method.

Figure 2. Nonholonomic integrators.

Figure 3. Area preservation of numerical methods for the pendulum; same initial sets as in Fig. 2.2.

Example 3.2. We consider the pendulum problem of Example 2.5 with the same initial conditions. If we take initial conditions $(\dot{\theta} = \omega, \theta = \gamma)$, we compute several steps with step size $h=\pi/2$ for the first order methods, and $h=\pi/4$ for the second order methods (right column): explicit Euler method (I.1.5), symplectic Euler method (I.1.9), the implicit midpoint rule (the right one), the Störmer–Verlet scheme (I.1.17), and the implicit midpoint rule for the derivative.

Introduction

Variational integrators
Nonholonomic integrators
Lie group integrators

Symplectic integrators
Why do we like symplectic integrators?

- Good qualitative and quantitative behaviour.
- Preserve state-space properties (symplecticity).
- Energy not exactly preserved... [Ge & Marsden]
- ... but good long-term energy behaviour.

How come energy behaves so well?

Theorems ([Moser], [Benettin & Giogilli], [Tang], [Murua]...) warrant that symplectic integrators are integrating exactly some existing Hamiltonian system that is close to the original one.
Why do we like symplectic integrators?
- Good qualitative and quantitative behaviour.
- Preserve state-space properties (symplecticity).
- Energy not exactly preserved... [Ge & Marsden]
- ... but good long-term energy behaviour.

How come energy behaves so well?
Theorems ([Moser], [Benettin & Giogilli], [Tang], [Murua]...) warrant that symplectic integrators are integrating exactly some existing Hamiltonian system that is close to the original one.

Question 2
How do we build them?
Table of Contents

1 Introduction

2 Variational integrators
 • High-order variational integrators

3 Nonholonomic integrators

4 Lie group integrators
Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

- Substitute continuous state space with discrete one.
Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

- Substitute continuous state space with discrete one.

Variational integrators are always symplectic.
Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)
- Substitute continuous state space with discrete one.
- Build a discrete analogue of Hamilton’s principle.
Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

- Substitute continuous state space with discrete one.
- Build a discrete analogue of Hamilton’s principle.
- Derive equations of motion and conserved quantities from the principle.
Generating symplectic integrators easily

Variational integrators are always symplectic.

Idea ([Veselov], [Suris], [Marsden & West]...)

- Substitute continuous state space with discrete one.
- Build a discrete analogue of Hamilton’s principle.
- Derive equations of motion and conservations from the principle.

Discrete equations of motion = Difference equations (a.k.a. **our integrator**).
Introduction
Variational integrators
Nonholonomic integrators
Lie group integrators

Building blocks

Exact discrete Lagrangian

\[L_d^e(q_0, q_1) = \int_0^h L(q(\tau), \dot{q}(\tau))d\tau \]

where \(q(t) \) solution of the Euler-Lagrange eqs. with fixed boundary values \(q(0) = q_0, q(h) = q_1 \).

Approximation. Discrete Lagrangian

\(L_d \) approx. of order \(r \) if \(\exists C_1 > 0, h_1 > h > 0 \) s.t.

\[\| L_d(q(0), q(h)) - L_d^e(q(0), q(h)) \| \leq C_1 h^{r+1} \]
Discrete principle and governing equations

Discrete Hamilton’s principle

Discrete curve \(q_d = \{ q_i \}_{i=0}^{N} \) solution of the discrete Lagrangian system ⇔ critical point of the functional:

\[
J_d(q_d) = \sum_{k=0}^{N-1} L_d(q_k, q_{k+1})
\]

Discrete Euler-Lagrange (DEL) equations

\[
D_2 L_d(q_{k-1}, q_k) + D_1 L_d(q_k, q_{k+1}) = 0, \forall k = 1, \ldots, N - 1
\]
Introduction
Variational integrators
Nonholonomic integrators
Lie group integrators

High-order variational integrators

Connection with Hamiltonian mechanics

Discrete fibre derivatives

\[\mathbb{F}L_d^+ : \quad Q \times Q \rightarrow T^* Q \]
\[(q_0, q_1) \mapsto (q_1, p_1 \equiv D_2 L_d(t_0, q_0, q_1)) \]

\[\mathbb{F}L_d^- : \quad Q \times Q \rightarrow T^* Q \]
\[(q_0, q_1) \mapsto (q_0, p_0 \equiv -D_1 L_d(t_0, q_0, q_1)) \]

These provide interpretation of DEL equations as matching of momenta:

\[p_k^- = D_2 L_d(q_{k-1}, q_k) = -D_1 L_d(q_k, q_{k+1}) = p_k^+ \]
Theorem. Variational error [Marsden & West, Patrick & Cuell]

If \tilde{F}_{L_d} Hamiltonian map of an order r discrete Lagrangian L_d, then

$$\tilde{F}_{L_d} = \tilde{F}_{L_d}^e + O(h^{r+1}).$$
The starting point

Hamilton-Pontryagin action

\[(q, v, p) : [a, b] \subset \mathbb{R} \rightarrow TQ \oplus T^* Q, \ C^1([a, b]) \text{ curve with } C^2([a, b]) \text{ base component and fixed boundary values } q(a) = q_a, \ q(b) = q_b. \]

\[\mathcal{J}_{HP}(q, v, p) = \int_0^h \left[L(q(t), v(t)) + \langle p(t), \dot{q}(t) - v(t) \rangle \right] dt\]

Dynamical equations

\[\frac{dp(t)}{dt} = D_1L(q(t), v(t)), \]
\[p(t) = D_2L(q(t), v(t)), \]
\[\frac{dq(t)}{dt} = v(t), \ \forall t \in [0, h].\]
Discretizing the action

Discrete Hamilton-Pontryagin action

\[
(\mathcal{J}_{\mathcal{HP}})_d = \sum_{k=0}^{N-1} \sum_{i=1}^{s} hb_i \left[L \left(Q_k^i, V_k^i \right) + \left\langle p_k^i, \frac{Q_k^i - q_k}{h} - \sum_{j=1}^{s} a_{ij} V_k^j \right\rangle + \left\langle p_{k+1}, \frac{q_{k+1} - q_k}{h} - \sum_{j=1}^{s} b_j V_k^j \right\rangle \right]
\]

where \((a_{ij}, b_j)\) coefficients of a Runge-Kutta (RK) method.
Discrete dynamics in T^*Q

Discrete dynamical equations: Symplectic partitioned RK methods

\[
q_{k+1} = q_k + h \sum_{j=1}^{s} b_j V^j_k, \quad p_{k+1} = p_k + h \sum_{i=1}^{s} \hat{b}_j W^j_k,
\]

\[
Q^i_k = q_k + h \sum_{j=1}^{s} a_{ij} V^j_k, \quad P^i_k = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W^j_k,
\]

\[
W^i_k = D_1 L(Q^i_k, V^i_k), \quad P^i_k = D_2 L(Q^i_k, V^i_k),
\]

where $(\hat{a}_{ij}, \hat{b}_j)$ satisfy $b_i \hat{a}_{ij} + \hat{b}_j a_{ji} = b_i \hat{b}_j$ and $\hat{b}_i = b_i$.
Discrete dynamics in TQ

Discrete dynamical equations: Symplectic partitioned RK methods

\[
q_{k+1} = q_k + h \sum_{j=1}^{s} b_j V_k^j, \quad p_{k+1} = p_k + h \sum_{i=1}^{s} \hat{b}_j W_k^j, \\
Q_k^i = q_k + h \sum_{j=1}^{s} a_{ij} V_k^j, \quad P_k^i = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W_k^j, \\
W_k^i = D_1 L(Q_k^i, V_k^i), \quad P_k^i = D_2 L(Q_k^i, V_k^i), \\
p_k = D_2 L(q_k, v_k), \quad p_{k+1} = D_2 L(q_{k+1}, v_{k+1}),
\]
Table of Contents

1. Introduction

2. Variational integrators
 - High-order variational integrators

3. Nonholonomic integrators

4. Lie group integrators
Nonholonomic mechanics

Nonholonomic Lagrangian system

\((L, Q, N)\) with \(N\), constrain manifold with \(i_N : N \leftrightarrow TQ\). Locally described by null-set of \(\Phi : TQ \rightarrow \mathbb{R}^m, \ m = \text{codim}_{TQ} N\).

Dynamical equations

\[
\begin{cases}
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}^i} \right) - \frac{\partial L}{\partial q^i} = \left\langle \lambda, \frac{\partial \Phi}{\partial q^i} \right\rangle, \\
\Phi(q, \dot{q}) = 0
\end{cases}
\]

NON-VARIATIONAL (NOR SYMPLECTIC)!! Obtained via Chetaev’s principle. \(\lambda\) are Lagrange multipliers.

Should we throw away our variational integrators?
No, we can still build from the variational substrate. Previous attempts by [de León, Martín de Diego & Santamaría], [Cortés & Martínez], [Ferraro, Iglesias & Martín de Diego], [Jay]...

Idea

Somehow construct discrete nonholonomic fibre derivatives $\mathbb{F} \left(L^N_d \right)^\pm : Q \times Q \to M$, where $M = \mathbb{F} L^N (N)$ and $L^N = L \circ i_N$.

Augmented point of view

Easier to build $\Gamma^\pm_d : Q \times \Lambda \times Q \times \Lambda \to T^* Q \times \Lambda$, where $\Lambda \cong \mathbb{R}^m$, and find λ_0, λ_1 s.t. $\Gamma^\pm_d (q_0, \lambda_0, q_1, \lambda_1) \in T^* Q|_M \times \Lambda$.
Discrete nonholonomic mechanics II

For a certain family of RK methods \((a_{ij}, b_j)\) (Lobatto-type):

Nonholonomic integrator

\[
q_{k+1} = q_k + h \sum_{i=1}^{s} b_i V^i_k, \quad p_{k+1} = p_k + h \sum_{i=1}^{s} \hat{b}_i W^i_k ,
\]

\[
Q^i_k = q_k + h \sum_{j=1}^{s} a_{ij} V^j_k, \quad P^i_k = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W^j_k ,
\]

\[
W^i_k = D_1 L(Q^i_k, V^i_k) + \left< \Lambda^i_k, D_2 \Phi(Q^i_k, V^i_k) \right>, \quad P^i_k = D_2 L(Q^i_k, V^i_k),
\]

\[
\Psi(q^i_k, p^i_k) = 0
\]

where \((\hat{a}_{ij}, \hat{b}_j)\) satisfy \(b_i \hat{a}_{ij} + \hat{b}_j a_{ji} = b_i \hat{b}_j\) and \(\hat{b}_i = b_i\) and \(\Psi = \Phi \circ FL^{-1}\).

This generates a well-defined nonholonomic Hamiltonian flow

\[
\tilde{F}_{L_d}^{\Lambda} : T^* Q|_M \times \Lambda \rightarrow T^* Q|_M \times \Lambda, (q_0, p_0, \lambda_0) \mapsto (q_1, p_1, \lambda_1).
\]
Nonholonomic integrator

\[q_{k+1} = q_k + h \sum_{i=1}^{s} b_i V_k^i, \]

\[p_{k+1} = p_k + h \sum_{i=1}^{s} \hat{b}_i W_k^i, \]

\[Q_k^i = q_k + h \sum_{j=1}^{s} a_{ij} V_k^j, \]

\[P_k^i = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W_k^j, \]

\[W_k^i = D_1 L(Q_k^i, V_k^i) + \left\langle \Lambda_k^i, D_2 \Phi(Q_k^i, V_k^i) \right\rangle, \]

\[P_k^i = D_2 L(Q_k^i, V_k^i), \]

\[q_k^i = Q_k^i, \]

\[p_k^i = p_k + h \sum_{j=1}^{s} a_{ij} W_k^j, \]

\[p_k = D_2 L(q_k, v_k), \]

\[p_k^i = D_2 L(q_k^i, v_k^i) \]

\[\Phi(q_k^i, v_k^i) = 0 \]
Key players

\[Q^i_k = q_k + h \sum_{j=1}^{s} a^j_{ij} V^j_k, \quad P^i_k = p_k + h \sum_{j=1}^{s} \hat{a}^j_{ij} W^j_k, \quad p^i_k = p_k + h \sum_{j=1}^{s} a^j_{ij} W^j_k \]
Key players

\[Q^i_k = q_k + h \sum_{j=1}^{s} a_{ij} V^j_k, \quad P^i_k = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W^j_k, \quad p^i_k = p_k + h \sum_{j=1}^{s} a_{ij} W^j_k \]
Key players

\[Q^i_k = q_k + h \sum_{j=1}^{s} a_{ij} V^j_k, \quad P^i_k = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W^j_k, \quad p^i_k = p_k + h \sum_{j=1}^{s} a_{ij} W^j_k. \]
Discrete nonholonomic mechanics IV

Key players

\[Q_k^i = q_k + h \sum_{j=1}^{s} a_{ij} V_k^j, \quad P_k^i = p_k + h \sum_{j=1}^{s} \hat{a}_{ij} W_k^j, \quad p_k^i = p_k + h \sum_{j=1}^{s} a_{ij} W_k^j \]
Discrete nonholonomic mechanics V
Unfortunately, the variational error theorem does not apply. We need to prove order using numerical analysis techniques.

Theorem. Global error

If we use an s-stage member of the Lobatto-type family [...] the order of the nonholonomic Hamiltonian flow generated by the former integrator is $r = 2s - 2$ in M thus achieving parity with the expected variational error.
Table of Contents

1. Introduction

2. Variational integrators
 - High-order variational integrators

3. Nonholonomic integrators

4. Lie group integrators
The starting point (again)

Hamilton-Pontryagin action on Lie groups

\[(g, \nu, p) : [a, b] \subset \mathbb{R} \rightarrow TG := TG \oplus T^* G.\]

\[\mathcal{J}_{HP}(g, \nu, p) = \int_0^h \left[L(g(t), \nu(t)) + \langle p(t), \dot{g}(t) - \nu(t) \rangle \right] dt\]

Dynamical equations

\[\frac{dp(t)}{dt} = D_1 L(g(t), \nu(t)),\]
\[p(t) = D_2 L(g(t), \nu(t)),\]
\[\frac{dg(t)}{dt} = \nu(t), \quad \forall t \in [0, h].\]
Partially reduced case

Reduced Hamilton-Pontryagin action

\[(g, \eta, \mu) : [a, b] \subset \mathbb{R} \rightarrow G \times \mathfrak{g} \times \mathfrak{g}^*, \ell : G \times \mathfrak{g} \rightarrow \mathbb{R}.\]

\[\mathcal{J}_{\mathcal{H}P}(g, \eta, \mu) = \int_{0}^{h} \left[\ell(g(t), \eta(t)) + \langle \mu(t), g^{-1}(t) \dot{g}(t) - \eta(t) \rangle \right] dt\]

Reduced Dynamical equations

\[\frac{d\mu(t)}{dt} = \text{ad}_{\eta(t)}^* \mu(t) + \left(L_{g(t)}\right)^* D_1 \ell(g(t), \eta(t)),\]

\[\mu(t) = D_2 L(g(t), \eta(t)),\]

\[\frac{dg(t)}{dt} = \left(L_{g(t)}\right)_* \eta(t), \quad \forall t \in [0, h].\]
Assume $L_{h^{-1}}g \in U_e$ and let $\tau : g \rightarrow U_e \subset G$ be a retraction.

\[
(\xi, \eta, \mu) = T_{L_{h^{-1}}g} \tau^{-1} T_g L_{h^{-1}}(g, v_g, p_g)
\]
\[
= (\tau^{-1}(L_{h^{-1}}g), d^L \tau^{-1}_{\tau^{-1}(L_{h^{-1}}g)} T_g L_{g^{-1}} v_g, (d^L \tau^{-1}_{\tau^{-1}(L_{h^{-1}}g)})^* (T_e L_g)^* p_g)
\]
\[
(g, v_g, p_g) = T_{\tau(\xi)} L_h T_{\xi} \tau(\xi, \eta, \mu)
\]
\[
= (L_h \tau(\xi), T_e L_h \tau(\xi) d^L \tau \eta, (T_{L_h \tau(\xi)} L(L_h \tau(\xi))^{-1})^* (d^L \tau^{-1}_\xi)^* \mu_{\xi})
\]

where $d^L \tau : g \times g \rightarrow g$ left-trivialized tangent of τ.
Variational Lie group integrators

Reduced discrete Hamilton-Pontryagin action

\[\ell : G \times \mathfrak{g} \to \mathbb{R} \text{ partially reduced Lagrangian.} \]

\[
(\mathcal{J}_{\mathcal{HP}})_d = \sum_{k=0}^{N-1} \sum_{i=1}^{s} h \left[b_i \ell \left(g_k \tau(\xi^i_k), d^L \tau \xi^i_k \eta^i_k \right) \right]
+ \left\langle \tilde{M}_k, \frac{1}{h} \xi^i_k \right.
- \sum_{j=1}^{s} a_{ij} \eta^j_k \left. \right\rangle
+ \left\langle \tilde{\mu}_{k+1}, \frac{1}{h} \tau^{-1}((g_k)^{-1} g_{k+1}) \right.
- \sum_{j=1}^{s} b_j \eta^j_k \left. \right\rangle \right]
\]
Variational Lie group integrators

Discrete dynamical equations

\[\xi_k^i = \tau^{-1} \left(g_k^{-1} G_k^i \right) = h \sum_{j=1}^{s} a_{ij} \eta_k^j, \]

\[\xi_{k+1}^i = \tau^{-1} \left(g_{k+1}^{-1} g_k \right) = h \sum_{j=1}^{s} b_j \eta_k^j, \]

\[M_k^i = \text{Ad}^*_{\tau(\xi_{k+1}^i)} \begin{bmatrix} \mu_k + h \sum_{j=1}^{s} b_j \left(d^L \tau^{-1} \xi_j^i - a_{ji} \frac{d^L \tau^{-1}}{b_i} \right) \end{bmatrix} \ast N_k^i, \]

\[\mu_{k+1} = \text{Ad}^*_{\tau(\xi_k^i)} \begin{bmatrix} \mu_k + h \sum_{j=1}^{s} b_j \left(d^L \tau^{-1} \xi_j^i \right) \end{bmatrix} \ast N_k^i, \]

\[N_k^i = \left(d^L \tau \xi_k^i \right) \ast L_{g_k \tau(\xi_k^i)}^* D_1 \ell \left(g_k \tau(\xi_k^i), d^L \tau \xi_k^i \eta_k^i \right), \]

\[M_k^i = \left(d^L \tau^{-1}_k \xi_{k+1}^i \right) \ast \begin{bmatrix} \Pi_k^i + h \sum_{j=1}^{s} b_j \frac{a_{ji}}{b_i} \left(dd^L \tau \xi_j^i \right) \ast (\eta_k^j, \Pi_k^j) \end{bmatrix}, \]

\[\Pi_k^i = \left(d^L \tau \xi_k^i \right) \ast D_2 \ell \left(g_k \tau(\xi_k^i), d^L \tau \xi_k^i \eta_k^i \right), \]

\[\mu_k = \left(d^L \tau^{-1}_k \xi_{k-1} \right) \ast \tilde{\mu}_k. \]
Second trivialized differential of τ

$\dd d^L \tau : \mathfrak{g} \times \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ linear map on second and third arguments s.t.:

$$\partial_{\xi} \left(d^L \tau_{\xi} \eta \right) \delta \xi = d^L \tau_{\xi} \dd d^L \tau_{\xi} (\eta, \delta \xi).$$

Appears naturally when considering elements from $T^{(2)} G$ represented by elements $(\xi, \eta, \zeta) \in T^{(2)} \mathfrak{g}$:

$$\left(\tau(\xi), \tau(\xi) d^L \tau_{\xi} \eta, \tau(\xi) d^L \tau_{\xi} \left[\zeta + \dd d^L \tau_{\xi} (\eta, \eta) \right] \right)$$
Nonholonomic Lie group integrators

Modified discrete dynamical equations

\[N^i_k = \left(d^L \tau_{\xi_k^i} \right)^* \left[L^*_{g_k \tau(\xi_k^i)} D_1 \ell \left(g_k \tau(\xi_k^i), d^L \tau_{\xi_k^i} \eta_k^i \right) \\
+ \left\langle \Lambda^i_k, D_2 \phi \left(g_k \tau(\xi_k^i), d^L \tau_{\xi_k^i} \eta_k^i \right) \right]\right] \]

\[g_k^i = G_k^i \]

\[\mu_k^i = \text{Ad}_{\tau(\xi_k^i)}^* \left[\mu_k + h \sum_{j=1}^{s} a_{ij} \left(d^L \tau_{\xi_k^j}^{-1} \right)^* N^j_k \right] \]

\[\psi \left(g_k^i, \mu_k^i \right) = 0 \]

where \(\phi : G \times g \rightarrow \mathbb{R} \) and \(\phi \circ F \ell^{-1} = \psi : G \times g^* \rightarrow \mathbb{R} \).

Convergence rates coincide with their vector space counterparts.
THANKS FOR YOUR ATTENTION!