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Adèles and idèles

Notation

Let k be a number field, O its ring of integers.

A place is an equivalence class of absolute values, called finite (whenever
they are non–archimedean) or infinite (otherwise) Let Pk be the set of
places of k .
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Adèles and idèles

Notation

Let k be a number field, O its ring of integers.

A place is an equivalence class of absolute values, called finite (whenever
they are non–archimedean) or infinite (otherwise) Let Pk be the set of
places of k .

Let p ∈ Pk (either finite or infinite). We’ve got:

a) kp, the completion (which must be R, C or a p–adic one).

b) Op = {α ∈ k∗
p | |α|p ≤ 1}, the ring of integers of kp.

c) Up = {α ∈ k∗
p | |α|p = 1}, the group of units
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Adèles and idèles

Adèles

The ring of adèles of k , noted Ak is

Ak =
{

(αp)p∈Pk
| αp ∈ Op for almost all p ∈ Pk

}
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This is also called the restricted product of the kp w.r.t Op ⊂ kp.

It is a ring (adding and multiplying componentwise).

J.M. Tornero (Universidad de Sevilla) idèles October 2009 4 / 68
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Adèles

The ring of adèles of k , noted Ak is

Ak =
{

(αp)p∈Pk
| αp ∈ Op for almost all p ∈ Pk

}

This is also called the restricted product of the kp w.r.t Op ⊂ kp.

It is a ring (adding and multiplying componentwise).

Easy example:

AQ = R× {(ap) | ap ∈ Qp and ap ∈ Zp for almost all p} .
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Adèles and idèles

Idèles (I)

The idèles of k , noted Ik , is the unit group of Ak (which would usually be
noted A∗

k).

They may also be described as the restricted product of k∗
p w.r.t. Up.
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The idèles of k , noted Ik , is the unit group of Ak (which would usually be
noted A∗

k).

They may also be described as the restricted product of k∗
p w.r.t. Up.

k →֒ kp induces a diagonal embedding

K ∗ →֒ Ik ,

associating a ∈ k∗ with (αp) which is a at each p-component
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Adèles and idèles

Idèles (I)

The idèles of k , noted Ik , is the unit group of Ak (which would usually be
noted A∗

k).

They may also be described as the restricted product of k∗
p w.r.t. Up.

k →֒ kp induces a diagonal embedding

K ∗ →֒ Ik ,

associating a ∈ k∗ with (αp) which is a at each p-component

Such elements are called principal idèles, they are a subgroup of Ik and the
quotient

Ck = Ik/k∗

is called the idèle class group. Its elements will be noted [α].
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Adèles and idèles

Idèles (II)

If S ⊂ Pk is a finite set of places, we call

ISk =
∏

p∈S

k∗
p ×

∏

p/∈S

Up

the group of S–idèles, which is obviously a subgroup of Ik .
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Adèles and idèles

Idèles (II)

If S ⊂ Pk is a finite set of places, we call

ISk =
∏

p∈S

k∗
p ×

∏

p/∈S

Up

the group of S–idèles, which is obviously a subgroup of Ik .

For instance, if S∞ is the set of infinite places

IS∞

k =
∏

p|∞

k∗
p ×

∏

p finite

Up,

where the first factors are either R∗ or C∗.
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Adèles and idèles

Idèles and FIdk

Let FIdk be the group of fractional ideals of k .
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We can define
Ik −→ FIdk

(αp) 7−→
∏

p finite pvp(αp)
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Adèles and idèles

Idèles and FIdk

Let FIdk be the group of fractional ideals of k .

We can define
Ik −→ FIdk

(αp) 7−→
∏

p finite pvp(αp)

It is a surjective homomorphism, with kernel IS∞

k .
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Adèles and idèles

Idèles and Clk

Therefore we have an isomorphism

Ik/IS∞

k ≃ FIdk .
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In this isomorphism principal idèles correspond to principal fractional
ideals, and viceversa. Hence

J.M. Tornero (Universidad de Sevilla) idèles October 2009 8 / 68



Adèles and idèles

Idèles and Clk

Therefore we have an isomorphism

Ik/IS∞

k ≃ FIdk .

In this isomorphism principal idèles correspond to principal fractional
ideals, and viceversa. Hence

Ik/
(

k∗ · IS∞

k

)

≃ Clk
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Adèles and idèles

Norm (I)

Let α = (αp) ∈ Ik . We define

|(αp)|p = |αp|p,
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Adèles and idèles

Norm (I)

Let α = (αp) ∈ Ik . We define

|(αp)|p = |αp|p,

and, subsequently,

|α| =
∏

p

|αp|p.

We can assume
p real −→ | · |
p complex −→ | · |2
p is over p −→ |p|p = 1/p
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Adèles and idèles

Norm (I)

Let α = (αp) ∈ Ik . We define

|(αp)|p = |αp|p,

and, subsequently,

|α| =
∏

p

|αp|p.

We can assume
p real −→ | · |
p complex −→ | · |2
p is over p −→ |p|p = 1/p

And, because of the product formula,

x ∈ k∗ =⇒ |x | = 1.
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Adèles and idèles

Norm (II)

We have defined then a norm mapping

| · | : Ik −→ R∗
+

which is a surjective group homomorphism (define an “inverse”).
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Adèles and idèles

Norm (II)

We have defined then a norm mapping

| · | : Ik −→ R∗
+

which is a surjective group homomorphism (define an “inverse”).

We call its kernel
I0k = {α ∈ Ik | |α| = 1}

which verifies k∗ ⊂ I0k .
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Adèles and idèles

Norm (II)

We have defined then a norm mapping

| · | : Ik −→ R∗
+

which is a surjective group homomorphism (define an “inverse”).

We call its kernel
I0k = {α ∈ Ik | |α| = 1}

which verifies k∗ ⊂ I0k .

Therefore we can consider a norm (induced, and identically noted) on the
idèle class group:

| · | : Ck −→ R∗
+

whose kernel, noted C 0
k will be of some interest.
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(A bit of) Topology of idèles

Topological groups

Topological groups are nice!
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(A bit of) Topology of idèles

Topological groups

Topological groups are nice!

They consist of a group endowed with a topology, in such a way that
product and inverse are continuous mappings.

Big advantange: 1 is (almost) all that matters for local (and sometimes
global) issues.
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(A bit of) Topology of idèles

Not really much choice

We want ISk to be open subsets (subgroups) of Ik (a good reason in a
while).
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(A bit of) Topology of idèles

Not really much choice

We want ISk to be open subsets (subgroups) of Ik (a good reason in a
while).

More specifically, we would like ISk to be open subgroups whenever
S∞ ⊂ S . But then

Theorem.– There exists a unique topology in Ik such that, if S∞ ⊂ S and
S is finite, ISk is open.
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(A bit of) Topology of idèles

Definition via neighbourhoods of 1

This topology, when defined by basic systems of neighbourhoods, is given
(at 1) by

∏

p∈S

Wp×
∏

p/∈S

Up
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(A bit of) Topology of idèles
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This topology, when defined by basic systems of neighbourhoods, is given
(at 1) by

∏

p∈S

Wp×
∏

p/∈S

Up

where Wp is a basic system of neighbourhoods of 1 ∈ kp, and S is finite,
S∞ ⊂ S .
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(A bit of) Topology of idèles

Definition via neighbourhoods of 1

This topology, when defined by basic systems of neighbourhoods, is given
(at 1) by

∏

p∈S

Wp×
∏

p/∈S

Up

where Wp is a basic system of neighbourhoods of 1 ∈ kp, and S is finite,
S∞ ⊂ S .

Equivalently we can take

N(S , ǫ) = {(αp) | |αp|p = 1 if p /∈ S , |αp− 1|p < ǫ if p ∈ S} .
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(A bit of) Topology of idèles

S–idèles are closed

Let p be a place. Then the projection

Ik
π−→ k∗

p

is continuous (it is in IS∞

k , therefore in 1, therefore in Ik).

J.M. Tornero (Universidad de Sevilla) idèles October 2009 14 / 68
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Let p be a place. Then the projection

Ik
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p

is continuous (it is in IS∞
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Then π−1 (Up) is closed.
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(A bit of) Topology of idèles

S–idèles are closed

Let p be a place. Then the projection

Ik
π−→ k∗

p

is continuous (it is in IS∞

k , therefore in 1, therefore in Ik).

Then π−1 (Up) is closed.

And hence so it is
ISk =

⋂

p/∈S

π−1 (Up) .

J.M. Tornero (Universidad de Sevilla) idèles October 2009 14 / 68



(A bit of) Topology of idèles

Locally compactness

Let S∞ ⊂ S and consider

ISk =
∏

p∈S

k∗
p ×

∏

p/∈S

Up.
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(A bit of) Topology of idèles

Locally compactness

Let S∞ ⊂ S and consider

ISk =
∏

p∈S

k∗
p ×

∏

p/∈S

Up.

The first factor is a finite product of locally compact spaces, while the
second is a product of compact spaces.
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(A bit of) Topology of idèles

Locally compactness

Let S∞ ⊂ S and consider

ISk =
∏

p∈S

k∗
p ×

∏

p/∈S

Up.

The first factor is a finite product of locally compact spaces, while the
second is a product of compact spaces.

Hence ISk is locally compact, and so it is Ik .
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(A bit of) Topology of idèles

So far, so good

Ik is a locally compact topological group.
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(A bit of) Topology of idèles

So far, so good

Ik is a locally compact topological group.

If S is finite, ISk is a closed subgroup.

If S∞ ⊂ S , ISk is an open subgroup.
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(A bit of) Topology of idèles

A bit more of idèles and FIdk

IS∞

k is open and closed, therefore {1} is open and closed in the quotient

space Ik/IS∞

k .
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(A bit of) Topology of idèles

A bit more of idèles and FIdk

IS∞

k is open and closed, therefore {1} is open and closed in the quotient

space Ik/IS∞

k .

Then Ik/IS∞

k must be a discrete space.

So, if we consider the discrete topology on FIdk , we have a
homeomorphism

Ik/IS∞

k ≃ FIdk .
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(A bit of) Topology of idèles

A bit more of norm

Remember that our norm homomorphism

| · | : Ik −→ R∗
+

was surjective.
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(A bit of) Topology of idèles

A bit more of norm

Remember that our norm homomorphism

| · | : Ik −→ R∗
+

was surjective.

But it is also continuous. It is in IS∞

k , therefore in 1, therefore in Ik .

Its “inverse” is continuous as well, henceforth we have a homeomorphism

Ik/I0k ≃ R∗
+.
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(A bit of) Topology of idèles

A bit more of k∗

Remember that k∗ could be viewed as a subgroup of Ik .

Proposition.– k∗ is a discrete closed subgroup of Ik .
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(A bit of) Topology of idèles

A bit more of k∗

Remember that k∗ could be viewed as a subgroup of Ik .

Proposition.– k∗ is a discrete closed subgroup of Ik .

The proof basically consists of showing that N(S∞, ǫ) ∩ k∗ = {1}, hence
k∗ is discrete.
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(A bit of) Topology of idèles

A bit more of k∗

Remember that k∗ could be viewed as a subgroup of Ik .

Proposition.– k∗ is a discrete closed subgroup of Ik .

The proof basically consists of showing that N(S∞, ǫ) ∩ k∗ = {1}, hence
k∗ is discrete.
As a corollary, we have a locally compact topology in Ck .
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(A bit of) Topology of idèles

A bit more of C 0
k

C 0
k = {[α] ∈ Ck | |[α]| = 1}

Proposition.– C 0
k is compact.
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(A bit of) Topology of idèles

A bit more of C 0
k

C 0
k = {[α] ∈ Ck | |[α]| = 1}

Proposition.– C 0
k is compact.

The proof chooses a big enough ρ > 0 such that any idèle of such norm is
k∗–congruent to another whose components are all of smaller norm (yes,
you can do that).
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(A bit of) Topology of idèles

A bit more of C 0
k

C 0
k = {[α] ∈ Ck | |[α]| = 1}

Proposition.– C 0
k is compact.

The proof chooses a big enough ρ > 0 such that any idèle of such norm is
k∗–congruent to another whose components are all of smaller norm (yes,
you can do that).

The set of such idèles is compact, so the original set of idèles with norm ρ
is also compact (closed subset) and it is homeomorphic to C 0

k .
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(A bit of) Topology of idèles

Why is important that C 0
k is compact? (I)

Remember we had
Ik/

(

k∗ · IS∞

k

)

≃ Clk
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(A bit of) Topology of idèles

Why is important that C 0
k is compact? (I)

Remember we had
Ik/

(

k∗ · IS∞

k

)

≃ Clk

Then, for an element in Clk we have a class [α] ∈ Ck modulo the
projection of IS∞

k .
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(A bit of) Topology of idèles

Why is important that C 0
k is compact? (I)

Remember we had
Ik/

(

k∗ · IS∞

k

)

≃ Clk

Then, for an element in Clk we have a class [α] ∈ Ck modulo the
projection of IS∞

k .

This means we can pick an idèle α on it in such a way that |α| = 1
(adjusting the norm at the infinite places). We have then a map

C 0
k −→ Clk

which is surjective.
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(A bit of) Topology of idèles

Why is important that C 0
k is compact? (II)

As C 0
k is compact, so is Clk (for the discrete topology), hence it must be

finite.
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(A bit of) Topology of idèles

Why is important that C 0
k is compact? (II)

As C 0
k is compact, so is Clk (for the discrete topology), hence it must be

finite.

Another corollary is:

Theorem (Dirichlet).– The group Uk has rank r + s − 1 (where r is the
number of real places and s is the number of complex places).
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(A bit of) Topology of idèles

Why is important that C 0
k is compact? (II)

As C 0
k is compact, so is Clk (for the discrete topology), hence it must be

finite.

Another corollary is:

Theorem (Dirichlet).– The group Uk has rank r + s − 1 (where r is the
number of real places and s is the number of complex places).

The proof is somehow more involved (lattices and so on).
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(A bit of) Topology of idèles

A word on open subgroups (I)

We will call a finite formal sum

m =
∑

p∈Pk

npp,

where
np = 0 almost always
np = 0, 1 if p is real
np = 0 if p is complex

a divisor.
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m =
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npp,

where
np = 0 almost always
np = 0, 1 if p is real
np = 0 if p is complex

a divisor.

Let us write supp(m) = {p | np 6= 0}.
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(A bit of) Topology of idèles

A word on open subgroups (I)

We will call a finite formal sum

m =
∑

p∈Pk

npp,

where
np = 0 almost always
np = 0, 1 if p is real
np = 0 if p is complex

a divisor.

Let us write supp(m) = {p | np 6= 0}.

Variants: modulus, module, formal product of places, replete divisor,...

Also (in fact, normally) written m =
∏

pnp .
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(A bit of) Topology of idèles

A word on open subgroups (II)

Let us define the following sets:
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(A bit of) Topology of idèles

A word on open subgroups (II)

Let us define the following sets:

If p ∈ supp(m) and it is non–archimedian, then

Wm(p) =
{

α ∈ k∗
p | α ≡ 1 mod pnp

}

= 1 + pnp .
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(A bit of) Topology of idèles

A word on open subgroups (II)

Let us define the following sets:

If p ∈ supp(m) and it is non–archimedian, then

Wm(p) =
{

α ∈ k∗
p | α ≡ 1 mod pnp

}

= 1 + pnp .

If p ∈ supp(m) and it is archimedian, then

Wm(p) = R∗
+.

J.M. Tornero (Universidad de Sevilla) idèles October 2009 24 / 68



(A bit of) Topology of idèles

Yet another word on open subgroups

Define now the subset:
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(A bit of) Topology of idèles

Yet another word on open subgroups

Define now the subset:

Im =





∏

p/∈supp(m)

k∗
p ×

∏

p∈supp(m)

Wm(p)



 ∩ Ik .
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(A bit of) Topology of idèles

Yet another word on open subgroups

Define now the subset:

Im =





∏

p/∈supp(m)

k∗
p ×

∏

p∈supp(m)

Wm(p)



 ∩ Ik .

That is, (α) such that
αp ∈ k∗

p for all p

αp ∈ Up for almost all p

αp ∈Wm(p) for all p ∈ supp(m)
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(A bit of) Topology of idèles

A penultimate word on open subgroups

Then we consider the sets

Wm = {(αp) ∈ Im | αp ∈ Up, for all p finite, p /∈ supp(m)}
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(A bit of) Topology of idèles

A penultimate word on open subgroups

Then we consider the sets

Wm = {(αp) ∈ Im | αp ∈ Up, for all p finite, p /∈ supp(m)}

In other words:

Wm =
∏

infinite p/∈supp(m)

k∗
p ×

∏

p∈supp(m)

Wm(p)×
∏

finite p/∈ supp(m)

Up

J.M. Tornero (Universidad de Sevilla) idèles October 2009 26 / 68



(A bit of) Topology of idèles

A penultimate word on open subgroups

Then we consider the sets

Wm = {(αp) ∈ Im | αp ∈ Up, for all p finite, p /∈ supp(m)}

In other words:

Wm =
∏

infinite p/∈supp(m)

k∗
p ×

∏

p∈supp(m)

Wm(p)×
∏

finite p/∈ supp(m)

Up

That is, (α) such that
αp ∈ k∗

p for all p infinte

αp ∈ Up for all p finite
αp ∈Wm(p) for all p ∈ supp(m)
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(A bit of) Topology of idèles

A last word on open subgroups

Wm is called the congruence subgroup of m.
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(A bit of) Topology of idèles

A last word on open subgroups

Wm is called the congruence subgroup of m.

Wm is an open subgroup of Ik .

AND
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(A bit of) Topology of idèles

A last word on open subgroups

Wm is called the congruence subgroup of m.

Wm is an open subgroup of Ik .

AND

Every open subgroup of Ik must contain some congruence subgroup Wm.
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Field extensions and idèles

The canonical embedding

Let K |k be a finite extension of number fields. Then we have a canonical
embedding

Ak −→ AK

(αp) 7−→ (αP), where αP = αp, whenever P|p
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Field extensions and idèles

The canonical embedding

Let K |k be a finite extension of number fields. Then we have a canonical
embedding

Ak −→ AK

(αp) 7−→ (αP), where αP = αp, whenever P|p

It is, in fact, an injective homomorphism which induces also an embedding
Ik →֒ IK .
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Field extensions and idèles

The canonical embedding

Let K |k be a finite extension of number fields. Then we have a canonical
embedding

Ak −→ AK

(αp) 7−→ (αP), where αP = αp, whenever P|p

It is, in fact, an injective homomorphism which induces also an embedding
Ik →֒ IK .

Remark.– If P, P′|p then for all α ∈ Ik , αP = αP′ (criterion for being in
Ik).
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Field extensions and idèles

Idèles and field isomorphisms

Let σ : L −→ K be a field isomorphism, P a place in L.
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Field extensions and idèles

Idèles and field isomorphisms

Let σ : L −→ K be a field isomorphism, P a place in L.

It induces an isomorphism (an isometry actually) σ : LP −→ KσP.

Idea: Take P–limits to σP–limits.
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Field extensions and idèles

Idèles and field isomorphisms

Let σ : L −→ K be a field isomorphism, P a place in L.

It induces an isomorphism (an isometry actually) σ : LP −→ KσP.

Idea: Take P–limits to σP–limits.

As for idèles is concerned α goes to σα, where

αP ∈ LP =⇒ (σα)σP = σ (αP) ∈ KσP.

J.M. Tornero (Universidad de Sevilla) idèles October 2009 29 / 68



Field extensions and idèles

Galois descent for idèles (I)

Let K |k be a Galois extension with Galois group G .
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Field extensions and idèles

Galois descent for idèles (I)

Let K |k be a Galois extension with Galois group G .

σ ∈ G is an automorphism of K , therefore induces an automorphism

σ : IK −→ IK ,

making IK a G–module.
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Field extensions and idèles

Galois descent for idèles (I)

Let K |k be a Galois extension with Galois group G .

σ ∈ G is an automorphism of K , therefore induces an automorphism

σ : IK −→ IK ,

making IK a G–module.

As usual:
IGK = {α ∈ IK | σα = α, ∀σ ∈ G}.
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Field extensions and idèles

Galois descent for idèles (II)

Theorem.– IGK = Ik .
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Field extensions and idèles

Galois descent for idèles (II)

Theorem.– IGK = Ik .

If α = (αP) ∈ IGK , then ασP = (σα)σP.
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Field extensions and idèles

Galois descent for idèles (II)

Theorem.– IGK = Ik .

If α = (αP) ∈ IGK , then ασP = (σα)σP.

Then, if we take σ ∈ Gal (KP|kp), σP = P, and then αP ∈ k∗
p.

For an arbitrary σ, it takes P into P′ which also divides p. Then α begin
fixed implies αP = αP′ , hence α ∈ Ik .
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Field extensions and idèles

Norm (revisited)

Take α ∈ IK , P ∈ PK (a place in K ).

Multiplication by αP is a kp–linear automorphism of KP, and its
determinant is set to be

NKP |kp
(αP) ∈ kp.
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Field extensions and idèles

Norm (revisited)

Take α ∈ IK , P ∈ PK (a place in K ).

Multiplication by αP is a kp–linear automorphism of KP, and its
determinant is set to be

NKP |kp
(αP) ∈ kp.

In fact, these local norms induce a global norm IK −→ Ik .

Let α ∈ IK , then
NK |k(α)p =

∏

P|p

NKP |kp
(αP)
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Field extensions and idèles

Norm (revisited)

Take α ∈ IK , P ∈ PK (a place in K ).

Multiplication by αP is a kp–linear automorphism of KP, and its
determinant is set to be

NKP |kp
(αP) ∈ kp.

In fact, these local norms induce a global norm IK −→ Ik .

Let α ∈ IK , then
NK |k(α)p =

∏

P|p

NKP |kp
(αP)

Proposition.– The set NK |k IK is an open and closed subgroup of Ik .
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Field extensions and idèles

The embedding of the idèle class groups

The embedding Ik →֒ IK takes clearly principal idèles into principal idèles.

J.M. Tornero (Universidad de Sevilla) idèles October 2009 33 / 68



Field extensions and idèles

The embedding of the idèle class groups

The embedding Ik →֒ IK takes clearly principal idèles into principal idèles.

Proposition.– If K |k is finite, then Ik →֒ IK induces an injection

Ck →֒ CK .
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Field extensions and idèles

The embedding of the idèle class groups

The embedding Ik →֒ IK takes clearly principal idèles into principal idèles.

Proposition.– If K |k is finite, then Ik →֒ IK induces an injection

Ck →֒ CK .

Mind that injectivity requires proving Ik ∩ K ∗ = k∗, which is not very
difficult taking L|k a Galois extension such that k ⊂ K ⊂ L.
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Field extensions and idèles

Norm on the idèle class group

Remark.– If x ∈ K ∗, then NK |k(x) has the same meaning as idèle in Ik
and as element of k∗ (therefore as idèle).
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Field extensions and idèles

Norm on the idèle class group

Remark.– If x ∈ K ∗, then NK |k(x) has the same meaning as idèle in Ik
and as element of k∗ (therefore as idèle).

Proposition.– The norm NK |k induces a norm map

NK |k : CK −→ Ck .
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Field extensions and idèles

Norm on the idèle class group

Remark.– If x ∈ K ∗, then NK |k(x) has the same meaning as idèle in Ik
and as element of k∗ (therefore as idèle).

Proposition.– The norm NK |k induces a norm map

NK |k : CK −→ Ck .

In fact, the set NK |kCK is an open and closed subgroup of Ck (easy from
the idèle case).
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Field extensions and idèles

Galois descent for idèle class group

Proposition.– Let K |k be Galois, G its Galois group. Then CK is a
G–module and CG

K = Ck .
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Field extensions and idèles

Galois descent for idèle class group

Proposition.– Let K |k be Galois, G its Galois group. Then CK is a
G–module and CG

K = Ck .

We begin with the following exact sequence

1→ K ∗ −→ IK −→ CK → 1

Then take G–fixed elements

1→ (K ∗)G −→ IGK −→ CG
K −→ H1(G , K ∗)
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Field extensions and idèles

Galois descent for idèle class group

Proposition.– Let K |k be Galois, G its Galois group. Then CK is a
G–module and CG

K = Ck .

We begin with the following exact sequence

1→ K ∗ −→ IK −→ CK → 1

Then take G–fixed elements

1→ (K ∗)G −→ IGK −→ CG
K −→ H1(G , K ∗)

And then, by Hilbert–Noether’s Theorem 90,

1→ k∗ −→ Ik −→ CG
K → 1.
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Field extensions and idèles

Here comes the cohomology!
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Field extensions and idèles

Here comes the cohomology!

End of Part I
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Field extensions and idèles

Here comes the cohomology!

End of Part I

Coffee? Anyone?
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Tate Cohomology

The set–up

Let M be a G–module (think of G a Galois group, M a number field).
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Tate Cohomology

The set–up

Let M be a G–module (think of G a Galois group, M a number field).

Define the G–norm:

NG (m) =
∏

g∈G

g(m), m ∈ M.
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Tate Cohomology

The set–up

Let M be a G–module (think of G a Galois group, M a number field).

Define the G–norm:

NG (m) =
∏

g∈G

g(m), m ∈ M.

And consider the groups

MG = {m ∈ M | g(m) = m, ∀g ∈ G}

IG (M) = 〈g(m) ·m−1 | m ∈ M, g ∈ G 〉
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Tate Cohomology

The Tate cohomology

We define (actually, Tate did) the Tate cohomology groups as:
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Tate Cohomology

The Tate cohomology

We define (actually, Tate did) the Tate cohomology groups as:

H r
T (G , M) =















H r (G , M) for r > 0
MG/NG (M) for r = 0
ker(NG )/IG (M) for r = −1
H−r−1(G , M) for r < −1
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Tate Cohomology

The Tate cohomology

We define (actually, Tate did) the Tate cohomology groups as:

H r
T (G , M) =















H r (G , M) for r > 0
MG/NG (M) for r = 0
ker(NG )/IG (M) for r = −1
H−r−1(G , M) for r < −1

It fits together homology and cohomology groups, via the induced
homomorphism

NG : H0 = M/IG (M) −→ MG
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Tate Cohomology

The Tate long sequence

One of the most useful tools related to Tate cohomology is the following:
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Tate Cohomology

The Tate long sequence

One of the most useful tools related to Tate cohomology is the following:

Proposition.– Let

1→ M ′ −→ M −→ M ′′ → 1

be a short exact sequence.
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Tate Cohomology

The Tate long sequence

One of the most useful tools related to Tate cohomology is the following:

Proposition.– Let

1→ M ′ −→ M −→ M ′′ → 1

be a short exact sequence.

There is a long exact sequence

... −→ H i−1
T (G , M ′′) −→ H i

T (G , M ′) −→ H i
T (G , M) −→

−→ H i
T (G , M ′′) −→ H i+1

T (G , M ′) −→ ...
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Tate Cohomology

The Herbrand quotient (I)

When G is a cyclic group, we have a special feature.
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Tate Cohomology

The Herbrand quotient (I)

When G is a cyclic group, we have a special feature.

Proposition.– If G is cyclic and finite, then

H i
T (G , M) ≃ H i+2

T (G , M).
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Tate Cohomology

The Herbrand quotient (I)

When G is a cyclic group, we have a special feature.

Proposition.– If G is cyclic and finite, then

H i
T (G , M) ≃ H i+2

T (G , M).

Let 1→ M ′ −→ M −→ M ′′ → 1 be a short exact sequence.

Then the following diagram is exact

H−1
T (G , M ′) −→ H−1

T (G , M) −→ H−1
T (G , M ′′)

↑ ↓
H0

T (G , M ′′) ←− H0
T (G , M) ←− H0

T (G , M ′)
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Tate Cohomology

The Herbrand quotient (II)

When the groups H i
T (G , M) are finite, we define the Herbrand quotient as

h(M) =
♯H0

T (G , M)

♯H−1
T (G , M)

.
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Tate Cohomology

The Herbrand quotient (II)

When the groups H i
T (G , M) are finite, we define the Herbrand quotient as

h(M) =
♯H0

T (G , M)

♯H−1
T (G , M)

.

From the previous exact rectangle is clear than h(M) = h(M ′)h(M ′′).
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Tate Cohomology

The Herbrand quotient (II)

When the groups H i
T (G , M) are finite, we define the Herbrand quotient as

h(M) =
♯H0

T (G , M)

♯H−1
T (G , M)

.

From the previous exact rectangle is clear than h(M) = h(M ′)h(M ′′).

Some remarks:

1) If two of M, M ′, M ′′ have Herbrand quotient, so does the third.

2) If M is finite, then h(M) = 1.

3) h(M) is usually much more easy to compute than the actual Tate
groups.
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The First Inequality

The Goal

In the previous set up, let us consider K |k a Galois extension with Galois
group G , M = CK .

Here NG = NK |k , as we (quickly) mentioned.
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The First Inequality

The Goal

In the previous set up, let us consider K |k a Galois extension with Galois
group G , M = CK .

Here NG = NK |k , as we (quickly) mentioned.

Moreover,

H0 =
CG

K

NG (CK )
=

Ck

NK |kCK

.
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The First Inequality

The Goal

In the previous set up, let us consider K |k a Galois extension with Galois
group G , M = CK .

Here NG = NK |k , as we (quickly) mentioned.

Moreover,

H0 =
CG

K

NG (CK )
=

Ck

NK |kCK

.

We want to prove
[

Ck : NK |kCK

]

= [K : k]

and, to begin with, we will see

[

Ck : NK |kCK

]

≥ [K : k]
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The First Inequality

Local → global works!

Let S be finite, S∞ ⊂ S ⊂ Pk .

S = {P ∈ PK above places in S}
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The First Inequality

Local → global works!

Let S be finite, S∞ ⊂ S ⊂ Pk .

S = {P ∈ PK above places in S}

Lazy notation: ISK = ISK .
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The First Inequality

Local → global works!

Let S be finite, S∞ ⊂ S ⊂ Pk .

S = {P ∈ PK above places in S}

Lazy notation: ISK = ISK .

Proposition.– If K |k cyclic, and S contains all ramified primes, for
i = 1, 2:

H i
(

G , ISK

)

= ⊕p∈SH i
(

GP, K ∗
P

)

H i (G , IK ) = ⊕pH
i
(

GP, K ∗
P

)

where GP is the Galois group of KP|kp and P|p.
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The First Inequality

First brick

The fact that the global Tate cohomology can be decomposed and
recovered from local pieces has two interesting corollaries.
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The First Inequality

First brick

The fact that the global Tate cohomology can be decomposed and
recovered from local pieces has two interesting corollaries.

Proposition.– Let K |k be a cyclic extension, α ∈ Ik . Then α ∈ NK |kCK if
and only if αp ∈ NKP |kp

KP, for all P|p.
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The First Inequality

First brick

The fact that the global Tate cohomology can be decomposed and
recovered from local pieces has two interesting corollaries.

Proposition.– Let K |k be a cyclic extension, α ∈ Ik . Then α ∈ NK |kCK if
and only if αp ∈ NKP |kp

KP, for all P|p.

Proposition.– If K |k is cyclic, and S contains all ramified primes,

h
(

G , ISK

)

=
∏

p∈S

np,

where np = [KP : kp].

J.M. Tornero (Universidad de Sevilla) idèles October 2009 44 / 68



The First Inequality

Second brick

For S finite, S∞ ⊂ S ⊂ Pk , let

KS = K ∩ ISK ,

the group of S–units.
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The First Inequality

Second brick

For S finite, S∞ ⊂ S ⊂ Pk , let

KS = K ∩ ISK ,

the group of S–units.

Proposition.– Assume K |k is cyclic. Then

h
(

G , KS
)

=
1

[K : k]

∏

p∈S

np,

where np = [KP : kp].
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The First Inequality

Second brick

For S finite, S∞ ⊂ S ⊂ Pk , let

KS = K ∩ ISK ,

the group of S–units.

Proposition.– Assume K |k is cyclic. Then

h
(

G , KS
)

=
1

[K : k]

∏

p∈S

np,

where np = [KP : kp].

The proof is based on local considerations, plus some (pretty technical)
work on lattices.
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The First Inequality

Statement of the First Inequality

Theorem (First Inequality).– Let K |k be cyclic, with Galois group G .
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The First Inequality

Statement of the First Inequality

Theorem (First Inequality).– Let K |k be cyclic, with Galois group G .

Then

h (G , CK ) =
♯H0(G , CK )

♯H−1(G , CK )
= [K : k]
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The First Inequality

Statement of the First Inequality

Theorem (First Inequality).– Let K |k be cyclic, with Galois group G .

Then

h (G , CK ) =
♯H0(G , CK )

♯H−1(G , CK )
= [K : k]

In particular,
[

Ck : NK |kCK

]

≥ [K : k]

J.M. Tornero (Universidad de Sevilla) idèles October 2009 46 / 68



The First Inequality

Proof of the First Inequality

Take, as previously, S ⊂ Pk a set of places such that

-) S∞ ⊂ S .

-) S contains all primes that split in K such that ISK · K ∗ = IK .
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The First Inequality

Proof of the First Inequality

Take, as previously, S ⊂ Pk a set of places such that

-) S∞ ⊂ S .

-) S contains all primes that split in K such that ISK · K ∗ = IK .

We have the following exact sequence

1→ KS −→ ISK −→ (ISK · K ∗)/K ∗ ≃ CK → 1
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The First Inequality

Proof of the First Inequality

Take, as previously, S ⊂ Pk a set of places such that

-) S∞ ⊂ S .

-) S contains all primes that split in K such that ISK · K ∗ = IK .

We have the following exact sequence

1→ KS −→ ISK −→ (ISK · K ∗)/K ∗ ≃ CK → 1

Then

h (G , CK ) =
h

(

G , ISK
)

h (G , KS)
= [K : k]
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The First Inequality

Corollaries of the First Inequality

A pair of very interesting consequences:
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The First Inequality

Corollaries of the First Inequality

A pair of very interesting consequences:

Corollary 1.– Assume K |k is cyclic of order pν , p prime. Then there are
infinitely many places in Pk that do not split.
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The First Inequality

Corollaries of the First Inequality

A pair of very interesting consequences:

Corollary 1.– Assume K |k is cyclic of order pν , p prime. Then there are
infinitely many places in Pk that do not split.

Corollary 2.– Assume K |k is finite. If almost all primes of k split
completely in K , then k = K .
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The Second Inequality

What are we proving (sort of)

Theorem.– Let K |k be a Galois extension with Galois group G . Then:

1) Ck/NK |kCK is finite, and its order divides [K : k].

2) H1 (G , CK ) = 1.

3) H2 (G , CK ) is finite, of order at most [K : k].
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2) H1 (G , CK ) = 1.

3) H2 (G , CK ) is finite, of order at most [K : k].

The First Inequality implies that, if G cyclic, all three are equivalent.
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The Second Inequality

What are we proving (sort of)

Theorem.– Let K |k be a Galois extension with Galois group G . Then:

1) Ck/NK |kCK is finite, and its order divides [K : k].

2) H1 (G , CK ) = 1.

3) H2 (G , CK ) is finite, of order at most [K : k].

The First Inequality implies that, if G cyclic, all three are equivalent.

Furthermore, in that case, H2 (G , CK ) has order [K : k].
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The Second Inequality

Overview of an analytic proof

There is an analytic proof of this theorem, and it is shorter, but the
techniques involved are rather different, so we will only sketch it.
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There is an analytic proof of this theorem, and it is shorter, but the
techniques involved are rather different, so we will only sketch it.

Take K |k finite, L|k its Galois closure. Set

S = { primes of k that split completely in K }

The set S has Dirichlet density 1/[L : k] (a special case of Chebotarev).
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The Second Inequality

Overview of an analytic proof

There is an analytic proof of this theorem, and it is shorter, but the
techniques involved are rather different, so we will only sketch it.

Take K |k finite, L|k its Galois closure. Set

S = { primes of k that split completely in K }

The set S has Dirichlet density 1/[L : k] (a special case of Chebotarev).

Via L–series and Fourier analysis this is related to a set

Im/(PmNL|kJm)

which is an ideal version of Ck/NK |kCK , and has the same number of
elements.
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The Second Inequality

The reduction

The algebraic proof of our theorem relies at first on two very important
reductions:

J.M. Tornero (Universidad de Sevilla) idèles October 2009 51 / 68
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The reduction

The algebraic proof of our theorem relies at first on two very important
reductions:

1) It is enough to consider the case where K |k is cyclic of prime order

(We move from G to all of its Sylow p–subgroups, and prove that suffices)
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The Second Inequality

The reduction

The algebraic proof of our theorem relies at first on two very important
reductions:

1) It is enough to consider the case where K |k is cyclic of prime order

(We move from G to all of its Sylow p–subgroups, and prove that suffices)

2) It is enough to consider the case where k contains a p-th root of unity.

(If not, we add ζp and prove, by diagram chasing, that things do not
change a lot)
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The Second Inequality

The key case: Set–up

Assume K |k is cyclic of order p and k contains a p–th root of unity ζp.
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The Second Inequality

The key case: Set–up

Assume K |k is cyclic of order p and k contains a p–th root of unity ζp.

Let S ⊂ Pk be a finite set such that:

1) S∞ ⊂ S .

2) The primes that split in K are also in S .

3) Ik = ISk · k∗.
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The Second Inequality

The key case: Set–up

Assume K |k is cyclic of order p and k contains a p–th root of unity ζp.

Let S ⊂ Pk be a finite set such that:

1) S∞ ⊂ S .

2) The primes that split in K are also in S .

3) Ik = ISk · k∗.

And write, kS = ISk ∩ k∗, s = ♯S .
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The Second Inequality

The key case: Auxiliary places

We want to construct a subgroup of Ck , of index [K : k] which consists of
norms from CK .
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The Second Inequality

The key case: Auxiliary places

We want to construct a subgroup of Ck , of index [K : k] which consists of
norms from CK .

Let us take T ⊂ Pk , finite, such that T ∩ S = ∅, and set

J =
∏

p∈S

(

k∗
p

)p ×
∏

p∈T

k∗
p ×

∏

p/∈S∪T

Up.
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The Second Inequality

The key case: Auxiliary places

We want to construct a subgroup of Ck , of index [K : k] which consists of
norms from CK .

Let us take T ⊂ Pk , finite, such that T ∩ S = ∅, and set

J =
∏

p∈S

(

k∗
p

)p ×
∏

p∈T

k∗
p ×

∏

p/∈S∪T

Up.

Let us also define ∆ = (K ∗)p ∩ kS .
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The Second Inequality

The key case: Three steps

With these notations, we can prove (with some work):

1) K = k
(

p
√

∆
)

.
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The Second Inequality

The key case: Three steps

With these notations, we can prove (with some work):

1) K = k
(

p
√

∆
)

.

2) There exists T such that ♯T = s − 1 and

∆ = ker



kS −→
∏

p∈T

k∗
p/

(

k∗
p

)p




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The Second Inequality

The key case: Three steps

With these notations, we can prove (with some work):

1) K = k
(

p
√

∆
)

.

2) There exists T such that ♯T = s − 1 and

∆ = ker



kS −→
∏

p∈T

k∗
p/

(

k∗
p

)p





3) For such a T , set C
S ,T
k = (J · K ∗)/K ∗. Then

[

Ck/C
S ,T
k

]

= [K : k] = p,

and C
S ,T
k ⊂ NK |kCK .
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The Second Inequality

The Second Inequality and the Class Field Axiom

The construction of T finishes the proof of the Second Inequality

[

Ck : NK |kCK

]

≤ p.
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The Second Inequality and the Class Field Axiom

The construction of T finishes the proof of the Second Inequality

[

Ck : NK |kCK

]

≤ p.

In Neukirch’s terminology, we have

Theorem (The Global Class Field Axiom).– Let K |k be cyclic. Then

♯H i (G , CK ) =

{

[K : k] i = 0
1 i = −1
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The Second Inequality

The Second Inequality and the Class Field Axiom

The construction of T finishes the proof of the Second Inequality

[

Ck : NK |kCK

]

≤ p.

In Neukirch’s terminology, we have

Theorem (The Global Class Field Axiom).– Let K |k be cyclic. Then

♯H i (G , CK ) =

{

[K : k] i = 0
1 i = −1

Remark.– We knew that x as principal idèle is a norm if and only if it is a
norm locally everywhere, but it does not necessarily have to be the norm
of a principal idèle if K |k is not cyclic.
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The Second Inequality

Hasse’s Norm Theorem

Corollary (Hasse’s Norm Theorem).– Let K |k be a cyclic extension.
Then x ∈ k∗ is the norm of an element of K ∗ if and only if x is a norm in
every KP|kp.
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The Second Inequality

Hasse’s Norm Theorem

Corollary (Hasse’s Norm Theorem).– Let K |k be a cyclic extension.
Then x ∈ k∗ is the norm of an element of K ∗ if and only if x is a norm in
every KP|kp.

From
1→ K ∗ −→ IK −→ CK → 1

we get
1 = H−1 (G , CK ) −→ H0 (G , K ∗) −→ H0 (G , IK )
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The Second Inequality

Hasse’s Norm Theorem

Corollary (Hasse’s Norm Theorem).– Let K |k be a cyclic extension.
Then x ∈ k∗ is the norm of an element of K ∗ if and only if x is a norm in
every KP|kp.

From
1→ K ∗ −→ IK −→ CK → 1

we get
1 = H−1 (G , CK ) −→ H0 (G , K ∗) −→ H0 (G , IK )

Therefore

H0 (G , K ∗) = k∗/NK |kK ∗ →֒ H0 (G , IK ) = ⊕pH
0
(

GP, K ∗
P

)

,

which is the statement of the theorem, in a sophisticated way.
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The BIG results

Artin Reciprocity Law: The local map

Let K |k be abelian, with Galois group G . Let p ∈ Pk , P ∈ PK such that
P|p.
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The BIG results

Artin Reciprocity Law: The local map

Let K |k be abelian, with Galois group G . Let p ∈ Pk , P ∈ PK such that
P|p.

We recall this set from LCFT

D(P) = {σ ∈ G | σP = P} ≃ Gal (KP|kp) .
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The BIG results

Artin Reciprocity Law: The local map

Let K |k be abelian, with Galois group G . Let p ∈ Pk , P ∈ PK such that
P|p.

We recall this set from LCFT

D(P) = {σ ∈ G | σP = P} ≃ Gal (KP|kp) .

The local Artin map is

φp : kp −→ D(P) ⊂ G .
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The BIG results

Artin Reciprocity Law: Patching local maps

We can fit together local Artin maps by means of the following result.
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The BIG results

Artin Reciprocity Law: Patching local maps

We can fit together local Artin maps by means of the following result.

Proposition.– There exists a unique homeomorphism

φk : Ik −→ Gal
(

kab|k
)

such that, for all K ⊂ kab finite, and every p ∈ Pk , P ∈ PK with P|p, the
following diagram
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The BIG results

Artin Reciprocity Law: Patching local maps

We can fit together local Artin maps by means of the following result.

Proposition.– There exists a unique homeomorphism

φk : Ik −→ Gal
(

kab|k
)

such that, for all K ⊂ kab finite, and every p ∈ Pk , P ∈ PK with P|p, the
following diagram

k∗
p

φp−→ D (P) ≃ Gal (KP|kp)

↓ ↓
Ik

φk−→ G

α 7−→ φk(α)|K

commutes.
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The BIG results

Artin Reciprocity Law: How to patch

The definition of φk can be seen as follows. Take α ∈ Ik , and K ⊂ K ab

such that K |k is finite. Then:

1) φp (αp) = 1 except for finitely many p (it is 1 when αp ∈ Up and KP|kp

is unramified).
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The definition of φk can be seen as follows. Take α ∈ Ik , and K ⊂ K ab

such that K |k is finite. Then:

1) φp (αp) = 1 except for finitely many p (it is 1 when αp ∈ Up and KP|kp

is unramified).

2) The unique choice is then (for a fixed K )

φK |k(α) =
∏

p

φp (αp) .
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The BIG results

Artin Reciprocity Law: How to patch

The definition of φk can be seen as follows. Take α ∈ Ik , and K ⊂ K ab

such that K |k is finite. Then:

1) φp (αp) = 1 except for finitely many p (it is 1 when αp ∈ Up and KP|kp

is unramified).

2) The unique choice is then (for a fixed K )

φK |k(α) =
∏

p

φp (αp) .

3) A field extension corresponds to a unique extension of φk (because of
the local properties of the Artin maps).
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The BIG results

Artin Reciprocity Law: The statement

Theorem (Artin Reciprocity Law).– The homeomorphism

φk : Ik −→ Gal
(

kab|k
)

verifies:
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The BIG results

Artin Reciprocity Law: The statement

Theorem (Artin Reciprocity Law).– The homeomorphism

φk : Ik −→ Gal
(

kab|k
)

verifies:

1) φk(k∗) = 1.
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The BIG results

Artin Reciprocity Law: The statement

Theorem (Artin Reciprocity Law).– The homeomorphism

φk : Ik −→ Gal
(

kab|k
)

verifies:

1) φk(k∗) = 1.

2) For all abelian finite extensions K |k , φk induces an isomorphism:

φK |k : Ik/(k∗ · NK |k IK ) −→ Gal (K |k)
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The BIG results

Artin Reciprocity Law: In terms of Ck

Artin Reciprocity Law can be restated in terms of the idèle class group as
follows:
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The BIG results

Artin Reciprocity Law: In terms of Ck

Artin Reciprocity Law can be restated in terms of the idèle class group as
follows:

1) φk induces a homomorphism Ck −→ Gal
(

kab|k
)

2) φk induces an isomorphism φK |k : Ck/NK |kCK ≃ Gal (K |k)
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The BIG results

Artin Reciprocity Law: Frobenius elements

A brief recall from LCFT. Let us consider K |k .

Take p ∈ Pk and P ∈ PK such that P|p and P is unramified over p.
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The BIG results

Artin Reciprocity Law: Frobenius elements

A brief recall from LCFT. Let us consider K |k .

Take p ∈ Pk and P ∈ PK such that P|p and P is unramified over p.

We have
Gal (OK/P : Ok/p) ≃ Gal (KP|kp)

and hence D(P) is cyclic

Remember Gal (OK/P : Ok/p) is generated by the Frobenius element
x 7→ xq.
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The BIG results

Artin Reciprocity Law: Frobenius elements

A brief recall from LCFT. Let us consider K |k .

Take p ∈ Pk and P ∈ PK such that P|p and P is unramified over p.

We have
Gal (OK/P : Ok/p) ≃ Gal (KP|kp)

and hence D(P) is cyclic

Remember Gal (OK/P : Ok/p) is generated by the Frobenius element
x 7→ xq.

The Frobenius element (P, K |k) is the element of D(P) corresponding to
the Frobenius element.
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The BIG results

Artin Reciprocity Law: Properties of the Frobenius element

The Frobenius element can alternatively be described as the only element
σ ∈ G such that:

1) σP = P.
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Artin Reciprocity Law: Properties of the Frobenius element

The Frobenius element can alternatively be described as the only element
σ ∈ G such that:

1) σP = P.

2) For all α ∈ Ok , σα = αq mod P, where q = ♯(Ok/p).

J.M. Tornero (Universidad de Sevilla) idèles October 2009 63 / 68



The BIG results

Artin Reciprocity Law: Properties of the Frobenius element

The Frobenius element can alternatively be described as the only element
σ ∈ G such that:

1) σP = P.

2) For all α ∈ Ok , σα = αq mod P, where q = ♯(Ok/p).

Another interesting property is that, as G acts transitively on the set of
primes dividing p,

{(P, K |k) | P|p}
is a conjugacy class in G , noted (p, K |k).

The Frobenius elements (P, K |k), for the primes P which do not ramify
generate the Galois group of K |k .
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The BIG results

Artin Reciprocity Law: Proof (I)

To prove Artin Reciprocity Law it suffices proving:
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The BIG results

Artin Reciprocity Law: Proof (I)

To prove Artin Reciprocity Law it suffices proving:

Key Theorem.– Let K |k be a finite abelian extension with Galois group
G . Then φK |k : IK −→ G is trivial on the principal idèles.
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The BIG results

Artin Reciprocity Law: Proof (I)

To prove Artin Reciprocity Law it suffices proving:

Key Theorem.– Let K |k be a finite abelian extension with Galois group
G . Then φK |k : IK −→ G is trivial on the principal idèles.

It is the most delicate part of the proof because:

1) The norm subgroup NK |k IK is contained in the kernel of φK |k because
it is locally.
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The BIG results

Artin Reciprocity Law: Proof (II)

2) Once we assume the Key Theorem, we have a homomorphism

Ik/(k∗ · NK |k IK ) −→ Gal (K |k)

which is surjective because we can explicitly construct an idèle α such that
φK |k(α) is a Frobenius element for an unramified prime, and these
elements generate G .
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Artin Reciprocity Law: Proof (II)

2) Once we assume the Key Theorem, we have a homomorphism

Ik/(k∗ · NK |k IK ) −→ Gal (K |k)

which is surjective because we can explicitly construct an idèle α such that
φK |k(α) is a Frobenius element for an unramified prime, and these
elements generate G .

3) From the Second Inequality

[

Ik : k∗ · NK |k IK
]

≤ [K : k].
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The BIG results

Artin Reciprocity Law: Proof (II)

2) Once we assume the Key Theorem, we have a homomorphism

Ik/(k∗ · NK |k IK ) −→ Gal (K |k)

which is surjective because we can explicitly construct an idèle α such that
φK |k(α) is a Frobenius element for an unramified prime, and these
elements generate G .

3) From the Second Inequality

[

Ik : k∗ · NK |k IK
]

≤ [K : k].

Then 2) and 3) (together with the Key Theorem) prove Artin Reciprocity
Law.
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The BIG results

Artin Reciprocity Law: Strategy for the Key Theorem

We will not go into detail, but the steps to prove the Key Theorem are:

1) Prove that, if it works for K |k , it works for any subextension, and also
for joint extensions (given K ′|k , considering K ′ · K |K ′) (technical, not
difficult).
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1) Prove that, if it works for K |k , it works for any subextension, and also
for joint extensions (given K ′|k , considering K ′ · K |K ′) (technical, not
difficult).

2) Prove that it suffices to consider cyclic cyclotomic extensions
(complicated).
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The BIG results

Artin Reciprocity Law: Strategy for the Key Theorem

We will not go into detail, but the steps to prove the Key Theorem are:

1) Prove that, if it works for K |k , it works for any subextension, and also
for joint extensions (given K ′|k , considering K ′ · K |K ′) (technical, not
difficult).

2) Prove that it suffices to consider cyclic cyclotomic extensions
(complicated).

3) Check that it is true for cyclotomic extensions (fairly easy).
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The BIG results

The Existence Theorem

We finish our presentation with a outstanding result, based on Artin
Reciprocity Law.

Theorem (Existence Theorem).– Let k be a number field. The finite
abelian extensions K |k are in one–to–one correspondence with the open
subgroups of Ck of finite index

K 7−→ NK |kCK
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We finish our presentation with a outstanding result, based on Artin
Reciprocity Law.

Theorem (Existence Theorem).– Let k be a number field. The finite
abelian extensions K |k are in one–to–one correspondence with the open
subgroups of Ck of finite index

K 7−→ NK |kCK

Thanks to the Reciprocity Law, it suffices to prove that every subgroup of
finite index contains a norm subgroup.
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The BIG results

The Existence Theorem

We finish our presentation with a outstanding result, based on Artin
Reciprocity Law.

Theorem (Existence Theorem).– Let k be a number field. The finite
abelian extensions K |k are in one–to–one correspondence with the open
subgroups of Ck of finite index

K 7−→ NK |kCK

Thanks to the Reciprocity Law, it suffices to prove that every subgroup of
finite index contains a norm subgroup.

Definition.– The field corresponding to an open subgroup N ⊂ Ck is
called the class field of N.
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The BIG results

Thanks a lot!
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Any questions?
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The BIG results

Thanks a lot!

Any questions?

Well, thanks again, you’ve been a wonderful audience!
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