Definitions

A reductive group over F is an affine algebraic group G defined over F, with trivial unipotent radical.

e.g. *GL_n*, *SL_n*, *Sp*_{2n}, ...

2 G is (*F*-)split if it has an *F*-split maximal torus.

e.g. *GL_n* is *F*-split.

The group $\boldsymbol{G}(F) = E^1$, for E/F quadratic, is not split.

- **G** is *quasi=split* it it has a Borel subgroup defined over *F*.
- If **G** is split then it is quasi-split.

E/F unramified quadratic, $Gal(E/F) = \{1, \sigma\}, p \neq 2$, and

$$w_0 = \begin{pmatrix} & & 1 \\ & 1 & \\ 1 & & \end{pmatrix}$$

$$G = U(2,1)(E/F) = G(F) = \{g \in GL_3(E) : w_0^{\sigma}g^Tw_og = 1\}.$$

G is defined over *F* and has compact centre

$$Z = Z(F) = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in E^1 \right\}.$$

G is isomorphic to GL_3 over E (but not over F).

Relative (over F) A maximal *F*-split torus is

$$\begin{cases} \begin{pmatrix} \lambda & \\ & 1 \\ & & \lambda^{-1} \end{pmatrix} : \lambda \in F^{\times} \end{cases}$$

 $N_G(A) = T \cup w_0 T.$

Relative Weyl group

$$W_F = N_G(A)/Z_G(A) \simeq S_2.$$

Absolute (over \overline{F} or E) An (*E*-split) maximal torus is

$$T = T(F) = Z_G(A)$$
$$\left\{ \begin{pmatrix} x & & \\ & y & \\ & & \sigma_X^{-1} \end{pmatrix} : \begin{array}{c} x \in E^{\times} \\ & y \in E^1 \end{pmatrix} \right\}$$

Absolute Weyl group

 $W \simeq S_3$.

A minimal parabolic subgroup over *F* is

$$B = B(F) = \left\{ \begin{pmatrix} * & * & * \\ & * & * \\ & & * \end{pmatrix} \in G \right\},$$

which is a Borel subgroup, so **G** is quasi-split.

We have a relative Bruhat decomposition $G = \bigcup_{w \in W_F} B\dot{w}B$.

The standard parabolic subgroups defined over F are in bijection with the subsets of a (suitable) set of generators for W_F . Here the only proper parabolic subgroups defined over F are the Borel subgroups.

We can write the unipotent radical

$$U = \left\{ \begin{pmatrix} 1 & x & y \\ & 1 & \sigma x \\ & & 1 \end{pmatrix} : \begin{array}{c} x, y \in E \\ y + \sigma y + x^{\sigma} x = 0 \end{array} \right\} = U_{\alpha} U_{2\alpha},$$

where

$$U_{\alpha} = \left\{ \begin{pmatrix} 1 & x & -\frac{x^{\sigma}x}{2} \\ & 1 & \sigma x \\ & & 1 \end{pmatrix} : x \in E \right\}$$
$$U_{2\alpha} = \left\{ \begin{pmatrix} 1 & y \\ & 1 \\ & 1 \end{pmatrix} : \begin{array}{c} y \in E \\ y + \sigma y = 0 \end{array} \right\}$$

Both are preserved under the conjugation action of A.

There are two non-conjugate maximal compact subgroups of G:

•
$$K_1 = \mathbf{GL}_3(\mathfrak{o}_E) \cap G$$
, the "nice" one;
 $K_1/K_1^1 \simeq \mathbf{U}(2,1)(k_E/k_F).$

$$\mathbf{S} \quad \mathcal{K}_2 = \begin{pmatrix} \mathfrak{o}_E & \mathfrak{o}_E & \mathfrak{p}_E^{-1} \\ \mathfrak{p}_E & \mathfrak{o}_E & \mathfrak{o}_E \\ \mathfrak{p}_E & \mathfrak{p}_E & \mathfrak{o}_E \end{pmatrix} \cap G, \text{ the "not-so-nice" one;} \\ \mathcal{K}_2/\mathcal{K}_2^1 \simeq \boldsymbol{U}(1)(k_E/k_F) \times \boldsymbol{U}(1,1)(k_E/k_F).$$

There is also an Iwahori subgroup (the only non-maximal parahoric subgroup)

$$\mathcal{I} = K_1 \cap K_2 = \begin{pmatrix} \mathfrak{o}_E^{\times} & \mathfrak{o}_E & \mathfrak{o}_E \\ \mathfrak{p}_E & \mathfrak{o}_E^{\times} & \mathfrak{o}_E \\ \mathfrak{p}_E & \mathfrak{p}_E & \mathfrak{o}_E^{\times} \end{pmatrix} \cap G.$$

Putting

$$Z_G(A)^0 = \mathcal{I} \cap N_G(A) = \begin{pmatrix} \mathfrak{o}_E^{\times} & \\ & \mathfrak{o}_E^{\times} \\ & & \mathfrak{o}_E^{\times} \end{pmatrix} \cap G,$$

we have an affine Weyl group $\widetilde{W} = N_G(A)/Z_G(A)^0$, which is an infinite dihedral group, with generators

$$w_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad w_1 = \begin{pmatrix} \varpi_F^{-1} \\ 1 \\ \varpi_F \end{pmatrix}$$

Then $G = \bigcup_{w \in \widetilde{W}} \mathcal{I} \dot{w} \mathcal{I}$ (affine Bruhat decomposition).

Appendix: Root data

Put
$$X(\mathbf{G}) = \{ \text{ characters } \phi : \mathbf{G} \to \mathbf{G}_m \}, \text{ and }$$

$$X_*(\mathbf{G}) = \{ \text{ cocharacters } \theta : \mathbf{G}_m \to \mathbf{G} \}.$$

e.g. $X(\mathbf{G}_m) \simeq \mathbb{Z}$, with $a \in \mathbb{Z}$ corresponding to $x \mapsto x^a$.

Then there is a pairing $X(\mathbf{G}) \times X_*(\mathbf{G}) \to \mathbb{Z}$ given by

$$\langle \phi, \theta \rangle = \chi \circ \theta$$
 (in $X(\mathbf{G}_m) = \mathbb{Z}$).

We have $X(\mathbf{T}) \simeq \mathbb{Z}^n$, with $\phi \in \mathbb{Z}^n$ corresponding to $t \mapsto t^{\phi}$,

$$\begin{pmatrix} t_1 & & \\ & \ddots & \\ & & t_n \end{pmatrix} \mapsto t_1^{\phi_1} \cdots t_n^{\phi_n};$$

and $X_*(\mathbf{T}) \simeq \mathbb{Z}^n$, with $\theta \in \mathbb{Z}^n$ corresponding to $x \mapsto x^{\theta}$.

$$X \mapsto \begin{pmatrix} X^{\theta_1} & & \\ & \ddots & \\ & & X^{\theta_n} \end{pmatrix}$$

Then $\langle \phi, \theta \rangle = \sum_{i=1}^{n} \phi_i \theta_i$.

Put $\mathfrak{g} = \mathbf{M}_n(F)$, the Lie algebra of *G*.

G acts of \mathfrak{g} via the adjoint action

$$\mathit{Ad}(g)\mathit{y} \;=\; g \mathit{y} g^{-1}, \qquad ext{for}\; g \in \mathit{G}, \mathit{y} \in \mathfrak{g}.$$

Ad(T) is a set of commuting semisimple automorphisms of g so is diagonalizable – i.e. we can find a basis of simultaneous eigenvectors.

A simultaneous eigenvalue is a character $\phi \in X(T)$, with eigenspace

$$\mathfrak{g}_{\phi} = \{ \mathbf{y} \in \mathfrak{g} : \operatorname{Ad}(t)\mathbf{y} = t^{\phi}\mathbf{y} \ \forall t \in T \}.$$

If $\phi = 0$ (trivial character)

 $\mathfrak{g}_0 \;=\; \{ \text{diagonal matrices} \} \;=\; \mathfrak{t}.$

The set of *roots* of G (relative to T) is

$$\Phi = \{ \phi \neq \mathbf{0} : \mathfrak{g}_{\phi} \neq \mathbf{0} \}$$

= $\{ \alpha_{ij} : \mathbf{1} \le i, j \le n, i \ne j \},$

where $t^{\alpha_{ij}} = t_i t_j^{-1}$ and

 $\mathfrak{g}_{\alpha_{ij}} = \mathfrak{u}_{ij}.$

Also define the set of *dual roots* in $X_*(T)$

$$\Phi^{\mathsf{*}} = \{\alpha_{ij}^{\mathsf{*}} : 1 \leq i, j \leq n, i \neq j\},\$$

so that $\langle \alpha_{ij}, \check{\alpha_{ij}} \rangle = 2$.

The Weyl group $W = N_{\boldsymbol{G}}(\boldsymbol{T})/Z_{\boldsymbol{G}}(\boldsymbol{T})$ acts on $X(\boldsymbol{T})$ (and $X_*(\boldsymbol{T})$),

$$t^{w(\phi)} = \left(\dot{w}^{-1} t \dot{w} \right)^{\phi}, \qquad x^{w(\theta)} = \dot{w} x^{\theta} \dot{w}^{-1},$$

and permutes Φ (and Φ).

For example, if $s_{ij} \in W$ corresponds to the transpostion (*ij*) then

$$\mathbf{s}_{ij}(\phi) = \phi - \langle \phi, lpha_{ij} \rangle lpha_{ij}.$$

Then $(X(\mathbf{T}), \Phi, X_*(\mathbf{T}), \Phi^{\tilde{}})$ is a *root datum*.

Reductive groups **G** over an algebraically closed field are classified in terms of their root data.

In particular, $(X_*(T), \Phi^{\check{}}, X(T), \Phi)$ is also a root datum so corresponds to a (dual) reductive group also. Then

 ${}^{L}G^{0} = \{ complex \text{ points of the dual group} \}.$

e.g. For $G = \mathbf{GL}_n$, ${}^L G^0 = \mathbf{GL}_n(\mathbb{C})$,

 SL_n , ${}^LG^0 = PGL_n(\mathbb{C}), \ldots$

When **G** is not *F*-split then we have also the *relative roots* (the $\pm \alpha, \pm 2\alpha$ for **U**(2, 1)(*E*/*F*)) and the classification must also take into account the *F*-structure.

G splits over a finite Galois extension E/F and then Gal(E/F) acts on the root datum of **G**.

One deduces from this an action of Gal(E/F) on the complex dual group ${}^{L}G^{0} \dots$

