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Introduction

What is an L-funcrtion?

It is a Dirichlet series

L(s) =
∞∑

n=1

an

ns
, s ∈ C

which typically converges when Re(s) ≫ 0.

Simplest example: With an = 1 for all n, get

the Riemann zeta function

ζ(s) =
∑

n≥1

1

ns
, Re(s) > 1.
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This enjoys some nice properties:

• ζ(s) has meromorphic continuation to C,

with a pole at s = 1;

• ζ(s) can be expressed as a product over

primes:

ζ(s) =
∏

p

1

1 − p−s
, Re(s) > 1.

Such an expression is called an Euler prod-

uct.

• ζ(s) satisfies a functional equation relating

s↔ 1 − s. More precisely, if we set

Λ(s) = π−s/2 · Γ(
s

2
) · ζ(s)

where Γ(s) is the gamma function, then

Λ(s) = Λ(1 − s).

Λ(s) is sometimes called the complete zeta

function of Q
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What are some other ”nice” L-funcitons which
are known?

• Dirichlet L-functions: given a character

χ : (Z/NZ)× −→ C×,

set

L(s, χ) =
∑

n≥1

χ(n)

ns
=

∏

p

1

1 − χ(p)p−s

when Re(s) > 1.

This is an L-function of degree 1: the fac-
tor at p in the Euler product has the from

1

P(p−s)

where P is a polynomial with constant term
1 with deg(P) = 1.

• Hecke L-functions: these are associated
to ”Hecke characters”, and are generaliza-
tions of Dirichlet. In particular, they are L-
functions of degree 1. These are precisely
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the L-functions (re)-treated in Tate’s the-

sis.

• Modular forms: given a holomorphic mod-

ular form of weifght k:

f(z) =
∑

n≥0

ane
2πiz,

set

L(s, f) =
∑

n>0

an

ns
.

If f is a “normalized cuspidal Hecke eigen-

form”, then

L(s, f) =
∏

p

1

1 − app−s + pk+1−2s
.

These are degree 2 L-functions.



• Artin L-functions: these are L-functions

associated to Galois representations over

C. Namely, given a continuous

ρ : Gal(Q/Q) −→ GLn(C) = GL(V ),

set

L(s, ρ) =
∏

p
Lp(s, ρ)

where

Lp(s, ρ) =
1

det(1 − p−sρ(Frobp)|V Ip)

where Ip is the inertia group at p and Frobp

is a Frobenius element at p. This is a de-

gree n L-function, but of a very special

type.
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Question: What is a natural source of ”nice”

L-functions of degree n?

Answer: (cuspidal) automorphic representa-

tions of GL(n).

n = 1: Hecke characters

n = 2: modular forms

It is conjectured (by Langlands) that every Artin

L-function actually belongs to this class of ”au-

tomorphic” L-funcitons.
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This Lecture: the theory for n = 1.

Some notations:

• F = number field;

• Fv = local field attached to a place v of F ;

• Ov = ring of integers of Fv,

• ̟v = a uniformizer of Fv;

• qv = cardinality of residue field of Fv;

• A =
∏′
v Fv, ring of adèles of F ;

• A× =
∏′
v F

×
v , group of idèles;

• Absolute value | − | =
∏
v | − |v : A× → R×

+.
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Definition: A Hecke character is a continuous

homomophism

χ : F×\A× −→ C×

Say that χ is unitary if it takes values in unit

circle S1.

Every Hecke character χ is of form

χ = χ0 · | − |s

with χ0 unitary and s ∈ R. So no harm in

assuming χ unitary henceforth.

Lemma:

(i) χ =
∏
v χv, where

χv : F×
v → C×

is defined by

χv(a) = χ(1, ..., a, .....),
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with a ∈ F×
v in the v-th position.

(ii) For almost all v, χv is trivial on O×
v .

Indeed, (i) is clear and (ii) follows from conti-

nuity of χ.

Definition: Say that χv is unramified if χv is

trivial on O×
v . Such a χv is completely deter-

mined by

χv(̟v) ∈ C×.

In particular, any unramified χv is of the form

χv(a) = |a|sv

for some s ∈ C.

Thus, a Hecke character χ =
∏
v χv is almost

”everywhere unramified”.



Goal: Given a Hecke character χ =
∏
v χv,

want to define an associated L-function L(s, χ)
with Euler product

L(s, χ) =
∏

v
L(s, χv),

and show it is nice.

This suggests that one should first treat:

Local problem: Given χv : F×
v −→ C×, de-

fine an associated Euler factor or local L-factor

L(s, χv).

Definition: Set

L(s, χv) =






1
1−χv(̟v)q

−s
v
, if χv unramified;

1,otherwise.

This seems a bit arbitrary, but it is informed

by the situation of Dirichlet’s characters. More

importantly, it is the definition which is com-

patible with local class field theory.

9



Interaction with local class field theory

The Artin reciprocity map of local class field

theory

r : F×
v −→ Gal(F v/Fv)

ab

has dense image, inducing an injection r∗

{characters of Gal(F v/Fv)} →֒ {characters of F×
v }

If

r∗(ρv) = χv,

then the definition of L(s, χv) given above is

such that

L(s, ρv) = L(s, χv)

where the L-factor on LHS is the local Artin

L-factor.
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Problem with Definition

The above definition of L(s, χv) is simple and

direct, and allows us to define the global L-

function associated to a Hecke character by:

L(s, χ) =
∏

v
L(s, χv),

at least when Re(s) ≫ 0.

However, it is not clear at all why this L-

function is nice.

What we need: a framework in which these

local L-factors arise naturally and which pro-

vides means of verifying the niceness of the

associated global L-function .

This is what Tate’s thesis achieved.
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Local Theory

We suppress v from the notations. Fix unitary

χ : F× → C×.

Let S(F) denote the space of Schwarz-Bruhat

funcitons on F

=





locally constant, compactly supported functions;

rapidly decreasing functions,

in the finite or archimedean case resp.

Local Zeta Integrals: For φ ∈ S(F), set

Z(s, φ, χ) =

∫

F×
φ(x) · χ(x) · |x|s d×x

where d×x is a Haar measure on F×. Assume

for simplicity that
∫

O×
d×x = 1.

Convergence?
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Let’s examine finite case.

Since

Z(s, φ, χ · | − |t) = Z(s+ t, φ, χ),

no harm in assuming χ unitary.

(1) If φ(0) = 0, then absolute convergence for

all s ∈ C, since integration is over an annulus

{x : a < |x| < b} which is compact. Then

integral becomes a finite sum, and

Z(s, φ, χ) ∈ C[qs, q−s].

Since any φ can be expressed as:

φ = a · φ1 + φ2

with

φ1 = characteristic function of a nbd of 0

and

φ2(0) = 0,

we are reduced to examining:



(2) If φ = φ0 = characteristic function of O,

then

Z(s, φ0, χ0)

=

∫

O−{0}
χ(x) · |x|s d×x

=
∑

n≥0

∫

O×
χ(x ·̟n) · q−nsd×x

=




∑

n≥0

χ(̟)n · q−ns



 ·
∫

O×
χ(x) d×x

=






1
1−χ(̟)q−s

if χ unramified;

0 if χ ramified

when Re(s) > 0.
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Proposition:

(i) If χ is unitary, then Z(s, φ, χ) converges ab-

solutely when Re(s) > 0. It is equal to a ratio-

nal function in q−s and hence has meromorphic

continuation to C.

(ii) If χ is ramified, then Z(s, φ, χ) is entire.

(iii) There exists φ ∈ S(F) such that

Z(s, φ, χ) = L(s, χ).

(iv) For all φ ∈ S(F), the ratio

Z(s, φ, χ)/L(s, χ)

is entire.

The properties (iii) and (iv) are often summa-

rized as:

”L(s, χ) is a GCD of the family of zeta integrals

Z(s, φ, χ)”.
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Distributions on F

The next topic is the functional equation satis-

fied by the local zeta integrals. But first need

to introduce some new objects.

A continuous linear functionals

Z : S(F) −→ C

is called a distribution on F . Let D(F) denote

the space of distributions on F .

Corollary: For fixed s ∈ C, the map

Z(s, χ) : φ 7→
Z(s, φ, χ)

L(s, χ)

is a nonzero distribution on F .
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Action of F×

Now F× acts on F by multiplication, and thus

acts on S(F) and, by duality, onD(F):

(t · φ)(x) = φ(xt), φ ∈ S(F)

(t · Z)(φ) = Z(t−1 · φ) Z ∈ D(F)

Given a character χ of F×, let

D(F)χ = {Z ∈ D(F) : t ·Z = χ(t) ·Z for t ∈ F×}

be the χ-eigenspace in D(F).

Exercise: Check that Z(s, χ) lies in the χ|− |s-

eigenspace of D(F).

In particular, for any χ, D(F)χ is nonero.
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Fourier transform

Given an additive character ψ of F and a Haar

measure dx of F , one can define the Fourier

transform

F : S(F) −→ S(F)

φ 7→ φ̂

given by

φ̂(y) =
∫

F
φ(x) · ψ(−xy) dx.

One has the Fourier inversion formula

̂̂φ(x) = c · φ(−x)

for some c. By adjusting dx, may assume c =

1, in which case say that dx is self-dual with

respect to ψ.
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By composition, F acts on D(F):

F(Z) = Z ◦ F .

Exercise: Check that if Z ∈ D(F)χ, then F(Z)

lies in the | − | · χ−1-eigenspace.

In particular,

Z(s, χ) ◦ F ∈ D(F)χ−1·|−|1−s

Equivalently, Z(1−s, χ−1)◦F lies in the χ|− |s-

eigenspace of D(F).

Thus, there is a chance that it is equal to

Z(s, χ)
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A Multiplicity One result

Proposition:

For any character χ, dimD(F)χ = 1.

Corollary: There is a meromorphic function

ǫ(s, χ, ψ) such that

Z(1 − s, φ̂, χ−1)

L(1 − s, χ−1)
= ǫ(s, χ, ψ) ·

Z(s, φ, χ)

L(s, χ)

for all φ ∈ S(F).

The function ǫ(s, χ, ψ) is called the local ep-

silon factor associated to χ (and ψ). Since

both the fractions in the functional eqn above

are entire, one deduces:

Corollary: The local epsilon factor ǫ(s, χ, ψ) is

a rational function in q−s which is entire with

no zeros. Thus it is of the form a · qbs.
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Local Epsilon and Gamma factors

The local fuctional eqn is sometimes written

as

Z(1 − s, φ̂, χ−1) = γ(s, χ, ψ) · Z(s, φ, χ)

with

γ(s, χ, ψ) = ǫ(s, χ, ψ) ·
L(1 − s, χ−1)

L(s, χ)
.

The function γ(s, χ, ψ) is called the local gamma

factor associated to (χ, ψ).
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Computation of epsilon factor

Since we have the functional eqn

Z(1 − s, φ̂, χ−1)

L(1 − s, χ−1)
= ǫ(s, χ, ψ) ·

Z(s, φ, χ)

L(s, χ)
,

and we know what is L(s, χ), in order to com-

pute ǫ(s, χ, ψ), it suffices to pick a suitable

Schwarz funciton φ for which we can calculate

both the local zeta integrals.

Exercise: Suppose that

• χ is unramified,

• ψ has conductor O, i.e. χ is trivial on O

but not on ̟−1O, and

• φ = characteristic function of O.

Then ǫ(s, χ, ψ) = 1.
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Proof of Multiplicity One Result

One has an exact sequence:

0 −→ S(F×) −→ S(F)
ev0−−→ C −→ 0

Dualizing gives:

0 −→ C · δ0 −→ D(F) −→ D(F×) −→ 0

where δ0 = Dirac delta.

Taking the χ-eigen-subspace, get:

0 −→ (C · δ0)χ −→ D(F)χ −→ D(F×)χ
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Now note:

(C · δ0)χ =





C, if χ trivial;

0, else,

and

D(F×)χ = C for any χ.

generated by: φ 7→
∫
F× φ(x)χ(x)d×x.

So we deduce:

0 ≤ dimD(F)χ ≤ 1 if χ non-trivial;

and

1 ≤ dimD(F)χ ≤ 2 if χ trivial.

But D(F)χ 6= 0: Z(0, χ)/L(0, χ) is a nonzero

element in D(F)χ. This proves the proposition

when χ is non-trivial.

Exercise: when χ is trivial, show that the

unique F×-invariant distribution on F× does

not extend to F .

23



Archimedean case

• F = R. Any χ has the form

χ = | − |s or sign · | − |s.

One has

L(s, 1) = π−s/2 · Γ(s/2)

and

L(s, sign) = L(s+1, 1) = π−(s+1)/2·Γ(
s+ 1

2
).

• F = C. Any χ has the form

χ(z) = χn(z) · (z · z̄)
s

with

χn(z) = einθ if z = reiθ.

One has

L(s, χn) = (2π)1−s · Γ(s+
|n|

2
).
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Summary:

For each local field F , we considered a family

of local zeta integrals

{Z(s, φ, χ) : φ ∈ S(F)}

and obtained the local L-factor L(s, χ) as a

GCD of this family,

The local zeta integrals satisfy a local func-

tional eqn relating

Z(s, φ, χ) ↔ Z(1 − s, φ̂, χ−1).

The constant of proportionality gives the lo-

cal gamma factor γ(s, χ, ψ) or equivalently the

local epsilon factor ǫ(s, χ, ψ).
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Global Theory

Facts about A:

• Let

A1 = kernel of | − | : A× → R×
+

Then

A× ∼= R×
+ × A1

• F× ⊂ A1 (product formula) as a discrete

subgroup such that

A1/F is compact

Let E ⊂ A1 be a fundamental domain for

A1/F×.
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Additive Characters of A/F

Let

ψ : A/F −→ S1

be a nontrivial additive character. Then any

other such ψ′ is of form

ψ′(x) = ψ(ax)

for some a ∈ F×. Moreover,

ψ =
∏

v
ψv.

Let dx =
∏
v dxv be Haar measure on A so that

dxv is self-dual wrt ψv for all v.
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Start with a Hecke character

χ : A×/F× −→ C×

and recall that

χ =
∏

v
χv

with χv unramified for almost all v. Assume

wlog that χ is unitary.

We have defined L(s, χv) and ǫ(s, χv, ψv) for all

v. So we may define:

Definition:

L(s, χ) =
∏

v<∞

L(s, χv).

Λ(s, χ) =
∏

v
L(s, χv)

ǫ(s, χ) =
∏

v
ǫ(s, χv, ψv)
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The first two products converge absolutely if

Re(s) > 1.

The third product is a finite one, since

ǫ(s, χv, ψv) = 1

for almost all v. Moreover, it is independent

of ψ.

For any finite set S of places of F , also set

LS(s, χ) =
∏

v/∈S

L(s, χv).

Goal: Show that Λ(s, χ) has meromorphic con-

tinuation to C and satisfies a functional eqn

s↔ 1 − s:

ǫ(s, χ) · Λ(1 − s, χ−1) = Λ(s, χ).



Schwarz space on A

We will imitate the local situation by consider-

ing “global zeta integrals”.

Let S(A) denote the space of Schwarz-Bruhat

funcitons on A. Then

S(A) = S(F ⊗Q R) ⊗ (⊗′
v<∞S(Fv))

where ⊗′
v stands for the restrictied tensor prod-

uct.

More concretely, a function in S(A) is a finite

linear combination of functions of the form

f(x) = f∞(x∞) ·
∏

v<∞

fv(xv)

with

fv = characteristic function φ0,v of Ov

for almost all v.

We say such f is factorizable.
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Global Zeta Integrals

Analogous to the local setting, for φ ∈ S(A),

we set

Z(s, φ, χ) =

∫

A×
φ(x) · χ(x)|x|s d×x

where d×x =
∏
v d

×xv is a Haar measure on A×.

Observe that formally, if φ = ⊗vφv is factoriz-

able,

Z(s, φ, χ) =
∏

v
Z(s, φv, χv).

The integral defining Z(s, φ, χ) converges at s

if and only if

(i) the integral defining Z(s, φv, χv) converges

for all v;

(ii) the product
∏
v Z(s, φv, χv) converges.
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(i) holds whenever Re(s) > 0 (recall χv unitary

by assumption).

Further, for almost all v, χv is unramified and

φv = φ0
v . For such v’s,

Z(s, φv, χv) = L(s, χv),

so that

Z(s, φ, χ) = LS(s, χ) ·
∏

v∈S

Z(s, φv, χv).

So (ii) holds iff the product
∏
v L(s, χv) con-

verges, which we have observed to hold when

Re(s) > 1.

Lemma: The integral defining Z(s, φ, χ) con-

verges absolutely when Re(s) > 1.

Upshot: Proving meromorphic continuation

and functional eqn of L(s, χ) is equivalent to

proving meromorphic continuation and func-

tional eqn for Z(s, φ, χ).
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Fourier Analysis on A

Unlike the local case, the meromorphic contin-

uation of global zeta integrals is less direct. It

requires a global input: the Poisson summation

formula.

For the fixed ψ : A/F → S1 and dx the asso-

ciated self-dual measure, one has a notion of

Fourier transform

φ̂(y) =

∫

A
f(x) · ψ(xy)−1 dx

It is clear that if φ = ⊗vφv is factorizable,

φ̂ = ⊗vφ̂v.
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Poisson Summation Formula

This is the key tool used in the global theory.

Proposition: For φ ∈ S(A), one has:

∑

x∈F

φ(x) =
∑

x∈F

φ̂(x)

Proof: Let Fφ : A → C be defined by

Fφ(y) =
∑

x∈F

φ(x+ y).

Then Fφ is a function on A/F .

Consider Fourier expansion of Fφ:

Fφ(y) =
∑

a∈F

ca(φ) · ψ(ay)
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with

ca(φ) =
∫

A/F
Fφ(z) · ψ(az)−1 dz

=

∫

A/F

∑

x∈F

φ(z + x) · ψ(a(z + x))−1 dz

=

∫

A
φ(z) · ψ(az)−1

= φ̂(a).

Hence, we have

∑

x∈F

φ(x+ y) = Fφ(y) =
∑

a∈F

φ̂(a) · ψ(ay).

Now evaluate Fφ at y = 0 to get

∑

x∈F

φ(x) =
∑

a∈F

φ̂(a).

Corollary: For any b ∈ A×, have

∑

x∈F

φ(bx) =
1

|b|
·

∑

x∈F

φ̂(x/b).



Main Global Theorem of Tate’s Thesis

(i) Z(s, φ, χ) has meromorphic continuation to

C.

(ii) It is entire unless χ is unramfied. If χ is

unramified, we may assume that χ = 1. Then

the only possible poles are simple and occur at

• s = 0, with residue −κ · φ(0);

• s = 1 with residue κ · φ̂(0),

with

κ =

∫

F×\A1
d×x

.

(iii) There is a global functional eqn:

Z(s, φ, χ) = Z(1 − s, φ̂, χ−1).
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Corollary:

(i) Λ(s, χ) has meromorphic continuation to C

(ii) It is entire unless χ is unramified, in which

case, assuming χ = 1, the only poles are at

s = 0 and s = 1. The identification of the

residues there is the ”class number formula”.

(iii) There is a functional equation

Λ(1 − s, χ−1) = ǫ(s, χ) · Λ(s, χ).

Proof: (i) is clear and (ii) requires a precise

choice of φ, which we omit here.

We shall discuss the proof of (iii).
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(iii) The equation

Z(1 − s, φ̂, χ−1) = Z(s, φ, χ)

implies
∏

v∈S

Z(1 − s, φ̂v, χ
−1
v ) · LS(1 − s, χ−1) =

=
∏

v∈S

Z(s, φv, χv) · L
S(s, χ),

for some finite set S of places of F . Now use

local functional eqn: for v ∈ S,

Z(1 − s, φ̂v, χ
−1
v ) = γ(s, χv, ψv) · Z(s, φv, χv).

Get



∏

v∈S

γ(s, χv, ψv



 · LS(1 − s, χ−1) = LS(s, χ),

or equivalently

ǫ(s, χ, ψ) · Λ(1 − s, χ−1) = Λ(s, χ).
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Proof of Main Global Theorem

When Re(s) > 1,

Z(s, φ, χ)

=

∫

A×
φ(x) · χ(x)|x|s d×x

=

∫

|x|≥1
(...) +

∫

|x|≤1
(...)

=(I) + (II)

Now observe that the integral (I) is absolutely

convergent on C, so that it defines an entire

function. Indeed, we have already noted that

(I) and (II) are convergent for Re(s) > 1.
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Assume that Re(s) ≤ 1, and let’s examine (I).

For |x| ≥ 1, one has the following

Miracle: |x|t ≤ |x|2 if t ≤ 1,

so that the integrand

|φ(x)χ(x)|x|s| = |φ(x)| · |x|Re(s) ≤ |φ(x)| · |x|2

Hence, the integral converges even better!

So the main issue is the integral (II).
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We shall show, using Poisson summation,

Lemma: For Re(s) > 1 :

(II) =

∫

|x|≥1
φ̂(x)χ(x)−1|x|1−s d×x

+
(κφ̂(0))

s− 1
−

(κφ(0))

s

This gives:

Z(s, φ, χ) =

∫

|x|≥1
φ(x) · χ(x)|x|s d×x

+

∫

|x|≥1
φ̂(x) · χ(x)−1|x|1−s d×x.

+
(κφ̂(0))

s− 1
−

(κφ(0))

s

This gives meromorphic cont., and the func-

tional eqn, since this expression is defined for

all s and is invariant under

(s, χ, φ) 7→ (1 − s, χ−1, φ̂)
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Proof of Lemma

First use A× ∼= R×
+ × A1 to break (II) into a

double integral:

∫

|x|≤1
φ(x) · χ(x)|x|s d×x

=

∫ 1

0

∫

A1
φ(tx) · χ(tx)ts d×t d×x

=

∫ 1

0
χ(t) · ts · Zt(φ, χ) d

×t

with

Zt(φ, χ) =

∫

A1
φ(tx) · χ(x) d×x.
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Now

Zt(φ, χ)

=

∫

F×\A1

∑

γ∈F×

φ(tγx) · χ(γx) d×x

=
∫

E




∑

γ∈F

φ(tγx)



 · χ(x) d×x− φ(0)
∫

E
χ(x)d×x

=

∫

E



1

t
·

∑

γ∈F

φ̂(γ/tx)



 · χ(x) d×x− (A)

=
1

t
·
∫

A1
φ̂(1/tx)χ(x)d×x+

1

t
· φ̂(0) ·

∫

E
χ(x)d×x− (A)

=
1

t
Z1/t(φ̂, χ

−1) +
1

t
· (B) − (A)
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Here,

(A) = φ(0) ·
∫

E
χ(x)d×x

=






φ(0) · V ol(E), if χ “unramified”;

0,otherwise

and

(B) = φ̂(0) ·
∫

E
χ(x)d×x

=





φ̂(0) · V ol(E) if χ “unramified”

0, otherwise.

Here, χ “unramified” means “χ is trivial on

A1”. This is stronger than the condition that

χ =
∏
v χv with χv unramified for all v, which is

what one typically means by “unramified χ”.
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So assuming wlog that χ = 1 if it is unramified,

we have:

(II) =

∫ 1

0
χ(t) · ts · Zt(φ, χ) d

×t

=

∫ 1

0
χ(t) · ts−1 · Z1/t(φ̂, χ

−1) d×t

+ (B) ·
∫ 1

0
ts−1 d×t− (A) ·

∫ 1

0
ts d×t

=

∫ ∞

1
χ(t)−1t1−sZt(φ̂, χ

−1)d×t+
(B)

s− 1
−

(A)

s

=

∫

|x|≥1
φ̂(x) · χ(x)−1|x|1−s d×x+

(B)

s− 1
−

(A)

s

This proves the lemma, and thus the main

global theorem.
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Summary:

(i) One considers a family of global zeta inte-

grals, and express them as the product over v

of local zeta integrals, at least when Re(s) ≫ 0.

(ii) Study the local zeta integrals, and use

them to define local L-factors (as GCD’s) and

local epsilon factors (via local functional eqn);

this defines the global L-function and global

epsilon factor when Re(s) ≫ 0.

(iii) Prove meromorphic continuation of global

zeta integrals and global functional equation.

(iv) Using (iii), deduce meromorphic continu-

ation and funtional eqn of global L-functions.

In the 2nd lecture, we will follow this paradigm.
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