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Jacobian quotients of polynomial mappings

E. Artal Bartolo (University of Zaragoza)

Let φ := (f, g) : C2 → C2 where f and g are polynomial maps. A relationship is established
between the following two objects: on the one hand, the Newton polygon of the union of
the discriminant curve of φ and its non-properness locus, and on the other, the topological
type of the link at infinity of the affine curves f−1(0) and g−1(0). This is a joint work with
P. Cassou-Noguès and H. Maugendre.

Purely inseparable k-forms of affine algebraic curves

T. Asanuma (Toyama University)

Let k be a field of characteristic p > 0 and let k′ be a purely inseparable closure of k.
Given a commutative k-algebra B, a k-algebra A (resp. an algebraic scheme Spec A) is
called a purely inseparable k-form of B (resp. Spec B), if A⊗ k′ ∼= B ⊗ k′.

Theorem Let B be a one dimensional affine k-domain such that B⊗k′ is a regular domain
with the differential B ⊗ k′-module over k′ is free. Suppose p > 2. Then the following two
conditions are equivalent:
(1) A is a purely inseparable k-form of B.
(2) There exists an integer e ≥ 0 such that

A ∼= k[Bpe

, t2u, tuq] (q = (pe + 1)/2),

where t, u ∈ k1/pe

[B](⊂ B1/pe

) satisfy an equation

td(u) + 2ud(t) = 1

for a k1/pe

-derivation d of k1/pe

[B].
As an application we obtain a structure theorem of all k-forms of affine plane curves

W = Spec k[x, y]/(f(x, y)), when p > 2 and W is geometrically regular and geometrically
integral. In particular if the group of k′-automorphisms of k′[x, y]/(f(x, y)) is finite, then
there exist purely inseparable k-forms V of W such that V 6∼= W .

Birational maps from C2 to C2

P. Cassou-Noguès (Université Bordeaux I )

I will speak about a joint work (in progress) with P. Russell.
Considering birational maps from C2 to C2, can be seen as considering

Z −→ X = C2

↑ ↗
Y = C2

where Z = Fl \ S with S2 = k + 1, Y = Z \ C. Then the problem of studying birational
maps from C2 to C2, breaks in two parts

i) describing the morphisms Z −→ X
ii) describing all Y ⊂ Z, Y = Z \ C and Y w C2.
I will explain that for some classes of birational maps.
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Affine surfaces with trivial Makar-Limanov invariant

D. Daigle (University of Ottawa)

I will present joint work of Peter Russell and myself on the class of normal affine surfaces
S satisfying:

ML(S) is trivial and Pic(S′) is finite,

where S′ is the smooth locus of S. Our results include a complete classification of these
surfaces and of the Ga-actions on them. We also realize these surfaces as open subsets of
weighted projective planes. This classification is an elaborate corollary to our previous work
on affine rulings of weighted projective planes.

Embeddings of Danielewski Surfaces

G. Freudenburg∗ (University of Southern Indiana)

L. Moser-Jauslin (Université de Bourgogne)

A Danielewski surface S is any surface algebraically isomorphic to a surface in C3 defined
by a polynomial of the form P = xnz − p(y). In addition, S is called special iff its Makar-
Limanov invariant equals C. Note that a plane is a special Danieleski surface.

For every non-special Danielewski surface S, we produce a polynomial P ′ such that: (1)
the fibers defined by P − a and P ′ − a are holomorphically isomorphic (a ∈ C); (2) the
non-zero fibers of P and P ′ are algebraically non-isomorphic; (3) the zero fibers of P and P ′

are algebraically isomorphic. This implies that the two embeddings of S defined by these
zero fibers are algebraically non-equivalent.

In the case of certain special (non-planar) Danielewski surfaces, we produce P ′ such that
the non-zero fibers are algebraically isomorphic, but the zero fibers are not. This implies
that the embeddings of S defined by the non-zero fibers are not equivalent.

Our work is motivated by methods of Masuda and Petrie, who considered non-
linearizable algebraic actions of O(2) on C4 introduced by Schwarz. We also draw on
recent results of Makar-Limanov and Daigle concerning Danielewski surfaces.

3



First Joint Meeting RSME-AMS Session 01

Some new examples of 4-dimensional algebraic exotic structures

M. González Villa (Universidad Complutense de Madrid)

Kaliman and Makar Limanov proved in [4] that the Koras–Russell threefolds were algebraic
exotic structures. This result led to the linearization of C∗–actions on C3, [2]. We present
new examples of 4–dimensional exotic structures that somehow generalize the exotic Koras–
Russell threefolds. The examples enlighten the relation between the Derksen and Makar–
Limanov invariants and prove a conjecture of Artal–Bartolo, Luengo and Melle.
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Computing Unirational Fields of arbitrary transcendence degree

J. Gutierrez∗ (Universidad de Cantabria)

R. Rubio (Universidad de Cantabria)

D. Sevilla (Universidad de Cantabria)

In this talk we discuss the following computational problem: given an extension
K(f1, . . . , fm) ⊂ K(x1, . . . , xn), to compute an intermediate field F which is algebraic over
K(f1, . . . , fm), where K is a field of characteristic zero. This question has been considered
by various authors when the transcendence degree of K(f1, . . . , fn) is equal to 1 and when
it is equal to n. They presented methods to find such intermediate fields, and if n = 1 there
are algorithms in polynomial time.

Our approach requires to compute Groebner Basis, factorization in algebraic extensions
and a generalization of a result due to J. Schicho relating multivariate factorization to
decomposition problems.

We also study the generalization of these problems to the case where the field
K(x1, . . . , xn) is replaced by the field of fractions of K[x1, . . . , xn]/J for some prime ideal J
and also for positive characteristic fields.

4



First Joint Meeting RSME-AMS Session 01

Inverse Limits of Polynomial Rings

T. Kambayashi (Tokyo Denki University, Saitama)

Let A = lim←,i Ai be a pro-affine algebra over a field K (see Kambayashi [J. of Algebra,
185(1996),481–501; Osaka J. of Math., to appear]). Assume all Ai’s to be reduced, and
look at a pro-affine algebra Ã := lim←,i Ai[Ti] of polynomial algebras. We have studied the
question as to whether Ã is a polynomial A-algebra A[Y ] for a suitably chosen “variable”
Y ∈ Ã, and have gotten two answers:

Theorem 1. Let P = (P0 ← P1 ← · · · ← Pi ← · · · ) ⊂ A be any open prime and let
Si := Ai − Pi (∀i). Then, Ã is locally a polynomial algebra above P , i.e.

lim
←

((S−1
i Ai)[Ti]) ' (lim

←
(S−1

i Ai))[Y ] = AP [Y ].

Next, consider the inverse system U := (Ui : i ≥ 0) of units Ui of Ai. A is said to be
uniformly stable for units if U satisfies the Mittag-Leffler condition uniformly at every level
i.

Theorem 2. Assume A to be uniformly stable for units. Then, every Ã = lim←, i Ai[Ti]
is isomorphic to an A[Y ].

The explicit factorization of the Cremona transformation which is an
extension of the Nagata automorphism into elementary links

T. Kishimoto (Max-Planck-Institut fur Mathematik)

It is well known that every automorphism on the affine plane C2 is tame. In order to
see this fact from a point of view of algebro-geometric method, it is important to factor-
ize Cremona transformations on P 2 which are obtained as extensions of automorphisms
on C2 as performed, for example, in Miyanishi’s book: “Lectures on curves on rational
and unirational surfaces”. Meanwhile, the structure of automorphism groups on the affine
spaces for higher dimensional case is not understood at the present time completely. For
instance, we do not know whether the famous Nagata automorphism on the affine 3-space
C3 is tame or not. (I heared that Shestakov and Umirbaev seem to show that the Nagata
automorphism is not tame by algebraic method. But I can not obtain their preprint.) In my
opinion, it is an important step to observe the Cremona transformation on P 3 obtained as
an extension of the Nagata automorphism in order to decide whether it is tame or not by an
algebro-geometric method as in the two-dimensional case. In my talk, we shall factorize this
Cremona transformation on P3 explicitly into a finite number of elementary links according
to the Sarkisov Program.

Tame and wild coordinates of R[x,y]

C. M. Lam (The University of Hong Kong)

Let p be a polynomial in R[x, y]. p is a coordinate of R[x, y] if there is an automorphism ϕ
of R[x, y] such that ϕ(x) = p. A tame automorphism of R[x, y] is an automorphism which is
a composition of affine and elementary automorphisms of R[x, y]. p is a tame coordinate of
R[x, y] if there is a tame automorphism ϕ of R[x, y] such that ϕ(x) = p. A coordinate which
is not tame is called wild. In this talk, the speaker will introduce algorithms to determine
coordinates, tame and wild coordinates in R[x, y].
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Verbal Subgroups and Subalgebras in Skew Fields

A. Lichtman (University of Wisconsin-Parkside)

An example of a skew field D such that every element of D can be represented as an additive
commutator, that is for every element a ∈ D two elements b, c ∈ D can be found such that
a = [b, c] = bc− cb, was constructed first by Harris (see B. Harris, Proc. Amer. Math. Soc.
9 (1958), 628-630). We will consider in this paper the following more general problem. Let
R be a (skew) field, K be a central subfield of R , A(y1, y2, . . . ) be free associative algebra
over K with a free countable system of generators y1, y2, . . . , L be its free Lie subalgebra
generated by the elements yi (i = 1, 2, . . . ). If w = w(yi1 , yi2 , . . . , yin

) is an arbitrary non-
zero element of L then the values of w on the algebra R are defined in a natural way and
these values form a subset w(R) of R. Further let F be a free group with a free system of
generators x1, x2, . . . and v be an arbitrary non-unit element of F .
Theorem 1. Let D be an arbitrary (skew) field with a central subfield K. Then it can be
imbedded in a skew field ∆ which has the same cardinality as D if D is infinite, and ∆ is
countable if D is finite, and i) w(D) = D for every non-zero element w ∈ L. ii) v(∆∗) = ∆∗

for every non-unit element v ∈ F .
Corollary. Let D be an arbitrary (skew) field. Then it can be imbedded in a skew field ∆
such that every element of ∆ is an additive commutator and every non-zero element is a
multiplicative commutator.

On the two-dimensional subalgebras of polynomial algebras

L. Makar–Limanov (Wayne State University)

Let A = F [x1, x2, ..., xn] be an algebra of polynomials in n variables over a field K and let a, b
be a pair of algebraically independent elements of A. In the recent preprint of I. Shestakov
and U.Umirbaev, “Poisson brackets and two-generated subalgebras of rings of polynomials”
the authors obtained lower estimates for the homogeneous degree of a polynomial p(a, b) in
terms of the degrees of p relative to the first and second variable and the degrees of a and
b, if the characteristic of K is zero. In the talk I’ll outline how to obtain these estimates in
a way which allows generalizing them to a field of any characteristic and to free associative
algebras, as well as to non-homogeneous degrees.

The author was supported by an NSA grant while working on this project.
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Generic fibrations by A1 and A∗ over discrete valuation rings

N. Onoda (Fukui University)

Let (R, πR) be a discrete valuation ring with residue field k and quotient field K and let
A be an affine domain over R. Then we say that A is a generic A1-fibration (resp. generic
A∗-fibration) over R if the generic fiber of A over R is K-isomorphic to the polynomial ring
(resp. Laurent polynomial ring) in one variable over K.

Theorem. Suppose that A is normal.
(1) If A is a generic A1-fibration over R, then there exists a reduced Artin ring L such that

A/
√

πA ∼=k L[X].

(2) If A is a generic A∗-fibration over R, then there exists a reduced Artin ring L such that

A/
√

πA ∼=k L[X]×B,

where B = 0, the null ring, or B = k[X, X−1] or B = k[X, Y ]/(XY ).

The theorem is concerned with a family of fibers Sa of a surjective morphism ρ : S → A1,
where S is a normal affine surface defined over C. For example, if Sa

∼= A1 for every a 6= 0,
then (S0)red is a disjoint union of affine lines.

The monodromy group of a generic curve covering P1

T. Shaska (University of California at Irvine)

Let Xg be a generic curve of genus g and φ : Xg → P1 a degree n covering. What are
the possible groups that can occur as monodromy group of this covering? Zariski showed
that for g > 6 such monodromy group is not solvable. We continue on work of Fried and
Guralnick and discuss cases 2 ≤ g < 6.

The tame and wild polynomial automorphisms

I. Shestakov (University of Sao Paulo)

Not supplied.

7



First Joint Meeting RSME-AMS Session 01

Pseudorandom Walks on Elliptic Curves

I. Shparlinski (Macquarie University)

Let E be an elliptic curve over Fq give by an affine Weierstrass equation. For a point
G ∈ E(Fq), we consider sequences of points

Wn = eWn−1, n = 1, 2, . . . ,

where W0 = G, and
Un = Un−1 ⊕G, n = 1, 2, . . . ,

where U0 ∈ E(Fq). We show that from several points of view these sequences have good
pseudorandom properties: typically they have a long period, are uniformly distributed and
avoid certain structural linearities.

Joint work with Florian Hess and Tanja Lange.

Symmetric matrices, Invariants and the Jacobian Conjecture

A. van den Essen (University of Nijmegen)

In this talk (which is joint work with S.Washburn) it is shown that for all n ≤ 4 the Jacobian
Conjecture holds for all complex polynomial maps F : Cn → Cn of the form F = x + H,
where H is homogeneous of degree greater than one and JF is symmetric. It is also shown
that the analogues statement for real polynomial mappings F : Rn → Rn holds for all n.

Trivial, Locally Trivial, and Proper Ga-Actions on Affine n-space

P. van Rossum (New Mexico State Univerisity)

It is well know that on affine 3-space every proper Ga-action is in fact a translation (Deveney,
Finston, Gehre, 1994); in fact a recent result (Kaliman, 2003) even shows that every fixed
point free action on 3-space is a translation. On affine 5-space, there is an example of a
proper Ga-action that is not a translation, in fact that is not even locally trivial (Deveney,
Finston, 1995). There is also an example of locally trivial Ga-action on affine 5-space that
is not a translation (Winkelman, 1990). This talk will address the missing case of affine
4-space.

Jacobian Relations and Formal Inverse

D. Wright (Washington University)

We explore some methods for showing the formal inverse of a polynomial map F is again a
polynomial when F has Jacobian determinant 1. We assume F is a map from affine n-space
to itself having the form z−H with H homogeneous of degree d ≥ 2. The famous Jacobian
Conjecture (JC) is reduced to the case d = 3. Viewing H as a generic form, the Jacobian
hypothesis det JF = 1 is expressed as polynomial constraints on the “coefficients” of H,
which are now seen as indeterminates over Q. These Jacobian relations have a combinatoric
interpretation (“loop formulas”) in the spirit of known combinatoric expressions (“tree
formulas”) for the formal inverse coefficients. According to Hilbert’s Nullstellensatz and the
known degree bound for the inverse of a polynomial map, the JC is equivalent to showing
the inverse coefficients beyond degree dn−1 lie in

√
J , where J is the ideal generated by the

Jacobian relations. Specific cases can be checked by computer using Groebner bases, but
the large number of indeterminates imposes size/time limitations. The quest is to uncover
a combinatorial relationship between loops and trees which implies this ideal membership,
but we need to know how strong a statement one should expect. For example@: Is

√
J

really needed, or is J sufficient? Successful computations have shown that certain inverse
coefficients beyond the degree bound lie in

√
J but not in J . They also hint toward a

positive answer in the cubic linear situation.
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