FACTORIZATION OF THIRD ORDER ALGEBRO-GEOMETRIC ODOS ON SPECTRAL CURVES

S. L. RUEDA AND M. A. ZURRO

Abstract

We consider the classical factorization problem of a third order ordinary differential operator $L-\lambda$, for a spectral parameter λ. It is assumed that L is an algebrogeometric operator, i. e. it has a nontrivial centralizer, which can be seen as the affine ring of an algebraic curve, the famous spectral curve Γ. We give a symbolic algorithm, using differential subresultants, to factor $L-\lambda_{0}$ for all but a finite number of points $P=\left(\lambda_{0}, \mu_{0}, \gamma_{0}\right)$ of Γ based on the ring structure of the centralizer.

Introduction

The factorization of ordinary differential operators, from the point of view of symbolic computation, has attracted much attention at least for a couple of decades, see for instance [1, 8, 15, 14], just to name a few. For the factorization of second order algebro-geometric ordinary differential operator L, a new approach was recently presented in [10] to factorize $L-\lambda$. It is indeed the centralizer, the set of all operators commuting with a given operator L, the structure that guaranties an effective factorization of $L-\lambda$, for an spectral parameter λ.

Continuing with this line of work, in this occasion we consider the effective factorization problem of $L-\lambda$ for an ordinary third-order differential operator

$$
\begin{equation*}
L=\partial^{3}+u_{1} \partial+u_{0} \tag{1}
\end{equation*}
$$

with (stationary) potentials u_{0}, u_{1} in a differential field K, with derivation ∂ and field of constants \mathbb{C}, the field of complex numbers. The potentials u_{0} and u_{1} are assumed to be solutions of a stationary Boussinesq system 6].

Boussinesq systems have been widely studied, especially their rational solutions [4, 16]. They generate a hierarchy of integrable equations, the Boussinesq hierarchy, one of the Gelfand and Dickii integrable hierarchies of equations associated to differential operators of any order [5]. The stationary version of the Boussinesq hierarchy ultimately gives families of differential polynomials, in the coefficients of L, that are conditions for the existence of a nontrivial operator A commuting with L.

The Burchnall and Chaundy Theorem [2] establishes a correspondence between pairs of commuting differential operators, L and A, and algebraic curves, their spectral curve Γ,

[^0]classically defined by the so called Burchnall and Chaundy (BC) polynomial. It is another famous result, Schur's Theorem [13], the one ensuring that centralizers have quotient fields that are function fields of one variable, therefore they can be seen as affine rings of curves, and in a formal sense these centralizers are spectral curves.

This is the approach followed in our work. We develop a factorization algorithm for $L-\lambda_{0}, \lambda_{0} \in \mathbb{C}$, with $L \in K[\partial]$ as in (1), for almost every point $P_{0}=\left(\lambda_{0}, \mu_{0}, \gamma_{0}\right)$ of the spectral curve Γ of L. For this purpose, we have to establish an appropriate theoretical framework by means of Goodearl's results on centralizers, (7).

1. Factorization on the spectral curve

Let K be a differential field with constants field algebraically closed of zero characteristic. We present the third order operators associated to classical Boussinesq systems as treated in [6]. In consequence, we rewrite L as

$$
\begin{equation*}
L_{3}=\partial^{3}+q_{1} \partial+\frac{1}{2} q_{1}^{\prime}+q_{0} . \tag{2}
\end{equation*}
$$

Using the notation of [6], we consider a differential recursion given by two sequences of differential polynomials $f_{n, i}, g_{n, i}$ in the ring of differential polynomials $\mathbf{C}\left\{u_{0}, u_{1}\right\}$. By direct computation we verify that:

$$
\begin{equation*}
B s q_{3 n+3+i}=\mathcal{R} B s q_{3 n+i}, \text { with } B s q_{3 n+i}=\binom{3 \partial f_{n, i}}{3 \partial g_{n, i}} \text { for } i=1,2, \tag{3}
\end{equation*}
$$

and initial conditions $\left(f_{0,1}, g_{0,1}\right)=(0,1),\left(f_{0,2}, g_{0,2}\right)=(1,0)$, and we define the vectors:

$$
\begin{equation*}
v_{n+1, i}=\mathcal{R}^{*} v_{n, i}, \quad v_{n, i}=\binom{f_{n, i}}{g_{n, i}} \text { and } v_{0,1}:=\binom{0}{1}, v_{0,2}:=\binom{1}{0}, \tag{4}
\end{equation*}
$$

for matrices of pseudifferential operators:

$$
\mathcal{R}=\left(\begin{array}{ll}
\mathcal{R}_{1} & \mathcal{R}_{2} \tag{5}\\
\mathcal{R}_{3} & \mathcal{R}_{4}
\end{array}\right), \mathcal{R}^{*}=\partial^{-1} \mathcal{R} \partial=\left(\begin{array}{ll}
\partial^{-1} \mathcal{R}_{1} \partial & \partial^{-1} \mathcal{R}_{2} \partial \\
\partial^{-1} \mathcal{R}_{3} \partial & \partial^{-1} \mathcal{R}_{4} \partial
\end{array}\right)
$$

and pseudodifferential operators $\mathcal{R}_{1}=3 q_{0}+2 q_{0}^{\prime} \partial^{-1}, \mathcal{R}_{2}=2 \partial^{2}+2 q_{1}+q_{1}^{\prime} \partial^{-1}, \mathcal{R}_{4}=$ $3 q_{0}+q_{0}^{\prime} \partial^{-1}$, and $\mathcal{R}_{3}=-\frac{1}{6} \partial^{4}-\frac{5}{6} q_{1} \partial^{2}-\frac{5}{4} q_{1}^{\prime} \partial-\frac{2}{3} q_{1}^{2}-\frac{3}{4} q_{1}^{\prime \prime}+\left(-\frac{2}{3} q_{1} q_{1}^{\prime}-\frac{1}{6} q_{1}^{\prime \prime \prime}\right) \partial^{-1}$.

Whenever the coefficients of $\mathrm{L},\left(u_{0}, u_{1}\right)=\left(q_{1}, \frac{1}{2} q_{1}^{\prime}+q_{0}\right) \in K \times K$, satisfy a Boussinesq system $B s q_{\ell}=\mathbf{0}$, we say that L is a Boussinesq operator. From now on we will consider L to be a Boussinesq operator.

Next, let A be a differential operator in the centralizer of L in $K[\partial]$. We are interested in the common solutions of the system of linear differential equations

$$
(L-\lambda) \psi=0,(A-\mu) \psi=0 .
$$

The tools we have chosen to study this problem are the differential resultant and the differential subresultants due to the following theorem of E. Previato.
Theorem 1.1 (E. Previato, [11). Given $P, Q \in K[\partial]$ such that $[P, Q]=0$ then

$$
g(\lambda, \mu)=\partial \operatorname{Res}(P-\lambda, Q-\mu) \in C[\lambda, \mu]
$$

and also $g(P, Q)=0$. Hence g is a defining polynomial for the spectral curve associated to the pair P, Q.

Then we get the factorization formula (6). Moreover, the function ϕ in the next theorem can be effectively computed by means of differential subresultants [3]. See [12] for more details.

Theorem 1.2. Let L be a geometrically reducible Boussinesq operator, and Γ its spectral curve. There exists a rational function $\phi \in K(\Gamma)$ such that, for every point $P_{0}=\left(\lambda_{0}, \mu_{0}, \gamma_{0}\right)$ in $\Gamma \backslash Z$, the operator $L-\lambda_{0}$ has as right factor $\partial+\phi\left(P_{0}\right)=\operatorname{gcd}\left(\mathrm{L}-\lambda_{0}, \mathrm{~A}_{1}-\mu_{0}, \mathrm{~A}_{2}-\gamma_{0}\right)$.

Moreover, the following formula can be easily verified in $K[\partial]$:

$$
\begin{equation*}
L-\lambda_{0}=\left(\partial^{2}+\phi\left(P_{0}\right) \partial+\phi\left(P_{0}\right)^{2}+2 \phi\left(P_{0}\right)^{\prime}+u_{1}\right)\left(\partial+\phi\left(P_{0}\right)\right) . \tag{6}
\end{equation*}
$$

To illustrate our results, we perform our methods on $L=\partial^{3}-\frac{6}{x^{2}} \partial+\frac{12}{x^{3}}+h$, with $h \neq 0$, to obtain $A_{1}=\partial^{4}-\frac{8}{x^{2}} \partial^{2}+\frac{24}{x^{3}} \partial-\frac{24}{x^{4}}$ and $A_{2}=\partial^{5}-\frac{10}{x^{2}} \partial^{3}+\frac{40}{x^{3}} \partial^{2}-\frac{80}{x^{4}} \partial+\frac{80}{x^{5}}$ in the centralizer of L. An effective computation of the basis of the centralizer of $\frac{x}{L}$ is the first step towards an effective Picard-Vessiot theory for spectral problems iniciated in [10] and [9] for second order operators. We will address this topic in a near future work.

References

[1] M. Bronstein. On the factorisation of linear ordinary differential operators. Math. Comput. Simulation. Symbolic Computation, New Trends and Developments, 42:4 (1996), 387-389. https://doi.org/10.1016/S0378-4754(96)00013-4
[2] J.L. Burchnall and T.W. Chaundy. Commutative ordinary differential operators. Proc. Lond. Math. Soc., s2-21 (1923), 420-440. https://doi.org/10.1112/plms/s2-21.1.420
[3] M. Chardin. Differential Resultants and Subresultants. Proc. FCT'91. Lecture Notes in Computer Science. Springer-Verlag, 529 (1991), 471-485. https://doi.org/10.1007/3-540-54458-5_62
[4] P. Clarkson. Rational solutions of the classical Boussinesq system. Nonlinear Analysis: Real World Applications, 10 (2009), 3360-3371. https://doi.org/10.1016/j.nonrwa.2008.09.019
[5] L. A. Dickey. Soliton equations and Hamiltonian systems. World Scientific, 26 (2003). https://doi.org/10.1142/5108
[6] R. Dickson, F. Gesztesy and K. Unterkofler. A New Approach to the Boussinesq Hierarchy. Math. Nachr., 198 (1999), 51-108. https://doi.org/10.1002/mana. 19991980105
[7] K. R. Goodearl. Centralizers in differential, pseudo-differential and fractional differential operator rings. Rocky Mountain J. Math., 13:4 (1983), 573-618. http://doi.acm.org/10.1216/RMJ-1983-13-4-573
[8] M. van Hoeij. Factorization of differential operators with rational functions coefficients. J. Symbolic Comput., 24:5 (1997), 537-561. https://doi.org/10.1006/jsco. 1997.0151
[9] J. J. Morales-Ruiz, S.L. Rueda and M.A. Zurro. Spectral Picard-Vessiot fields for Algebrogeometric Schrödinger operators. Ann. Inst. Fourier (Grenoble), 71:3 (202), 1287-1324. https://doi.org/10.5802/aif. 3425
[10] J. J. Morales-Ruiz, S.L. Rueda and M.A. Zurro. Factorization of KdV Schrödinger operators using differential subresultants. Adv. Appl. Math., 120 (2020), 102065. https://doi.org/10.1016/j.aam.2020. 102065
[11] E. Previato. Another algebraic proof of Weil's reciprocity. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2:2 (1991), 167-171. https://eudml.org/doc/244084
[12] S. L. Rueda and M. A. Zurro. Factoring Third Order Ordinary Differential Operators over Spectral Curves. ArXiv, (2021), 13 pp. https://doi.org/10.48550/arxiv.2102.04733
[13] I. Schur. Über vertauschbare lineare Differentialausdrücke (German) [On permutable differential expressions]. Berlin Math. Gesellschaft, Sitzungsbericht. Arch. der Math., Beilage (German) [Meeting reports of the Berlin Mathematical Society], 4 (1905), 2-8. In I. Schur, Springer Collected Works in Mathematics, ISBN: 978-3-662-48753-2
[14] F. Schwarz. A factorization algorithm for linear ordinary differential equations. Proceedings of the ACM-SIGSAM 1989 international symposium on Symbolic and algebraic computation, (1989), 17-25. https://doi.org/10.1145/74540.74544
[15] M. F. Singer. Testing reducibility of linear differential operators: a group theoretic perspective. Appl. Algebra Engrg. Comm. Comput., 7:2 (1996), 77-104. https://doi.org/10.1007/BF01191378
[16] H. Sun and A. H. Chen. Exact solutions of the classical Boussinesq system. Arab Journal of Basic and Applied Sciences, 25:1 (2018), 85-91. https://doi.org/10.1080/25765299.2018.1449416
S. L. Rueda; Universidad Politécnica de Madrid

Email address: sonialuisa.rueda@upm.es
M. A. Zurro; Universidad Autónoma de Madrid

Email address: mangeles.zurro@uam.es

[^0]: The first author is member of the UPM Research Group "Modelos matemáticos no lineales".
 The second author is member of the UCM Research Group 910444 "Geometría algebraica y analítica real".

 Both authors are partially supported by the grant PID2021-124473NB-I00, "Algorithmic Differential Algebra and Integrability" (ADAI) from the Spanish MICINN.

 The talk at the 8IMM 2022 has been given by the second author.

