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Abstract. We consider the classical factorization problem of a third order ordinary diffe-
rential operator L − λ, for a spectral parameter λ. It is assumed that L is an algebro-
geometric operator, i. e. it has a nontrivial centralizer, which can be seen as the affine
ring of an algebraic curve, the famous spectral curve Γ. We give a symbolic algorithm,
using differential subresultants, to factor L − λ0 for all but a finite number of points
P = (λ0, µ0, γ0) of Γ based on the ring structure of the centralizer.

Introduction

The factorization of ordinary differential operators, from the point of view of symbolic
computation, has attracted much attention at least for a couple of decades, see for instance
[1, 8, 15, 14], just to name a few. For the factorization of second order algebro-geometric
ordinary differential operator L, a new approach was recently presented in [10] to factorize
L−λ. It is indeed the centralizer, the set of all operators commuting with a given operator
L, the structure that guaranties an effective factorization of L−λ, for an spectral parameter
λ.

Continuing with this line of work, in this occasion we consider the effective factorization
problem of L− λ for an ordinary third-order differential operator

(1) L = ∂3 + u1∂ + u0,

with (stationary) potentials u0, u1 in a differential field K, with derivation ∂ and field of
constants C, the field of complex numbers. The potentials u0 and u1 are assumed to be
solutions of a stationary Boussinesq system [6].

Boussinesq systems have been widely studied, especially their rational solutions [4, 16].
They generate a hierarchy of integrable equations, the Boussinesq hierarchy, one of the
Gelfand and Dickii integrable hierarchies of equations associated to differential operators of
any order [5]. The stationary version of the Boussinesq hierarchy ultimately gives families
of differential polynomials, in the coefficients of L, that are conditions for the existence of
a nontrivial operator A commuting with L.

The Burchnall and Chaundy Theorem [2] establishes a correspondence between pairs of
commuting differential operators, L and A, and algebraic curves, their spectral curve Γ,
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classically defined by the so called Burchnall and Chaundy (BC) polynomial. It is another
famous result, Schur’s Theorem [13], the one ensuring that centralizers have quotient fields
that are function fields of one variable, therefore they can be seen as affine rings of curves,
and in a formal sense these centralizers are spectral curves.

This is the approach followed in our work. We develop a factorization algorithm for
L − λ0, λ0 ∈ C, with L ∈ K[∂] as in (1), for almost every point P0 = (λ0, µ0, γ0) of the
spectral curve Γ of L. For this purpose, we have to establish an appropriate theoretical
framework by means of Goodearl’s results on centralizers, [7].

1. Factorization on the spectral curve

Let K be a differential field with constants field algebraically closed of zero characteristic.
We present the third order operators associated to classical Boussinesq systems as treated
in [6]. In consequence, we rewrite L as

(2) L3 = ∂3 + q1∂ +
1

2
q′1 + q0.

Using the notation of [6], we consider a differential recursion given by two sequences of
differential polynomials fn,i, gn,i in the ring of differential polynomials C{u0, u1}. By direct
computation we verify that:

(3) Bsq3n+3+i = RBsq3n+i, with Bsq3n+i =

(
3∂fn,i
3∂gn,i

)
for i = 1, 2,

and initial conditions (f0,1, g0,1) = (0, 1), (f0,2, g0,2) = (1, 0), and we define the vectors:

(4) vn+1,i = R∗vn,i, vn,i =

(
fn,i
gn,i

)
and v0,1 :=

(
0
1

)
, v0,2 :=

(
1
0

)
,

for matrices of pseudifferential operators:

(5) R =

(
R1 R2

R3 R4

)
, R∗ = ∂−1R∂ =

(
∂−1R1∂ ∂−1R2∂
∂−1R3∂ ∂−1R4∂

)
and pseudodifferential operators R1 = 3q0 + 2q′0∂

−1, R2 = 2∂2 + 2q1 + q′1∂
−1, R4 =

3q0 + q′0∂
−1, and R3 = −1

6∂
4 − 5

6q1∂
2 − 5

4q
′
1∂ − 2

3q
2
1 − 3

4q
′′
1 +

(
−2

3q1q
′
1 − 1

6q
′′′
1

)
∂−1.

Whenever the coefficients of L, (u0, u1) = (q1,
1
2q
′
1 + q0) ∈ K ×K, satisfy a Boussinesq

system Bsq` = 0, we say that L is a Boussinesq operator. From now on we will consider L
to be a Boussinesq operator.

Next, let A be a differential operator in the centralizer of L in K[∂]. We are interested
in the common solutions of the system of linear differential equations

(L− λ)ψ = 0, (A− µ)ψ = 0.

The tools we have chosen to study this problem are the differential resultant and the diffe-
rential subresultants due to the following theorem of E. Previato.

Theorem 1.1 (E. Previato, [11]). Given P,Q ∈ K[∂] such that [P,Q] = 0 then

g(λ, µ) = ∂Res(P − λ,Q− µ) ∈ C[λ, µ]

and also g(P,Q) = 0. Hence g is a defining polynomial for the spectral curve associated to
the pair P , Q.
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Then we get the factorization formula (6). Moreover, the function φ in the next theorem
can be effectively computed by means of differential subresultants [3]. See [12] for more
details.

Theorem 1.2. Let L be a geometrically reducible Boussinesq operator, and Γ its spectral
curve. There exists a rational function φ ∈ K(Γ) such that, for every point P0 = (λ0, µ0, γ0)
in Γ\Z, the operator L− λ0 has as right factor ∂ + φ(P0) = gcd (L− λ0,A1 − µ0,A2 − γ0).

Moreover, the following formula can be easily verified in K[∂]:

(6) L− λ0 = (∂2 + φ(P0)∂ + φ(P0)
2 + 2φ(P0)

′ + u1)(∂ + φ(P0)).

To illustrate our results, we perform our methods on L = ∂3 − 6
x2∂ + 12

x3 + h, with h 6= 0,
to obtain A1 = ∂4− 8

x2∂
2+ 24

x3∂− 24
x4 and A2 = ∂5− 10

x2∂
3+ 40

x3∂
2− 80

x4∂+ 80
x5 in the centralizer

of L. An effective computation of the basis of the centralizer of L is the first step towards
an effective Picard-Vessiot theory for spectral problems iniciated in [10] and [9] for second
order operators. We will address this topic in a near future work.
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