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Abstract. Using the standard Coxeter presentation for the symmetric group Sn, two
reduced expressions for the same group element w are said to be commutationally equiv-
alent if one expression can be obtained from the other one by applying a finite sequence
of commutations. The commutation classes can be seen as the vertices of a graph C(w),
where two classes are connected by an edge if elements of those classes differ by a long
braid relation. We establish a statistic on the classes of C(w), inducing a rank poset
structure on C(w) with a unique minimal and a unique maximal element. This allows
us to give a precise formula for the diameter of the graph C(w). We recover, as special
cases, the diameter of the commutation graph for the longest element of the symmetric
group and the characterization of fully commutative permutations obtained by S. Billey,
W. Jockusch and R. Stanley.

Introduction

Given an integer n ≥ 2, we let Sn denote the symmetric group on the alphabet [n] =
{1, . . . , n}, with composition of permutations performed from right to left. The symmetric
group Sn is an example of the more general concept of a Coxeter group, which are groups
G that can be generated by a set S = {s1, . . . , sm} ⊂ G satisfying relations (sisj)

mij = 1,
where mii = 1 and mij ≥ 2 for i 6= j. Any element w ∈ G can be written as a finite product
of elements of S. If w = si1si2 · · · si` with ` minimal, the word i1i2 · · · i` is called a reduced
word (or reduced decomposition) of g. In this case, we define the length of w by `(w) = `.
The set of all reduced words of w is denoted by R(w).

The symmetric group has a Coxeter representation with generators si, the adjacent trans-
position interchanging the elements i and i+ 1, for 1 ≤ i ≤ n− 1, which satisfy the Coxeter
relations

sisj = sjsi for |i− j| ≥ 2,(1)
sisi+1s1 = si+1sisi+1 for 1 ≤ i ≤ n− 2,(2)

and s2i = 1, the identity element. The relations (1) are known as commutations or short
braid relations, and the relations (2) are called long braid relations.

The graph G(w), having vertex set R(w) and a edge connecting two reduced words if they
differ by a single Coxeter relation has been considered by several authors. Contracting the
commutation edges of G(w) leads to the associated graph C(w), known as the commutation
graph of w, which has also received some attention. Elnitsky [2] established a bijection
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between the vertices of C(w) and rhombic tilings of certain polygons, and proved that C(w)
is bipartite. The diameter of C(wo) has been computed in [3], and a connection to geometric
representation theory has been explored.

In this talk, we establish a statistic on the classes of C(w), inducing a rank poset structure
on C(w) with a unique minimal and a unique maximal element. This allows us to give a
precise formula for the diameter of the graph C(w). We recover, as special cases, the
diameter of the commutation graph for the longest element wo and the characterization of
fully commutative permutations obtained by Billey, Jockusch and Stanley [1].

1. A statistic on C(w)

The Rothe diagram for w = w1w2...wn, denoted by D(w), gives a graphical representation
of the inversion pairs of w and can be obtained by writing w vertically along the y-axis,
with wi at height i, and writing the positive numbers along the x-axis. Then, with this
numerical arrangement of rows and columns, place a cell in position (wj , i) whenever this is
an inversion pair for w, for each i, j ∈ n. The cells of D(w) correspond to inversions in w,
namely (p, q) ∈ D(w) if and only if (wp, q) is an inversion of w.

A labelling of the cells of the Rothe diagram for a permutation w ∈ Sn with the positive
integers in [`(w)] is called a standard balanced tableaux if for any entry of the diagram, the
number of entries to its right that are greater is equal to the number of entries above it that
are smaller. Denote the set of all standard balanced tableaux on D(w) by SBT(w).

S. Fomin et al. [5] stablished a bijection a 7→ Pa between R(w) and SBT(w), and we can
define maps ci and bi in SBT(w) that translates to the tableaux setting the short and long
relations defined in R(w).

Given a permutation w ∈ n, define the set of inversion triples

Tw = {(wk, wj , wi) : wi > wj > wk and i < j < k},

form by all triples (x, y, z) in [n] such that (z, y), (z, x) and (y, x) are inversions for w.

Definition 1.1. Given a permutation w ∈ n, define the map Γ on the cartesian product
Red(w)× Tw by setting

Γ(a, (x, y, z)) =

{
1, if Pa(y, x) > Pa(z, y)

0, if Pa(y, x) < Pa(z, y)
,

where Pa(y, x) denotes the label in position (y, x) of Pa.

The Γ function is class invariant, that is two reduced words a, b ∈ Red(w) are in the same
commutation class if and only if Γ(a, (x, y, z)) = Γ(b, (x, y, z)), for all triple (x, y, z) ∈ Tw.
Moreover, there is one and only one commutation class [amin] (resp. [amax]) in C(w) for
which Γ(amin, (x, y, z)) = 0 (resp. Γ(amin, (x, y, z)) = 1) for all (x, y, z) ∈ Tw.

Definition 1.2. Given a, b ∈ Red(w), let

t(a, b) =
∑

(x,y,z)∈Tw

Γ(a, (x, y, z))⊕2 Γ(b, (x, y, z)),

where ⊕2 represents the sum modulo 2.
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The map t : R(w) → {1, 2, . . . , |Tw|} defined by t(a) = t(amin, a) is a rank function for
the graph C(w).

Proposition 1.3. Let w ∈ Sn. The partial order defined on the commutation classes of
C(w) given by the transitive closure of covering relations

[a] < [b] if [a] ∼
L

[b] and t(b) = t(a) + 1,

makes C(w) into a ranked partially ordered set with a unique minimal element [amin] and a
unique maximal element [amax].

Using this rank function, we can give a formula for the diameter of C(w).

Theorem 1.4. The diameter of C(w) is equal to the cardinality of Tw.

We recover, as special cases, the diameter of the commutation graph for the longest
element of the symmetric group and the characterization of fully commutative permutations
obtained by S. Billey, W. Jockusch and R. Stanley.

Corollary 1.5 (Billey, Jockusch, and Stanley, 1993). A permutation w ∈ Sn is fully com-
mutative if and only if it is 321-avoiding.

Corollary 1.6. The diameter of the commutation graph for the longest permutation w0 of
Sn is

(
n
3

)
.
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