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Abstract. We address the problem of finding a polynomial curve that best fits a given
data set of time-labelled points on a Riemannian manifold. The main drawback for defining
the problem is the lack of explicit expressions for polynomials on manifolds. To overcome
this issue, we propose a variational approach and derive the corresponding Euler-Lagrange
equations. Due to the high nonlinearity of the Euler- Lagrange equations, we also pro-
pose a numerical optimization approach to obtain solutions for the problem. Numerical
simulations will be provided in some specific Riemannian manifolds.

Introduction

The classical least squares method has been used for the first time in 1809, when Gauss
and Legendre were predicting the planetary motion. In this classical setting, it is given a
set of k + 1 points, p0, . . . , pk, in Rn, a set of k + 1 instants of time 0 = t0 < · · · < tk = 1,
and the objective is to find a polynomial curve of degree m (m ≤ k)

γ : [0, 1] −→ Rn
t 7−→ γ(t) = a0 + a1t+ · · ·+ amt

m,

that yields the minumum value for the functional

E(γ) =
k∑
i=0

d2(pi, γ(ti)),

where d stands for the Euclidean distance. It is easy to prove the existence and uniqueness
of the solution for this classical problem.

Our goal is to generalize this classical problem in the more general context of manifolds.
However, in general, no explicit formulas for polynomials on manifolds are available. Fol-
lowing previous works [?] and [?], where polynomials on manifolds have been defined as the
extremals of a certain functional, we proposed in [?] the following variational problem on a
complete Riemannian manifold M :

(P) min
γ∈C

1

2

k∑
i=0

d2
(
pi, γ(ti)

)
+
λ

2

∫ 1

0

〈Dmγ

dtm
,
Dm

dtm

〉
dt,

where d is now the geodesic distance in M ,
D

dt
denotes the covariant derivative with respect

to the Levi Civita connection in M , λ denotes a positive real parameter and where C is
the family of curves γ : [0, 1] → M of class Cm−1, such that the restriction of γ to each
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subinterval [ti−1, ti] is smooth, for i = 1, . . . , k. Moreover, it is assumed that
Djγ

dtj
(t+i ) and

Djγ

dtj
(t−i ) exist for all j ≥ m and i = 0, . . . , k.

Using appropriate tools from the calculus of variations on Riemannian manifolds, the
Euler-Lagrange equations are obtained in the next result.

Theorem 0.1. A necessary condition for γ to be a solution for (P) is that γ ∈ C2m−2([0, 1]),
satisfies

D2mγ

dt2m
+

m∑
j=2

(−1)jR
(D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)dγ
dt

= 0, ∀t ∈ [ti−1, ti], (i = 1, . . . , k),

and

Djγ

dtj
(t+i )−

Djγ

dtj
(t−i ) =


0 j = 1, . . . ,m− 1 (i = 1, . . . , k − 1)
0 j = m, . . . , 2m− 2 (i = 0, . . . , k)
...

...
...

(−1)m
λ exp−1γ(ti)(pi) j = 2m− 1 (i = 0, . . . , k),

where exp−1q (p) denotes the velocity vector of the minimizing geodesic connecting points p
and q (oriented from p to q).

We can deduce some properties directly from the above Euler-Lagrange equations. Namely,
the geometric mean and the geodesic that best fits the given data arise as limiting processes
of problem (P).

In order to obtain approximate solutions for problem (P), we closely follow the approach
given in [?] for the Euclidean sphere. This numerical optimization procedure consists in the
discretization of the functional defined in (P), where geometric finite differences are used
to approximate the covariant derivatives [?]. As an example, let us consider the case when
m = 2. The forward, central and backward geometric differences are given respectively by

D2γ

dt2
(t0) ≈ 1

h2

(
exp−1γ(t0)(γ(t2))− 2 exp−1γ(t0)(γ(t1))

)
D2γ

dt2
(ti) ≈ 1

h2

(
exp−1γ(ti)(γ(ti+1)) + exp−1γ(ti)(γ(ti−1))

)
D2γ

dt2
(tk) ≈ 1

h2

(
exp−1γ(tk)(γ(tk−2)− 2 exp−1γ(tk)(γ(tk−1))

)
.

Numerical illustrations for different values of m (order of covariant derivative) and dif-
ferent number of points will be given in some specific Riemannian manifolds.
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