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Abstract. In this work we study the following class of systems of coupled nonlinear
fractional Schrödinger equations,{

(−∆)su1 + λ1u1 = µ1|u1|2p−2u1 + β|u2|p|u1|p−2u1 in RN ,

(−∆)su2 + λ2u2 = µ2|u2|2p−2u2 + β|u1|p|u2|p−2u2 in RN ,

where u1, u2 ∈ W s,2(RN ), with N = 1, 2, 3; λj , µj > 0, j = 1, 2, β ∈ R, p ≥ 2 and
p− 1

2p
N < s < 1. We prove the existence of positive radial bound and ground state

solutions provided the parameters β, p, λj , µj , (j = 1, 2) satisfy appropriate conditions.
We also study the previous system with m-equations,

(−∆)suj + λjuj = µj |uj |2p−2uj +

m∑
k=1
k 6=j

βjk|uk|p|uj |p−2uj , uj ∈W s,2(RN ); j = 1, . . . ,m

where λj , µj > 0 for j = 1, . . . ,m ≥ 3, the coupling parameters βjk = βkj ∈ R for
j, k = 1, . . . ,m, j 6= k. We prove similar results as for m = 2, depending on the values of
the parameters p, βjk, λj , µj .

Introduction

In this work we study the existence of positive solutions to the following system of coupled
nonlinear fractional Schrödinger (NLFS) equations,

(1)

{
(−∆)su1 + λ1u1 = µ1|u1|2p−2u1 + β|u2|p|u1|p−2u1 in RN ,
(−∆)su2 + λ2u2 = µ2|u2|2p−2u2 + β|u1|p|u2|p−2u2 in RN ,

where uj ∈ W s,2(RN ) with N = 1, 2, 3; λj , µj > 0 for j = 1, 2, the coupling factor β ∈ R,

p ≥ 2 and
p− 1

2p
N < s < 1. We also study the previous system with m-equations,

(2) (−∆)suj + λjuj = µj |uj |2p−2uj +
m∑
k=1
k 6=j

βjk|uk|p|uj |p−2uj ,
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with uj ∈ W s,2(RN ), λj , µj > 0, j = 1, . . . ,m ≥ 3, the coupling parameters βjk = βkj ∈ R
for j, k = 1, . . . ,m, j 6= k. We prove similar results as for (1), depending on the values of
the parameters p, βjk, λj , µj .

Problems like (1) have been widely investigated with the classical Laplacian (s = 1) in
the last years so it is complicated to give a complete list of references. We refer, among
others, to [2, 3, 5, 6, 11, 13, 15, 16, 18, 24, 25, 26, 29, 30, 32, 34, 36, 37] and references
therein. It is well known that solutions of (1), at least for the classical case s = 1, are
related to the solitary waves of the Gross-Pitaevskii equations, which have applications in
many physical models, such as in nonlinear optics (cf. [1, 27, 28]) and in multi-species
Bose-Einstein condensates (cf. [10, 31]). Actually, a planar light beam propagating in the
z direction in a non-linear medium, can be described by a vector NLS equation like

iEz + Exx + κ|E|2E = 0,

where i, E(x, z) denote the imaginary unit and the complex envelope of an Electric field,
respectively. If E is the sum of two right- and left-hand polarized waves a1E1 and a2E2,
aj ∈ R, then, assuming κ = 1, solitary wave solutions Ej(z, x) = eiλjzuj(x), where λj > 0
and uj(x) are real valued functions, provide us with the system

(3)
{
−u′′1 + λ1u1 = (a2

1u
2
1 + a2

2u
2
2)u1,

−u′′2 + λ2u2 = (a2
1u

2
1 + a2

2u
2
2)u2.

If we take the coupling factor a2
1 = a2

2 := β as a parameter and let the coefficients of u3
j ,

namely µj > 0, to be different, then (3) corresponds to (1) with N = 1, s = 1 and p = 2.
Similarly, looking for solitary wave solutions for the NLFS equation in RN ,

iEz − (−∆)sE + κ|E|2E = 0,

one arrives to system (1) with p = 2. We point out that this type of nonlocal diffusion
involving the fractional Laplacian (−∆)s arises in several physical phenomena like flames
propagation and chemical reactions, population dynamics, geophysical fluid dynamics, as
well as in probability, American option in finance or in α-stable Lévy processes (with α = 2s)
(cf. [4, 7, 14, 35]). Here we are interested in systems of coupled NLFS equations involving
the so called fractional Schrödinger operator, (−∆)s + λ Id, (cf. [17, 22, 23]).

Our main aim is then to give a classification of positive solutions of (1) and also for the
system with m-equations (2). Precisely, we will prove the following.

-Existence of positive radial ground states under the following hypotheses:

• p = 2 and the coupling coefficient β > Λ′; see Theorem 3.2,
• p ≥ 2 and the coupling coefficient β satisfying hypothesis (H); see Theorem 4.3.

-Existence of radial bound states when:

• p = 2 and β < Λ; see Theorem 3.3-(i) which are positive provided β > 0,
• p > 2 and β ∈ R; see Theorem 3.3-(ii), which are positive when β > 0,
• p ≥ 2 and β ∼ 0; see Theorem 3.3-(iii) and Theorem 4.4. The radial bound states
are positive for β > 0. We also prove a bifurcation result.
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1. Preliminaries and Notation

Given 0 < s < 1, the nonlocal operator (−∆)s in RN is defined on the Schwartz class of
functions g ∈ S through the Fourier transform,

[(−∆)sg]∧ (ξ) = (2π|ξ|)2s ĝ(ξ),

or via the Riesz potential, (cf. [21, 33]). Observe that s = 1 corresponds to the classical
Laplacian. There is another way of defining this operator. In fact, for s = 1

2 , the square
root of the Laplacian acting on a function u in the whole space RN , can be calculated as the
normal derivative of its harmonic extension to the upper half-space RN+1

+ , this is so-called
Dirichlet to Neumann operator. Based on this idea, Caffarelli and Silvestre (cf. [9]) proved
that (−∆)s can be realized in a local way by using the s-harmonic extension.

More precisely, given u a regular function in RN , we define its s-harmonic extension to
the upper half-space RN+1

+ , denoted by w = Es[u], as the solution to the problem{
−div(y1−2s∇w) = 0 in RN+1

+ ,

w = u on RN × {y = 0}.

The key point of the s-harmonic extension comes from the following identity (cf. [9]),

−κs lim
y→0+

y1−2s∂w

∂y
(x, y) = (−∆)su(x),

with κs = 22s−1 Γ(s)
Γ(1−s) . The above Dirichlet-Neumann procedure provides a formula for the

fractional Laplacian in RN , equivalent to that obtained using the Fourier transform. In
this case, the s-harmonic extension and the fractional Laplacian have explicit expressions
in terms of the Poisson and the Riesz kernels respectively (cf. [8]),

w(x, y) = cN,s y
2s

∫
RN

u(z)

(|x− z|2 + y2)
N+2s

2

dz, (−∆)su(x) = dN,s

∫
RN

u(x)− u(y)

|x− y|N+2s
dy.

The appropriate functional spaces to work with are the Sobolev spaces Ḣs(RN ) andXs(RN+1
+ ),

defined as the completion of C∞0 (RN ) and C∞0 (RN+1
+ ) respectively, under the norms

‖ψ‖2
Ḣs =

∫
RN

|(−∆)
s
2ψ(x)|2dx, ‖φ‖2Xs = κs

∫
RN+1
+

y1−2s|∇φ(x, y)|2dxdy.

The extension operator Es : Ḣs(RN )→ Xs(RN+1
+ ), u 7→ w = Es[u], is an isometry between

Ḣs(RN ) and Xs(RN+1
+ ), that is, ‖ϕ‖Ḣs = ‖Es[ϕ]‖Xs for all ϕ ∈ Ḣs(RN ). Moreover, there

exists C = C(N, s) > 0 such that (cf. [8]), ‖w(·, 0)‖L2∗s ≤ C‖w‖Xs for all w ∈ Xs(RN+1
+ ).

Along the work we will use the following notation:
• E := W s,2(RN ), denotes the fractional Sobolev space with scalar product and norm

(u | v)j =

∫
RN

[(−∆)
s
2u(−∆)

s
2 v + λjuv]dx, ‖u‖2j = (u | u)j , j = 1, 2.

• E := E × E; the elements in E will be denoted by u = (u1, u2); as a norm in E we
will take ‖u‖2E = ‖u1‖21 + ‖u2‖22.
• for u ∈ E, u ≥ 0 (resp. u > 0) means that uj ≥ 0, (resp. uj > 0), for all j = 1, 2.
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For u ∈ E, (resp. u ∈ E), we set

F (u) =
1

2p

∫
RN

µ1|u1|2p + µ2|u2|2pdx, G(u) =
1

p

∫
RN

|u1|p|u2|pdx,

Ij(u) =
1

2
‖u‖2j −

1

2p
µj

∫
RN

|u|2pdx, Φ(u) =
1

2
‖u‖2E − F (u)− β G(u).

We remark that F and G are well defined because p−1
2p N < s < 1 guarantees 2p < 2∗s which

in turn implies the continuous Sobolev embedding E ↪→ L2p(RN ).
Any critical point u ∈ E of Φ gives rise to a solution of (1). If u 6= 0 we say that such a

critical point is non-trivial. We also say that a solution u of (1) is positive if u > 0.

Definition 1.1. We say u=(u1, u2)∈E is a bound state to (1) iff it is a critical point of Φ.

Definition 1.2. A positive bound state u > 0 is called a ground state of (1) if its energy is
minimal among all the non-trivial bound states, namely

Φ(u) = min{Φ(v) : v ∈ E \ {0}, Φ′(v) = 0}.

Ground states are candidates to be orbitally stable for evolution equations (cf. [12]).

2. The Nehari manifold and preliminary results

To find critical points of Φ we will use the so-called Nehari manifold approach. Let us set
Ψ(u) = (Φ′(u) | u) = ‖u‖2E − 2pF (u)− 2pβ G(u), then, we define the Nehari manifold as

M = {u ∈ Erad \ {0} : Ψ(u) = 0},

where rad means radial. Plainly,M contains all the non-trivial critical points of Φ on Erad.

Proposition 2.1. We have that u ∈ E is a non-trivial critical point of Φ if and only if
u ∈M and is a critical point of Φ constrained toM.

Consequently,M is called a natural constraint for Φ. The key point of the Nehari manifold
approach is that Φ is bounded from below onM so that one can try to minimize Φ onM.

Concerning the Palais-Smale (PS) condition, for N = 1, we have no compact embedding
of E into Lq(R) for any 1 < q < 2∗s. Nevertheless, we will prove that for a given PS sequence
we can find a subsequence its weak limit is a bound state. By the compact embeddings in
the radial case, for 1 < N ≤ 3 the PS condition follows by a standard argument.

Lemma 2.2. Assume 1 < N ≤ 3. Then Φ satisfies the (PS) condition on M: every
un ∈M such that Φ(un)→ c and ∇MΦ(un)→ 0 has a strongly convergent subsequence.

Next, we need some existence results for the decoupled equations that allow us to state
the character as critical points of the semi-trivial solutions. To that end, we recall that

(4) (−∆)su+ u = |u|αu in RN , u ∈ E, u 6≡ 0,

has a unique radial positive solution (cf. [19, 20]) for 0 < α < 4s
N−2s . It is clear that, for

any β ∈ R, system (1) has two semi-trivial positive solutions, u1 = (U1, 0) and u2 = (0, U2),
where Uj is the unique radial positive solution of

(5) (−∆)su+ λju = µj |u|2p−2u.
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Thus, if we set Uj(x) =

(
λj
µj

) 1
2p−2

U(λ
1
2s
j x), j = 1, 2, with U the unique positive radial

solution of (4), then Uj are solutions of (5). Hence, to find non-trivial solutions, one has to
find solutions having both components not identically zero.
We are ready to show existence of non-negative solutions of (1) different from uj , j = 1, 2.
Let us define Λ = min{γ12, γ21} and Λ′ = max{γ12, γ21} where

γ12 = inf
ϕ∈Erad\{0}

‖ϕ‖22∫
RN

U2
1ϕ

2dx

, γ21 = inf
ϕ∈Erad\{0}

‖ϕ‖21∫
RN

U2
2ϕ

2dx

.

The existence of nontrivial nonnegative solutions to (1) relies on the next result.

Proposition 2.3. The following holds:
(1) If p = 2, then

(i) for any β < Λ, the semi-trivial solutions uj, are strict local minima of Φ|M.
(ii) for any β > Λ′, the semi-trivial solutions uj, j = 1, 2, are saddle points of Φ|M.

In particular, we have infMΦ < min{Φ(u1),Φ(u2)}.
(2) If p > 2, for any β ∈ R, the semi-trivial solutions uj are strict local minima of Φ|M.

3. Existence Results

By Proposition 2.1, to find a non-trivial solution of (1) it is enough to find a critical point
of Φ|M. This will follow from Proposition 2.3 and the PS condition (Lemma 2.2 if N = 2, 3).

Proposition 3.1. The following holds:
(1) If p = 2,

(i) for any β < Λ, the functional Φ has a Mountain-Pass (MP) critical point u∗

onM. Moreover, one has Φ(u∗) > max{Φ(u1),Φ(u2)}.
(ii) for any β > Λ′, the functional Φ has a global minimum ũ on M. Moreover,

one has Φ(ũ) < min{Φ(u1),Φ(u2)}.
(2) If p > 2, for any β ∈ R the functional Φ has a MP critical point u∗ onM. Moreover,

one has Φ(u∗) > max{Φ(u1),Φ(u2)}.

3.1. Existence of ground states. This result relies on Proposition 3.1–(1)-(ii), providing
a MP critical point ũ with Φ(ũ) < min{Φ(u1),Φ(u2)}, which will lead to a ground state.

Theorem 3.2. If p = 2 and β > Λ′, system (1) has a positive radial ground state ũ.

3.2. Existence of bound states. Proposition 3.1–(1)-(i), –(2)-(i) provide MP critical
points with energy greater than max{Φ(u1),Φ(u2)} and, hence, will not lead a ground state.
The restriction β > 0 arises naturally in order to apply the strong maximum principle.

Theorem 3.3. The following holds:
(i) Assuming p = 2 and β < Λ, the system (1) has a radial bound state u∗ such that

u∗ 6= uj, j = 1, 2. Moreover, if 0 < β < Λ, then u∗ > 0.
(ii) Assuming p > 2 and β ∈ R, the system (1) has a radial bound state u∗ such that

u∗ 6= uj, j = 1, 2. Moreover, if β > 0, then u∗ > 0.
(iii) If p ≥ 2 and β = εb and |ε| small enough, then system (1) has a radial bound state

u∗ε such that u∗ε → z := (U1, U2) as ε→ 0. Moreover, if β = εb > 0 then u∗ε > 0.
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4. Some results for systems with more than 2 equations

The above arguments allow us to prove weaker existence results for systems with m ≥ 3
equations, indeed to prove existence of nonnegative bound and ground state solutions. How-
ever, following [25] and [3], we will prove the existence of positive radial ground and bound
states respectively. To simplify, we start showing the results for the system

(6)

 (−∆)su1 + λ1u1 = µ1|u1|2p−2u1 + β12|u2|p|u1|p−2u1 + β13|u3|p|u1|p−2u1,
(−∆)su2 + λ2u2 = µ2|u2|2p−2u2 + β12|u1|p|u2|p−2u2 + β23|u3|p|u2|p−2u2,
(−∆)su3 + λ3u3 = µ3|u3|2p−2u1 + β13|u1|p|u3|p−2u3 + β23|u2|p|u3|p−2u3.

We have now three explicit solutions of (6): u1 = (U1, 0, 0), u2 = (0, U2, 0), u3 = (0, 0, U3)
with Uj solution of (5). Moreover, there could be solutions u = (u1, u2, u3) having one
component equal to 0. Indeed, if uk ≡ 0, the pair (ui, uj), i, j 6= k, solves (1) with β = βij .
Then, for any (ui, uj) solving (1), the function u with the remaining component equal to 0
solves (6). We denote by uij these specific solutions. As in Proposition 2.3, we have:

(1) If p = 2, then
(i) the semi-trivial solutions ui, i = 1, 2, 3, are strict local minima of Φ|M provided

(7) βij < γij ∀ i, j = 1, 2, 3, i 6= j.

(ii) the semi-trivial solutions ui, i = 1, 2, 3, are saddle points of Φ|M provided

(8) ∀ i = 1, 2, 3, ∃j 6= i such that βij > γij .

(2) If p > 2 the semi-trivial solutions ui, i = 1, 2, 3, are strict local minima of Φ|M for
all βij ∈ R, i, j = 1, 2, 3, i 6= j.

Therefore, as in Proposition 3.1, we deduce that
(1) If p = 2,

(i) and (7) holds, the functional Φ has a MP critical point u∗ onM satisfying

(9) Φ(u∗) > max
i=1,2,3

Φ(ui).

(ii) and (8) holds, then Φ has a global minimum ũ onM such that

(10) Φ(ũ) < min
i=1,2,3

Φ(ui).

(2) If p > 2, for any β ∈ R the functional Φ has a MP critical point u∗ onM such that

(11) Φ(u∗) > max
i=1,2,3

Φ(ui).

As for system (1), one can show that u∗ ≥ 0, ũ ≥ 0. Nevertheless, although (10) (resp. (9),
(11)) implies that ũ 6= ui, i = 1, 2, 3, (resp. u∗ 6= ui) it does not implies that ũ is not equal
to some uij (resp. it does not implies u∗ 6= uij , for some pair i, j). Summarizing,

Theorem 4.1. If p = 2 and (8) holds, system (6) has a nonegative radial ground state ũ.

Theorem 4.2. The following holds:
(i) If p = 2 and (7) holds, the system (6) has a radial bound state u∗ such that u∗ 6= ui,

i = 1, 2, 3. Moreover, if all βij > 0, then u∗ ≥ 0.
(ii) If p > 2, system (6) has a radial bound state u∗ such that u∗ 6= ui, i = 1, 2, 3 for all

βij ∈ R, i, j = 1, 2, 3, i 6= j. Moreover, if all βij > 0 then u∗ ≥ 0.
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We can still extend Theorems 3.2 and 3.3 to system (2) with m ≥ 3 equations and
βij = βji. A proof similar to [25, Theorem 2.1] allow us to extend Theorem 3.2 to prove
existence of positive ground states for any p ≥ 2, since this technique does not rely on the
character of the semi-trivial solutions as a critical points (in contrast with Theorem 3.3,
which strongly relies on which type of critical points the semi-trivial solutions are for Φ|M,
an inherited feature from Proposition 2.3). For λ > 0 let us define

E(u)=
‖u‖2Em m∑

j=1

µj

∫
RN
|uj |2pdx+

m∑
i,j=1
i 6=j

βij

∫
RN
|ui|p|uj |pdx


1
p

and Θλ=

∫
RN
|(−∆)

s
2U |2 + U2 dx∫

RN
|(−∆)

s
2U |2 + λU2 dx

.

Theorem 4.3. Assume that, for some λ > 0,
m∑
j=1

µjΘ
p
λj
λ

+
m∑

i,j=1
i6=j

βij

(
Θλi
λ

Θλj
λ

) p
2

> m
2

 max
1≤j≤m

µj

(
λ

λj

)p− N
2s

(p−1)

+ max
1≤i,j≤m
i6=j

βij

(
λ2

λiλj

) p
2
− N

2s

(
p
2
− 1

2

) ,(H)

then, system (2) has a positive radial ground state ũ. Moreover, the ground state ũ is given,
up to a Lagrange multiplier, by inf

u∈Em\{0}
E(u).

We prove the existence of a positive bound state of system (2) for βij small enough.

Theorem 4.4. If βjk = εbij for i, j = 1, 2, . . . ,m, i 6= j and |ε| small enough, then system
(6) has a radial bound state uε such that uε → z := (U1, U2, . . . , Um) as ε → 0. Moreover,
if βij = εbij > 0 then uε > 0.
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