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Abstract. We describe tools and techniques that allow to relate smooth variational prin-
ciples to discrete ones, suitable for �eld theories that possess geometrical symmetries. We
apply these objects to the generation of numerical integration schemes with energy preser-
vation properties. The theory relies on the linearization of the geometrical con�guration
space using forward di�erence operators, the discretization of the space of independent
variables using abstract cellular complexes, and the resolution of the Cauchy problem
for a given initial conditions band, using the solution of several low-dimensional inverse
optimization problems.

Introduction

In the present century there has been an extensive research on the construction of varia-
tional integrators for geometrical mechanical systems. These numerical schemes are used to
integrate ordinary di�erential equations arising in mechanics, with a nice behavior regard-
ing the symplectic structure and energy/momentum conservation laws of the mechanical
system. These approaches don't follow a classical discretization of the di�erential equation
that governs the trajectory y(t) followed by the mechanical system, but rather a combined
discretization of both the underlying geometrical structure on the con�guration space Y
and of the variational principle that characterizes these trajectories.

When one goes from mechanics (study of trajectories y(t) modeled by a single independent
�time� variable t) to the case of �eld theories (mappings y(x) on several independent variables
x), physically relevant �elds y(x) follow an speci�c variational principle. For physical reasons
all principles and equations governing the system are invariant with respect to a given group
of symmetries. Some of them can be used to reduce the number of dependent variables,
and other ones lead to the identi�cation of Noether conserved currents, which usually are
presented as physical work-energy equilibrium laws.

General purpose numerical schemes for PDEs assume an a�ne structure on the dependent
and independent variables, which may be useful to identify bounds of error propagation,
but doesn't respect the physically relevant symmetries of the system under consideration, so
that error bounds for energy or momentum frequently become too large. For �eld theories
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arising from a variational principle, better schemes are expected taking into consideration
both numerical and geometrical aspects in the discretization.

As the geometrical elements arising in �eld theories carry symmetries that don't have
a�ne nature, many of its fundamental properties disappear and one doesn't recover energy
or momentum conservation, or work-energy equilibrium laws. This fact is already observed
in geometrical mechanics, and can be controlled if one chooses appropriate linearization and
discretization processes, so that the smooth variational principle with symmetries can be
transformed into a new variational principle in a discrete space, preserving all the symmetries
that were present in the original smooth model.

1. Linearization of geometrical structures

The most essential physical law of many �eld theories is not a system of partial di�erential
equations, but the speci�c variational principle of least action that generates those equa-
tions. Physically observed �elds are critical for a certain action functional L(y), obtained
by integration on X of a Lagrangian density L · vol that depends locally on y(x). Usually
the value of the Lagrangian density at any point x ∈ X depends on the �rst order jet j1xy
of the mapping y(x) at this point x. Higher order jets can be seen as �rst order jets of
mappings with holonomy constraints. Any 1-jet j1xy is a linear mapping j1xy : TxX → TyY
and comes from a linearization process of y(x) at any point. The de�nition of Lagrangian
density L(j1xy) volx on the space of 1-jets JY can be seen as a local linearization at x of the
action L.

A forward di�erence operator on a manifold Y is a mapping ∆: Y × Y → TY from a
multi-point space to a tangent (vector) space, with speci�c properties. If such a linearization
tool is chosen so that symmetries on Y commute with ∆, a symmetrical lagrangian density
L ·vol generates a discrete Lagrangian function Ld : Y ×n → R, de�ned on a multipoint space
and preserving the symmetries of the original smooth Lagrangian given on the jet bundle
JY . Di�erence operators can be used as fundamental tool to discretize Lagrangian density
and, at the same time, allow for local measurements of error.

2. Discretization of fibered manifolds

As second step needed for the discretization of a variational principle, one may choose to
substitute the action functional (integral of volume forms) depending on the smooth �eld
by a discrete action functional (addition on discrete volume elements) of a discrete volume
form locally depending on a discrete �eld.

Fields may di�er by its geometrical nature. Some are scalar �elds, but other ones are
1-forms, 2-forms, or densities (volume forms). A discretization process replaces arbitrary
mappings y(x) by a �nite-dimensional subset of mappings, which may be characterized by
its values at a �nite number of points (the nodes of the discretization), or by its behaviour
at a �nite number of 1-cells, 2-cells ans son on.This can be done if we see the whole space X
as composed of minimal (discrete) volume elements and work with minimal (discrete) line
elements, surface elements, and so on. In many �eld theories the natural discrete analogue
is that of an abstract cell complex.

We describe how a choice of cellular complex V , together with an immersion x : V0 → X
of its vertices as points on a manifold leads to notions of discrete bundles, and how to
formulate discrete variational principles on such discrete bundles. We discuss then how a
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choice of forward di�erence operator relates di�erential calculus notions to discrete elements
on a manifold and allows to create a discrete variational principle associated to a smooth
one.

3. Integration of a discrete field

We review fundamental results of smooth variational theory that still hold on the discrete
case, in particular the existence of discrete conserved quantities associated to its symmetries.

The problem of inverse optimization for a function f(a, b) is the identi�cation, for any
value a, of the parameter b such that f(x, b) takes minimum at the point a. In this section we
relate the problem of integration of discrete Euler-Lagrange equations to a family of inverse
optimization problems, and show how to apply this idea in the construction of variational
integrators in �eld theories, with energy/momentum conservation properties.

The theory is illustrated with an example from elasticity theory.
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