# ADDITIVE MDS CODES 

SIMEON BALL AND SAM ADRIAENSEN


#### Abstract

We prove that an additive code over a finite field which has a few projections which are equivalent to a linear code is itself equivalent to a linear code, providing the code is not too short.


## 1. MDS CODES

Let $A$ be a finite set and let $n$ and $k$ be positive integers. A code $C$ of minimum distance $d$ is a subset of $A^{n}$ in which any two elements of $C$ differ in at least $d$ coordinates. Fixing any $d-1$ coordinates, it follows that any two codewords cannot agree on the remaining $n-d+1$ coordinates. Thus, we arrive at the Singleton bound

$$
|C| \leqslant|A|^{n-d+1}
$$

A maximum distance separable (MDS) code $C$ is a subset of $A^{n}$ of size $|A|^{n-d+1}$. If there is no restriction on the size of $A$ then MDS codes are the best performing codes when we apply nearest neighbour decoding. They have the property that a codeword can be recovered from any $k=n-d+1$ coordinates, which makes them very useful, for example, in distributed storage systems. Assuming that $|C|=|A|^{k}$, the Singleton bound can be rewritten as

$$
n \geqslant k+d-1
$$

The ubiquitous example of an MDS code is the Reed-Solomon code. The Reed-Solomon code is an example of a linear code in which the alphabet is a finite field $\mathbb{F}_{q}$ and $C$ is a $k$-dimensional subspace of $\mathbb{F}_{q}^{n}$. The Reed-Solomon code has length $n=q+1$ which can be extended to a code of length $q+2$ in the case that $k \in\{3, q-1\}$ and $q$ is even. Its codewords are the evaluation of polynomials of degree at most $k-1$. To give a more precise definition, suppose $\mathbb{F}_{q}=\left\{a_{1}, \ldots, a_{q}\right\}$. The Reed-Solomon code is

$$
C=\left\{\left(f\left(a_{1}\right), \ldots, f\left(a_{q}\right), c_{f}\right) \mid f \in \mathbb{F}_{q}[X], \quad \operatorname{deg} f \leqslant k-1\right\}
$$

where $c_{f}$ is the coefficient of $X^{k-1}$ in $f$.
There are no known MDS codes which are better than the Reed-Solomon code and it is generally assumed that there are none. The $M D S$ conjecture reflects this and states that for an $\left(n, q^{k}, d\right)_{q}$ MDS code where $d \geqslant 3$, the length $n$ satisfies $n \leqslant q+1$, unless $k \in\{3, q-1\}$ and $q=2^{h}$ in which case $n \leqslant q+2$.

The MDS conjecture has been verified for linear codes when $q$ is prime [2]. It is also known to hold for linear codes when $q$ is square and $k \leqslant c \sqrt{q}$, where the constant $c$ depends

[^0]on whether $q$ is odd or even. And for $q$ non-square and $k \leqslant c^{\prime} \sqrt{p q}$, where again the constant $c^{\prime}$ depends on whether $q$ is an odd power of an even or odd prime. See [3] for a recent survey. It is also known to hold for all MDS codes over alphabets of size at most 8 , see [5].

## 2. Additive MDS codes

Here, we will be interested in additive codes over $\mathbb{F}_{q}$. It seems reasonable that relaxing linear to additive might allow one to find counter-examples to the MDS conjecture. However, this has not been the case thus far.

Since additive are always linear over some subfield, we fix this subfield as $\mathbb{F}_{q}$ and consider the code over $\mathbb{F}_{q^{h}}$. In [4] it was confirmed that the MDS conjecture is true for additive MDS codes over $\mathbb{F}_{9}$ and $\mathbb{F}_{16}$, where in the last case linearity over $\mathbb{F}_{4}$ is assumed.

Let us denote by an $[n, k]_{q^{h}}$ MDS code any $\left(n, q^{k}, n-k+1\right)_{q^{h}}$ additive MDS code which is linear over $\mathbb{F}_{q}$. Recall that the projection of a code $C$ on the $i$-th coordinate is the code obtained from $C$ taking those codewords with a zero in the $i$-th coordinate. The projection of a $[n, k]_{q^{h}}$ MDS code is a $[n-1, k-1]_{q^{h}}$ MDS code.

The following theorem from [1] is a strengthening of a similar theorem used in [4] and will be the main focus of the talk.

Theorem 2.1. Let $C$ be an $[n, k]_{q^{h}} M D S$ code. Suppose one of the following holds.
(1) $k=3, h \in\{2,3\}, n>\max \left\{q^{h-1}, h q-1\right\}+3$ and $C$ has three coordinate positions from which its projection is equivalent to a linear code.
(2) $k>3, n>q^{h-1}+k$ and there are disjoint subsets $A$ and $B$ of the coordinate positions of $C$ such that $|A|+|B| \leq k-2$, and the projections from $A$ and $B$ are equivalent to linear codes.
Then $C$ itself is equivalent to a linear code.
Note that in the above an additive code $C$ is equivalent to a linear code if there are linearised maps

$$
\sigma_{i}: x \mapsto \sum_{i=0}^{h-1} c_{i j} x^{q^{i}}
$$

such that

$$
\left\{\left(\sigma_{1}\left(u_{1}\right), \ldots, \sigma_{n}\left(u_{n}\right) \mid\left(u_{1}, \ldots, u_{n}\right) \in C\right\}\right.
$$

is linear over $\mathbb{F}_{q^{h}}$.

## References

[1] S. Adriaensen and S. Ball, On additive MDS codes with linear projections, preprint.
[2] S. Ball, On sets of vectors of a finite vector space in which every subset of basis size is a basis, J. Eur. Math. Soc., 14 (2012) 733-748.
[3] S. Ball and M. Lavrauw, Arcs in finite projective spaces, EMS Surv. Math. Sci., 6 (2019) 133-172.
[4] S. Ball, G, Gamboa and M. Lavrauw, On additive MDS codes over small fields, Adv. Math. Commun., to appear.
[5] J. I. Kokkala and P. R. J. Östergård, Further results on the classification of MDS codes, Adv. Math. Commun., 10 (2016) 489-498.

Simeon Ball Universitat Politècnica Catalunya
Email address: simeon.michael.ball@upc.edu
Sam Adriaensen Vrije Universiteit Brussel
Email address: Sam.Adriaensen@vub.be


[^0]:    Date: 16 June 2022.
    The author has been partially supported by PID2020-113082GB-I00 financed by MCIN / AEI / $10.13039 / 501100011033$, the Spanish Ministry of Science and Innovation.

    The talk at the 8IMM 2022 has been given by the first author.

