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Abstract. In the last few years we have seen how SNARKs (Succinct Non-Interactive
Arguments of Knowledge) have moved from the theory of complexity and cryptography to
applied cryptography and engineering. We will review the applications of SNARKs and
the mathematical ingredients that have made this possible.

Introduction

The PCP theorem [1, 5], that states that every language in NP can be probabilistically
veri�ed with a constant number of randomized checks to a very long proof, is a very beautiful
and fundamental theorem in the theory of complexity. The �very long proof" is a redundant
encoding of the witness, the piece of information owned by the prover that allows to decide
membership in the language e�ciently.

At an intuitive level, one way to interpret the PCP theorem is as saying that probabilistic
veri�cation of many computations can be done much more e�ciently than redoing the
entire computation. Therefore, in principle, it implies e�cient solutions to the following
cryptographic problems:

(1) Delegation of Computation: a single powerful party (the prover) can compute a
proof that a certain computation is correct that is super e�cient to verify, so that
the veri�er can be a resource-constrained device that could not do the computation
on its own. More generally, this means that expensive computations need to be
carried out only once, and posterior veri�cations can be done in a very cheap way
by any party.

(2) Zero-Knowledge Proofs (ZKPs) [7]: with some additional tweaks, a proof that asserts
that certain computation is correct can be usually turned into a ZKP, that is, a proof
without any additional information leakage. This means that the veri�er only learns
that the claim of the prover is correct and does not gain any knowledge of the
prover's secret information (the witness). At a high level, this means that ZKPs
allow to prove that complex computations over secret data are correct in a way that
is both cheap and secure (privacy compliant) to verify.

Although these applications of the theorem were studied from relatively early on [9, 10],
it is not so simple to construct concretely e�cient and scalable solutions to any of these
problems in practice. Thus, for quite some time, these applications of the PCP theorem
were considered less of a success and did not receive as much as attention as others, like the
study of hardness of approximation [5].

The situation has changed in the last decade due to several breakthroughs [8, 6] that
have allowed to construct truly e�cient Succinct Non-Interactive Arguments of Knowledge
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(SNARKs), that is, short proofs of statements that are e�cient to create and supere�cient
to verify. Succinctness implies that the proof is much shorter than the witness (in fact, it is
usually of constant size) so even very complex statements (encoded as very large arithmetic
circuits over some �nite �eld) are very e�cient to verify. Starting from the work of [2],
there are also many ongoing engineering e�orts (e.g. [3, 4]) to use SNARKs in real-world
applications. The long term vision is that SNARKs are a fundamental tool not only for
privacy (because of the zero-knowledge property) but also for scalability in decentralized
settings where nodes need to agree on a common state, since a single short (or succinct)
proof can replace the complex history that would otherwise need to be stored by any party
who wants to verify it.

This talk will deal with mathematical aspects of practical SNARKs and explain the
connection to their main building blocks: �nite �elds, error correcting codes, polynomials,
Number Theoretic Fourier Transforms or cycles of elliptic curves.

In particular, we will explain in some detail how to express arithmetic circuit satis�ability
as a polynomial divisibility problem, which, starting from the work of Gentry et al. [6], is
one of the main tools to achieve succinctness. We will review joint work with Arantxa
Zapico [11], in which we construct very e�cient SNARKs that have a property, universal
and updatable setup, that is very desirable in practice since it avoids the need for a trusted
third party in the setup stage.
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