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Abstract. A common question when a given point process is observed in more than one
population is whether those patterns share the same structure or they can be partitioned
in a certain number of groups. To address this issue, recent advances on nonparametric
inference for point processes are needed. In this talk we focus on kernel estimators of the
first-order intensity and nonparametric tests for comparison of two point patterns.

Moreover, clustering algorithms, such as the k-means, can be used to classify a num-
ber of observed point patterns into groups. To tackle this problem we move from the
point process framework with intensity functions, to the space of density functions. We
describe the particularities of this space, and analyze the requirements, implementation
and limitations of the k-means algorithm for classification of density functions.

The methodology presented is applied to different real data problems: COVID-19 in-
fections and deaths in Spain, wildfires in Galicia (north-west Spain) and crime events in
Rio de Janeiro (Brazil).

1. INTRODUCTION AND MOTIVATION

Point processes are mathematical models generating a random number of events on a
measure space, S. These processes appear in many different real problems in a wide variety
of fields: ecology, geology, forestry, epidemiology, urban security,... A common problem in
those scenarios is that of population comparison, i.e., several point patterns are observed
in a same domain, and we are interested in determine whether those patters come from
one, two or even more different populations. Formally, we want to group these patterns
according to their underlying point processes.

To address these problem we will focus on three different illustrations in different fields:
• COVID-19 infections and deaths: in this context we observe unidimensional
point patterns recording the number of cases on a certain period of time in different
regions (Spanish provinces). We want to group the underlying processes generating
those patterns in the different provinces according to their intensity, which in this
case depends on a temporal variable and the synthetic data is then unidimensional.
• wildfires: we were provided with a very complete data set recording wildfires in
Galicia (north-west Spain) during several years. In this data set, the cause of the
wildfire was recorded, and we want to determine if the spatial distribution of wildfires
in Galicia varies (or not) depending on this cause.
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• crimes or road accidents: these are actually two different examples, which share
a common complexity, i.e., the observation domain. Both, road accidents and crimes
occur on the road network, so, they ‘do not live’ any more on the euclidean space
but on what is called a graph. This fact increases the complexity of the problem
in both methodological and computational sides, but the idea is the same: we want
to determine for example if the road accidents on a Monday are the same as on a
Saturday, or if the spatial distribution of crimes with fatalities is the same of those
where nobody was injured.

The main difference addressing this problem and a “classical” population comparison, is
that in the latter the essential object for the comparison are the samples themselves, where
in this new context, we are classifying intensity functions, more specifically estimations of
intensity functions obtained from point patterns. Hence, we find ourselves working with
synthetic data, particularly functional synthetic data.

As it has been defined by the European data protection supervisor, the concept of synthetic
data generation is to take an original data source and create new, artificial data, with
similar statistical properties. Keeping the statistical properties is crucial, and it means that
by analysing the synthetic data, the same conclusions as those of analyzing the original
data set should be drawn. The main idea behind synthetic data is that they are artificially
created data rather than being generated by actual events, so they are not obtained by direct
measurement. This is exactly what happens with our intensity estimates. The estimates
do not come from direct observation, but from applying a certain procedure (estimation in
this case) to the observations themselves.

2. NONPARAMETRIC METHODS FOR POINT PROCESSES

Defining mathematical tools to address this particular problem, requires a deep knowledge
of point processes and nonparametric inference. Let X be a point process defined in a
bounded region W ⊂ S. Let X1, . . . , XN be a realisation of the point process where N is
the random variable counting the number of events. The first-order intensity is defined as:

λ(x) = lim
|dx|→0

E[N(dx)]

|dx|
,

where |dx| denotes the measure of an infinitesimal region containing the point x ∈W ⊂ S.
Intuitively, λ(x) measures the expected number of events per unit measure and, conse-
quently, characterizes the distribution of the point process. This is a non-negative func-
tion whose integral is the expected number of events, so, relying on this idea, it is almost
straightforward to build a sort of “artificial density function”, known as the density of events
locations:

λ0(x) = λ(x)/m,

where the intensity factor, m =
∫
W λ(x)dx, is the expected number of events lying on W .

Both the intensity and density of event locations can be estimated by kernel smoothing.
In the euclidean space, the kernel estimator of the density of event locations is

λ̂0,H(x) = (pH(x)N)−1 |H|−1/2
N∑
i=1

K
(
H−1/2 (x−Xi)

)
1[N 6= 0](1)
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where 1[·] is the indicator function, H is a bandwidth parameter, K denotes a kernel func-
tion, KH(x) = |H|−1/2K

(
H−1/2x

)
, and pH =

∫
W |H|

−1/2K(H−1/2(x − y))dy is an edge
correction term. When d > 1, the bandwidth parameter, H, is a symmetric and positive-
definite matrix and |H| is the determinant of H. [2] proved the consistency of (1) and
proposed a plug-in bandwidth selector for inhomogeneous spatial point processes.

Taking advantage of the consistency of λ̂0,H(x), and of the relationship between the
density of event locations and the density of multivariate distributions in Rd, inference tools
developed for the latter can be extended to the point process framework. In this line, a
Cramer-von Mises and a no effect test have been proposed to compare the distribution of
two spatial point processes, see details in [3]. Moreover, [1] addressed the particular scenario
of the two-sample problem for point processes with covariates.

3. CLASSIFICATION ALGORITHM FOR POINT PROCESSES

Classification is the problem of identifying which of a set of categories or groups, an
observation (or observations) belongs to. Focusing on point processes observed in the one-
dimensional Euclidean space for simplicity, our aim is to classify a set of Poisson point
processes {Xi}ni=1 observed in a given interval S = [a, b] ⊂ R into K groups, conditioning
on point processes in each group share a same distribution. To address this problem, we
estimate the corresponding first-order intensity function {λ̂i(x)}ni=1, moving from the point
process framework to the intensity space, Ω. As argued by [4], this space can be seen as
a product metric space Ω = D × ΩS , where D ⊂ {f : S → R+;

∫
S f(x)dx = 1} denotes

the spaces of density functions in S, and ΩS = R+ the space of intensity factors, which
determine the shape and expected number of events (size) of the point process, respectively.

Therefore, we can use a L2 product metric, d, between a given pair of intensity functions
λ1 = (m1, f2) and λ2 = (m2, f2) given by

(2) d (λ1, λ2) =
(
d2D (f1, f2) + d2E (m1,m2)

)1/2
,

where dE is the one-dimensional Euclidean metric and dD is a metric in the density space.
Considering this decomposition, the structure of point processes relies on the density of
event locations and, consequently, our problem can be reduced to that of classifying density
estimates in groups.

Let {Xi}ni=1 be a set of point patterns observed in a bonded interval S, and {f̂i(x), x ∈
S}ni=1 the kernel estimators of their densities of event locations. Let assume that these point
processes belong to K categories characterized by the densities of events locations {fk}Kk=1,
referred as centers. Classification of the n density estimates into the K groups can be con-
ducted by a k-means algorithm in the space of density functions, D. Intuitively, the density
estimates can be considered as functional data, and the k-means algorithm for functional
data could be used to proceed with classification. However, D is not a Hilbert space, and
consequently, statistical procedures for functional data evaluated on a Hilbert space can
not be directly applied here. In particular, we cannot use the L2 distance as discrepancy
measure in the k-means algorithm.
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Following a common practice for statistical modeling and computing of densities, we
should conduct the classification in a representative space. These spaces have been mainly
defined under two perspectives, the functional and object-oriented approaches, see details in
[5]. In this work we use both of them; we propose a transformation approach for functional
data representation, as well as two object-oriented metrics to determine the discrepancy
between density functions. The selection of these metrics is also a crutial point in the
development of this methodology.

• Transformation approach (L2-LQD): density curves can be treated as functional
data after transformation into a Hilbert space. Here we use the log-quantile density
(LQD) transformation, and the L2−distance in the transformed space:

dLQD(f1, f2) =

(∫ 1

0

(
ψLQD(f1)(x)− ψLQD(f2)(x)

)2
dx

)1/2

,

where ψLQD(f)(·) denotes the LQD-transformed density.
• L2-Wasserstein distance (L2-WS): this is an optimal transport distance that
measures the cost of transporting one distribution to another in the object-oriented
framework that can be defined in general spaces. For absolutely continuous distri-
butions, it can be defined as the L2−distance between the corresponding quantile
functions, Qfj , j = 1, 2:

dW (f1, f2) =

(∫ 1

0
(Qf1(r)−Qf2(r))2 dr

)1/2

.

• Fisher-Rao distance (FR): this is the spherical geodesic distance between square
root densities:

dFR(f1, f2) = arccos

(∫ b

a

√
f1(x)f2(x)dx)

)
,

where arccos denotes the arco-cosine function. The square root of a density lies on
the Hilbert unit sphere, so dFR measures the length of an arch connecting

√
f1 and√

f2 along this sphere.
In addition to the selection of the metric, the determination of the number of groups

is also crucial. Assuming that K is known is not realistic in practice, and can lead to
a misclassification. For this reason, calibration procedures to determine the number of
groups prior to run the classification algorithm are required. This problem has already been
addressed in [6] for regression curves and it is an ongoing work we are tackling for intensity
estimates.

4. APPLICATION TO COVID-19

One of the main motivations for tackling this problem is the COVID-19 pandemic. Since
March 2020 we have been suffering one of the most important sanitary emergencies of the
last centuries. Spain was very affected by this pandemic, specially in its beginning. Our
national health system is decentralised, i.e., every region manages its own health system,
even though they are given directions from the national government.

An important administrative division in Spain are provinces (the level below regions),
and we are interesting in comparing the behaviour of the COVID-19 infections and deaths
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in these provinces. We have gather daily records of infections and deaths in every province
from March 2020 until March 2022 (from this point on, the way of counting cases and deaths
has changed in Spain). In Figure 1 we can see the total number of cases and deaths per
province in Spain.

Figure 1. Total number of COVID-19 cases (left) and deaths (right) per
province in Spain from March 2020 to March 2022.

For each province, with the temporal point patterns given by the daily number of cases
(deaths) we have estimated the corresponding density of event location using kernel methods
as detailed in Section 2. These estimated curves, for both cases and deaths, can be seen in
Figure 2.

Figure 2. Temporal density estimates of cases (top) and deaths (bottom)
per province in Spain from March 2020 to March 2022.
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After applying the classification methods with the appropriate distance measures, the
results of the grouped densities can be seen in Figure 3.

Figure 3. Result of the classification in groups of the temporal intensity
functions of cases (top) and deaths (bottom).

These results can be easily translated into Spanish administrative map in order to see
the spatial distribution of these groups. These results are presented in Figure 4.

Figure 4. Result of the classification algorithm for cases (left) and deaths (right).

We have classified COVID-19 cases into 3 groups (Figure 3, top), provinces in group
1 (red) suffered higher incidence during the second and third wave than those in groups 2
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(green) and 3 (blue), but lower incidence during the last wave. Provinces in group 3 reported
the lowest incidence during the second and third wave and a slower incidence decrease than
group 2 in the last wave.

Figure 3 (bottom), shows that the classification of deaths patterns is dominated by the
first wave, where provinces in group 1 suffered higher incidence than those in group 2. Once
classified the infection and death patterns and identified the provinces in each group (Figure
4), our next aim is to check the effect of demographic and socioeconomic factors, as well as
the different COVID-19 mitigation strategies, on those patterns.
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