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Abstract. Model complexity plays an essential role in its selection by choosing a model
that fits the data and is also succinct. Two-part codes and the minimum description length
have successfully delivered procedures to single out the best models, avoiding overfitting.
In this talk, we pursue this approach and complement it by performing further assumptions
in the parameter space. Concretely, we assume that the parameter space is a smooth
manifold, and by using tools of Riemannian geometry, we derive a sharper expression
than the standard one given by the stochastic complexity, where the scalar curvature of
the Fisher information metric plays a dominant role. Furthermore, we present a sharper
approximation to the capacity for exponential families and apply our results to derive
optimal dimensional reduction in the context of principal component analysis. The main
results were published in [13].

Introduction

Two-part codes are an essential tool in model selection. Not only do they optimize the
likelihood of the data given the model, but they also take into account model complexity.
There has been a line of research where one considers, in the most abstract setting, families
of distributions satisfying minimal requirements and derives an expression for model com-
plexity, such as the stochastic complexity, among others [16, 18]. These formulas are sharp
to the extent of the absence of assumptions in the assignment of a probability distribution
to each point in the parameter space. Moreover, it is a rather usual assumption that this
parameter space has the topology of an open subset in Rn.

In this talk, we show that by making additional assumptions on the parameter space and
endowing it with natural information geometric structures, we can arrive at sharper results
by applying techniques from Riemannian geometry. In practice, the parameters of the
distributions are usually taken to live on a smooth manifold, and the distribution is assumed
to vary smoothly with the parameters. However, usually one takes the simplification that
this manifold is a trivial open subset of the Euclidean space. In this work, we will drop
this assumption, hence allowing for non-trivial topologies. Moreover, Information Theory
endows the manifold with a positive (semi-)definite covariant 2-tensor, namely a Riemannian
metric – the Fisher information [2, 1]. Since we are given a Riemannian structure, we have a
natural notion of a uniform distribution over the manifold of parameters, which corresponds
to what is known in the literature as Jeffreys’ prior [12, 7].
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In the literature, when the parameter space is just a bounded open set in Rn, one can
find the (normalized) maximum likelihood code, defined by

(1) p∗(xN ) =
p(xN |θ̂)∫

yN∈XN p(yN |θ̂)dyN
.

The associated length was firstly given by Rissanen [16], computed through Laplace’s for-
mula, and has the form

L∗(xN ) = − log(p∗(xN ))

= − log p(xN |θ̂) +
n

2
log

(
N

2π

)
+ log

∫ √
|I(θ)|dθ + o(1),(2)

where the expansion is stated in terms of the size of the dataset N . Note that throughout the
text, we will consider log to be the natural logarithm which is more convenient in the context
of the present geometrical approach. While in Rissanen’s original work, he considered xN
beyond i.i.d. processes, in the present work, we will only focus on this case. Observe that
Eq. (2) does not account for the possible dependence of the o(1) term in the dimension of
the parameter space. Indeed, in this work, using techniques from Riemannian Geometry,
we find the sharper formula to the codelength

L∗(xN ) 'a.e. − log p(xN |θ̂) +
n

2
log

(
N

2π

)
+ log volg(M) +

1

6N
R(θ̂) + O

(
1

N2

)
︸ ︷︷ ︸
o(1) as a function of N

,(3)

where three classical geometric invariants can be easily identified, namely: (i) the dimension
of the manifold n, (ii) the Riemannian volume volg(M); and (iii) the Ricci scalar curvature
R(θ̂) evaluated at the maximum likelihood estimate θ̂. The above equation holds almost
everywhere in the sense that the left-hand side and the right-hand side converge with prob-
ability 1 to the same random variable. While in Eq.(2) the term log

∫ √
|I(θ)|dθ is precisely

the logarithm of the Riemannian volume, we choose to write it explicitly to highlight its
geometric nature. Note that the scalar curvature might be very large as a function of the
dimensionality of the data involved. We will illustrate this effect by showing how the latter
quantity explicitly depends on n for the case of Gaussian models. Indeed, nowadays, data
is becoming very high dimensional, in particular, the number of variables (related to n) is
becoming comparable to the number of samples N . Hence, terms that were before negli-
gible might have a very strong dependence on n and one needs sharper formulae that take
into account this dependence. Furthermore, we remark that the methods from Riemannian
geometry used in the current work to write down the sharper formulas can be systemati-
cally used to derive higher orders approximations. In particular, near θ̂, one can use the
expansion in normal coordinates of Jeffreys’ prior, i.e., the square root of the determinant
of the metric, together with a higher order Taylor expansion of − log p(x|θ) and use stan-
dard Gaussian integration methods to do so. This is reminiscent of the methods used in
asymptotic expansions of heat kernels in geometry used for instance, in modern proofs of
instances of the Atiyah-Singer index theorem [5]. Although geometric approaches [6, 19, 15]
and very sharp formulas [21], some of them based on average properties [8, 9], were already
derived in the past, they did not attain the sharpness of O(1/N2) achieved in this work
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To derive the codelength given by Eq. (3), motivated by the results in [3], we follow a
Bayesian approach considering Jeffreys’ prior and we adapt Laplace’s method to manifolds,
using canonical Riemann normal coordinates to our advantage. The complexity of density
estimation and their relation to two-part codes has been made explicit by Barron and
Cover [4]. With this observation, Eq. (3) can be interpreted as a codelength of a two-part
code, where the stochastic complexity [16] is refined taking into account the geometry of
the statistical model, and therefore we call such refinement the Geometric Complexity.

Along the same lines of the above results, one can obtain a sharper expansion of the
average case minimax redundancy R̃N (M) in the context of a statistical manifold M . In
particular, we will consider exponential families parametrized by a bounded open subset of
Euclidean space with the non-trivial geometry provided by the Fisher metric. We stress
that the geometry induced by the Fisher metric is in general non-trivial due to the following
observation: for dimensions greater than two, if one takes a Riemannian metric different
from the standard Euclidean one, the associated Riemann tensor will be non-vanishing.
Nevertheless, the hypotheses for the capacity theorem by Haussler [10] are still satisfied and
hence the average case minimax redundancy equals the capacity for the case at hand.

We show that the capacity CN (M) is given by

R̃N (M) = CN (M) = log volg(M) +
n

2
log

(
N

2πe

)
+

1

6Nvolg(M)
S(g) + O

(
1

N2

)
,

where S(g) =
∫
M R(θ)dVg is the Einstein-Hilbert action functional [11, 20, 14] evaluated at

the Fisher information metric g. This provides yet another hint on modern views relating
information, complexity and gravity [17].

We apply our results to a very well-established method for dimensional reduction, namely,
Principal Component Analysis (PCA). In particular, our results yield a natural criterion for
the choice of the optimal dimension by adapting the two-part code given in Eq. (3) to zero
mean Gaussian families with varying covariance. The underlying parameter space is the
manifold Pm of positive definite matrices, with reduced dimension m ×m which we want
to optimize, equipped with the Fisher metric. We considered a bounded subset M(s) of
Pm, controlled by an integer s that is the smallest integer such that Id ≤ Σ ≤ 22sId, where
Σ = XXT /N is the empirical covariance matrix and Id is the d×d identity matrix. We also
assume that each component of the data is written as an integer multiple of the precision
for each variable, and therefore the volume depends on the precision and not in a particular
system of units. For this particular case, the formula becomes

L∗(xN ) 'a.e. − log p(xN |Q̂) +
m(m+ 1)

4
log

(
N

2π

)
+ log volg(M(s))− (m+ 2)m(m− 1)

24N
,

where

log volg (M(s)) =− 3

2
m log(2)− log(m!) +m log(2) +

m(m+ 1)

4
log(π)

− log

π 1
4A

3
2G
(
m
2 + 3+(−1)m

4

)
2

1
24 e

1
8

− log
(
G
(⌊m

2

⌋
+ 1
))

+ log I(s),
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A is the Glaisher constant, G is the Barnes G-function, and

I(s) = sm (log(2))m 8
m(m−1)

4

×
∫
[0,1]m

∏
1≤i<j≤m

sinh (s log(2)|ui − uj |)
m∏
i=1

dui,

whose asymptotic behavior with s is studied in the published paper [13]. Notice that the
fourth term of Eq. (3) does not appear in our expression, since it is exactly zero for Gaussian
models. Remarkably, the curvature term is negative due to the hyperbolic nature of the
geometry of Gaussian statistical models, which brings a negative correction to L∗(xN ). This
correction is expected to be particularly relevant for high dimensional data.
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