About some class of Roumier type functions

P. V. Fedotova

Abstract

Let $(M_k)_{k=0}^{\infty}$ be a logarithmically convex sequence of positive numbers such that:

1. $\exists H_1 > 1 \ \exists H_2 > 1 \ \forall k, m \in \mathbb{Z}_+ \quad M_{k+m} \le H_1 H_2^{k+m} M_k M_m;$ 2. $\forall \varepsilon > 0 \ \exists a_{\varepsilon} > 0 \ \forall k \in \mathbb{N} \quad M_k \le a_{\varepsilon} \varepsilon^k k!;$ 3. $\exists \gamma \in (0, 1) \ \exists b_1 > 0 \ \exists b_2 > 0 \ \forall k \in \mathbb{N} \quad M_k \ge b_1 b_2^k k!^{\gamma}.$

Let C be an open convex acute cone in \mathbb{R}^n with the apex at the origin, bbe a convex continuous and positively homogeneous of degree one function on \overline{C} , the clousure of the cone C,

$$U = \{ \xi \in \mathbb{R}^n : - \langle \xi, y \rangle \le b(y), \forall y \in C \},\$$

We consider the space $G_M(U)$ of infinitely differentiable, $C^{\infty}(U)$ -functions, such that for each $m\in\mathbb{N}$ and each $\varepsilon>0$

$$p_m(f) = \sup_{x \in U, \alpha \in \mathbb{Z}^n_+} \frac{|(D^{\alpha}f)(x)|(1+||x||)^m}{\varepsilon^{|\alpha|}M_{|\alpha|}} < \infty .$$

The equivalent description of $G_M(U)$ and the description of strong dual to $G_M(U)$ in the terms of Fourier-Laplace of functionals will be given.