Bounded symbols of truncated Toeplitz operators

Roman Bessonov

Abstract

A truncated Toeplitz operator $A_\phi,\,\phi\in L^2$, is the map on the space $K_\theta=H^2\ominus H^2$ defined by

$$A_{\phi}: f \to P_{K_{\theta}}(\phi f), \ f \in K_{\theta} \cup L^{\infty}$$

The symbol of a truncated Toeplitz operator is not uniquely determined, $A_{\phi} = 0$ if $\phi \in \theta H^2 + \overline{\theta H^2}$. Clearly, if $\phi \in L^{\infty}$, then ϕ is bounded and $\|A_{\phi}\| \leq \|\phi\|_{\infty}$. In 2007 D. Sarason asked a natural question: *Does every bounded truncated Toeplitz operator admit a bounded symbol?* In 2009 A. Baranov, I. Chalendar, E. Frician, J. Mashreghi and D. Timotin gave a negative answer to this question. In my talk I present a description of spaces K_{θ} , in which every every bounded truncated Toeplitz operator admits a bounded symbol. This property turns out to be equivalent to a factorization property for a certain class of pseudocontinuable functions, the latter is fulfilled for so-called one-component inner functions ϕ . The talk is based on a joint work with Anton Baranov and Vladimir Kapustin.