Completeness of translates of entire functions and hypercyclic operators

Vitaly Kim

Abstract

In this communication we introduce new classes of hypercyclic operators on the space $H(\mathbb{C})$ of all entire functions with uniform convergence topology.

Let X be a topological vector space. A continuous linear operator $\Phi : X \to X$ is said to be hypercyclic, if there exists $x \in X$, such that it's orbit $\operatorname{Orb}(\Phi, x) = \{\Phi^n x, n = 0, 1, 2, \ldots\}$ is dense in X. We obtain the following results.

Theorem 1 Let $T : H(\mathbb{C}) \to H(\mathbb{C})$ be a continuous linear operator such that $TS_{\lambda}f - S_{\lambda}Tf = \lambda S_{\lambda}f$, $\forall \lambda \in \mathbb{C}$, $\forall f \in H(\mathbb{C})$. Then the system $\{S_{\lambda}g, \lambda \in \Lambda \subset \mathbb{C}\}$ is complete in $H(\mathbb{C})$, if $g \in \ker T \setminus \{0\}$ and Λ contains a limit point.

Corollary 2 Let $T : H(\mathbb{C}) \to H(\mathbb{C})$ be a continuous linear operator such that 1) $TS_{\lambda}f - S_{\lambda}Tf = \lambda S_{\lambda}f$, $\forall \lambda \in \mathbb{C}$, $\forall f \in H(\mathbb{C})$; 2) ker $T \neq \{0\}$. Then T is hypercyclic.