Roots and commutativity of Toeplitz operators on The Bergman space

Issam Louhichi

Abstract

One of the major questions in the theory of Toeplitz operators on the Bergman space over the unit disk \mathbb{D} in the complex plane \mathbb{C} is a complete description of the commutant of a given Toeplitz operator, that is the set of all Toeplitz operators that commute with it. In [2], we have obtained a complete description of the commutant of Toeplitz operator T with any quasihomogeneous symbol $\phi(r)e^{ip\theta}$, p > 0 in case it has a Toeplitz *p*-th root S with symbol $\psi(r)e^{i\theta}$, namely, commutant of T is the closure of the linear space generated by powers S^n which are Toeplitz. But the existence of p-th root was known until now only when $\phi(r) = r^m$, $m \ge 0$.

In this talk we shall first introduce the notion of a *p*-th root of a quasihomogeneous Toeplitz operator. Then we will present our main result which is the existence of p-th roots for a much larger class of symbols, for example, it includes such symbols for which

$$\phi(r) = \sum_{i=1}^{k} r^{a_i} (\ln r)^{b_i}, 0 \le a_i, b_i \text{ for all } 1 \le i \le k.$$

References

- Ž. Čučković and N. V. Rao, Mellin transform, monomial Symbols, and commuting Toeplitz operators, J. Funct. Anal. 154 (1998), 195-214.
- [2] I. Louhichi, Powers and roots of Toeplitz operators, Proc. Amer. Math. Soc. 135, (2007), 1465-1475.
- [3] I. Louhichi and N. V. Rao, Bicommutants of Toeplitz operators, Arch. Math. 91 (2008), 256-264.
- [4] I. Louhichi and N. V. Rao, Roots of Toeplitz operators on the Bergman space. Preprint (2010).