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Let denote by S(φ) the extremal operator defined by the compression of
the unilateral shift S to the model subspace H(φ) = H2 	 φ H2 as the following
S(φ)f(z) = P (zf(z)), where P denotes the orthogonal projection from the Hardy
space H2 onto H(φ) and φ is an inner function on the unit disc. The numerical
radius seems to be important and have many applications in harmonic analysis like
the following theorem wich gives an extension of a previous result of C. Badea and
G. Cassier [1].

Theorem 0.1 ([7] Theorem 2.1). Let F = P/Q be a rational function which is
positive on the torus, where P and Q are coprime. Denote by

φ(z) =

p∏
j=1

(
z − αj

1− αjz

)mj

and

ψ(z) =

q∏
j=1

(
z − βj
1− βjz

)dj

the respectively finite Blashke products formed by the nonzero roots of P and Q in
the open disc, let m =

∑p
j=1mj and d =

∑q
j=1 dj. Then the Taylor coefficient ck

of order k of F satisfies the following inequality:

|ck|6 c0 ω2(S∗k(ϕ)), where ϕ(z) = zmax(0,m−d+1)ψ(z).

In this talk, we give an explicit formula of the numerical radius of S(φ) in the partic-
ular case where φ is a finite Blaschke product with unique zero and an estimate on
the general case. We establish also a sharpened Schwarz-Pick operatorial inequality
generalizing a U. Haagerup and P. de la Harpe result for nilpotent operators [6].

The second part is devoted to the study of the higher rank-k numerical range
denoted by Λk(T ) which is the set of all complex number λ satisfying PTP = λP
for some rank-k orthogonal projection P. This notion was introduced by M.-D. Choi,
D. W. Kribs, et K. Zyczkowski motivated by a problem in Physics. We show that
if Sn is the n-dimensional shift then its rank-k numerical range is the circular disc
centered in zero and with a precise radius.
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