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A nice conjecture of Thomas Courtade 2018

We work in Rn with the Euclidean norm, the Euclidean unit ball
Bn

2 and the volume that we denote |A| = voln(A).

Conjecture (Courtade 2018)

Let B,C be compact convex sets in Rn. Is it true that

(|B||C|)1/n +(|Bn
2||Bn

2 + B + C|)1/n ≤ (|Bn
2 + B||Bn

2 + C|)1/n? (CC)

More generally one may ask for which compact convex set A,
the following inequality holds for every compact convex sets
B,C in Rn:

(|B||C|)1/n + (|A||A + B + C|)1/n ≤ (|A + B||A + C|)1/n?



A nice conjecture of Thomas Courtade 2018

We work in Rn with the Euclidean norm, the Euclidean unit ball
Bn

2 and the volume that we denote |A| = voln(A).

Conjecture (Courtade 2018)

Let B,C be compact convex sets in Rn. Is it true that

(|B||C|)1/n +(|Bn
2||Bn

2 + B + C|)1/n ≤ (|Bn
2 + B||Bn

2 + C|)1/n? (CC)

More generally one may ask for which compact convex set A,
the following inequality holds for every compact convex sets
B,C in Rn:

(|B||C|)1/n + (|A||A + B + C|)1/n ≤ (|A + B||A + C|)1/n?



A nice conjecture of Thomas Courtade 2018

We work in Rn with the Euclidean norm, the Euclidean unit ball
Bn

2 and the volume that we denote |A| = voln(A).

Conjecture (Courtade 2018)

Let B,C be compact convex sets in Rn. Is it true that

(|B||C|)1/n +(|Bn
2||Bn

2 + B + C|)1/n ≤ (|Bn
2 + B||Bn

2 + C|)1/n? (CC)

More generally one may ask for which compact convex set A,
the following inequality holds for every compact convex sets
B,C in Rn:

(|B||C|)1/n + (|A||A + B + C|)1/n ≤ (|A + B||A + C|)1/n?



A nice conjecture of Thomas Courtade 2018

We work in Rn with the Euclidean norm, the Euclidean unit ball
Bn

2 and the volume that we denote |A| = voln(A).

Conjecture (Courtade 2018)

Let B,C be compact convex sets in Rn. Is it true that

(|B||C|)1/n +(|Bn
2||Bn

2 + B + C|)1/n ≤ (|Bn
2 + B||Bn

2 + C|)1/n? (CC)

More generally one may ask for which compact convex set A,
the following inequality holds for every compact convex sets
B,C in Rn:

(|B||C|)1/n + (|A||A + B + C|)1/n ≤ (|A + B||A + C|)1/n?



Contents

Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade’s conjecture



Contents

Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade’s conjecture



Contents

Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade’s conjecture



Plan

Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade’s conjecture



Analogy between EPI and Brunn-Minkowski

1) Brunn-Minkowski inequality for compact sets.
Let A and B be two compact sets in Rn. Then

voln(A + B)
1
n ≥ voln(A)

1
n + voln(B)

1
n .

2) Entropy Power Inequality.
Let X and Y be two independent random vectors in Rn. Then

N(X + Y) ≥ N(X) + N(Y),

where for X ∼ f , N(X) = 1
2πe e

2
n h(X) and h(X) = −

∫
f log(f ).

3) Brunn-Minkowski inequality for matrices.
Let A and B be two non negative symmetric matrices inMn(R). Then

det(A + B)
1
n ≥ det(A)

1
n + det(B)

1
n .

Proof: if X Gaussian with covariance matrix A: N(X) = det(A)
1
n .
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Analogue of Concavity of entropy power

Concavity of entropy power: t 7→ N(X +
√

tZ) is concave.
Costa-Cover conjecture (1984): For any compact set A in Rn,

t 7→ voln(A + tBn
2)

1
n is concave.

Costa-Cover: by BM, the conjecture holds if A is convex.

Theorem (F.-Marsiglietti (2014))

The conjecture holds true
• in dimension 1
• in dimension 2 for A connected
• in dimension n for A finite and t ≥ t(A).

It is false in dimension n ≥ 2 in general.

Question: Is it true for t ≥ t(A) for any compact A? For example
for t ≥ diam(A)?
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Monotonicity of entropy and volume

Monotonicity of entropy: Artstein-Ball-Barthe-Naor (2004)
Let X1, . . . ,Xm, . . . be i.i.d. random vectors then

m 7→ h
(

X1 + · · ·+ Xm√
m

)
is increasing.

Monotonicity of volume: Bobkov-Madiman-Wang’s conjecture
(2011): For any compact set A in Rn, let A(m) = A+···+A

m . Then

voln(A(m)) ≤ voln(A(m + 1))?

Remark: for A convex, one has A(m) = A for any m so the result
holds, but is not interesting. So we look at sets A which are
compact and non-convex!
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Volume of Minkowski averages

Recall that A(m) = A+···+A
m .

Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let A be a compact set in Rn. Then m 7→ voln(A(m))

• is increasing for n = 1,
• is not (necessarily) increasing for n ≥ 12.

Proof:
• n = 1, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
• n = 12, A = ([−1, 1]6 × {0}) ∪ ({0} × [−1, 1]6). Then

vol12

(
A+A

2

)
> vol12

(
A+A+A

3

)
.

Questions:
• What happens for 2 ≤ n ≤ 11? e.g. n = 2? n = 3?
• Do we have ”eventual” monotonicity? For m large enough?

Theorem (F., Lángi, Zvavitch (2022))
Let A be a starshaped compact set in Rn. Then voln(A(m)) ≤ voln(A(m + 1)) for
m ≥ (n− 1)(n− 2), thus yes for n ≤ 3.
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Theorem (F., Lángi, Zvavitch (2022))
Let A be a starshaped compact set in Rn. Then voln(A(m)) ≤ voln(A(m + 1)) for
m ≥ (n− 1)(n− 2), thus yes for n ≤ 3.



Volume of Minkowski averages

Recall that A(m) = A+···+A
m .

Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let A be a compact set in Rn. Then m 7→ voln(A(m))

• is increasing for n = 1,
• is not (necessarily) increasing for n ≥ 12.

Proof:
• n = 1, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
• n = 12, A = ([−1, 1]6 × {0}) ∪ ({0} × [−1, 1]6). Then

vol12

(
A+A

2

)
> vol12

(
A+A+A

3

)
.

Questions:
• What happens for 2 ≤ n ≤ 11? e.g. n = 2? n = 3?
• Do we have ”eventual” monotonicity? For m large enough?
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Blachman-Stam inequality

1) Information. Let Z be standard Gaussian independent of X. Recall that the Fisher
Information I(X) is: I(X +

√
tZ) = 2 d

dt h(X +
√

tZ). Blachman-Stam inequality (1964):
For X and Y independent

I(X + Y)−1 ≥ I(X)−1 + I(Y)−1.

2) Determinants. Bergstrøm’s inequality. For A,B non-negative symmetric matrices

det(A + B)

det(A1 + B1)
≥

det(A)

det(A1)
+

det(B)

det(B1)
.

3) Convex. Dembo-Cover-Thomas (1991): Define J(A) =
vol(A)
∂(A) . On the set of convex

compact sets, is the function J concave (C)? Or monotone (M)?

voln(A + B)

∂(A + B)
≥

voln(A)

∂(A)
+

voln(B)

∂(B)
? (C) or

voln(A + B)

∂(A + B)
≥

voln(A)

∂(A)
? (M)

Bonnesen (1929): (C) holds for n = 2: voln(A+B)
|Pu(A+B)| ≥

voln(A)
|PuA| +

voln(B)
|PuB|

DCT + Giannopoulos-Hartzoulaki-Paouris (2002): (C) OK for B = Bn
2.

F.-Giannopoulos-Meyer (2003): (M) doesn’t hold for n ≥ 3.
Artstein-Avidan-Florentin-Ostrover (2014): counterexample for (M).
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Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
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3 bodies inequality with constant 1

1) Information. Let X, Y, Z be independent random vectors in Rn. Madiman (2008):

N(X + Y + Z)N(X) ≤ N(X + Y)N(X + Z).

2) Determinants. Madiman (2008). Let A,B,C ≥ 0 be symmetric matrices. Then

det(A + B + C) det(A) ≤ det(A + B) det(A + C).

3) Convexity. One can ask if for every convex sets A,B,C in Rn one has

voln(A + B + C)voln(A) ≤ voln(A + B)voln(A + C)? (3B)

Let f (x, y) = voln(A + xB + yC). (3B) gives ∂2 log f
∂x∂y (0, 0) ≤ 0, or

voln(A)V(A[n− 2],B,C) ≤
n

n− 1
V(A[n− 1],B)V(A[n− 1],C). (Bézout)

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+.
So (3B) implies (Bézout). The reverse holds also: (Bézout) implies (3B).
• n = 2: From Fenchel’s inequality (Bézout) holds for any convex A,B,C in R2.
• n ≥ 3: For B = [0, u], C = [0, v], with u, v ∈ Sn−1, 〈u, v〉 = 0, we get:

|A||Pu,v A| ≤ |Pu A||Pv A|. (P)

But from Giannopoulos-Hartzoulaki-Paouris ’03 the following inequality is sharp

|A||Pu,v A| ≤
2(n− 1)

n
|Pu A||Pv A|.

Thus (Bezout) and (3B) don’t hold for some convex sets A in Rn, for n ≥ 3.
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See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+.
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See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+.
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3 bodies’ inequality up to constant

Let cn be the best constant such that for any A,B,C be convex sets in Rn

voln(A + B + C)voln(A) ≤ cnvoln(A + B)voln(A + C).

Bobkov-Madiman (2012): proved that cn ≤ 3n.

Theorem (F.-Madiman-Zvavitch 2022+)
c2 = 1, c3 = 4/3 and let ϕ = 1+

√
5

2 be the golden ratio. Then, for n ≥ 3

(4/3)n ≤ cn ≤ ϕn.

Methods:
• Upper bound: we develop the volume of the sum with mixed volumes, use some

Bézout type inequalities proved by Xiao ’19 and optimize.
• Lower bound: Applied to lower dimensional bodies B and C, we get that for every

subspaces E,F of Rn such that E⊥ ⊂ F

|PE∩FA||A| ≤ cn|PEA||PFA|.

The optimal constants in these inequalities were computed recently by
Brazitikos-Giannopoulos-Liakopoulos ’18, Giannopoulos-Koldobsky-Valettas ’18
and Alonso-Gutiérrez-Artstein-Avidan-González-Merino-Jiménez-Villa ’19.
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Bézout type inequalities proved by Xiao ’19 and optimize.
• Lower bound: Applied to lower dimensional bodies B and C, we get that for every

subspaces E,F of Rn such that E⊥ ⊂ F

|PE∩FA||A| ≤ cn|PEA||PFA|.

The optimal constants in these inequalities were computed recently by
Brazitikos-Giannopoulos-Liakopoulos ’18, Giannopoulos-Koldobsky-Valettas ’18
and Alonso-Gutiérrez-Artstein-Avidan-González-Merino-Jiménez-Villa ’19.
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Plan

Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade’s conjecture



3 bodies conjecture for zonoids

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let n ≥ 2 be fixed. Then the following properties are equivalent:

1 For any zonoids A,B,C in Rn one has |A + B + C||A| ≤ |A + B||A + C|. (3B)

2 For any zonoids A,B in Rn one has voln(A+B)
∂(A+B) ≥

voln(A)
∂(A) . (M)

3 For any zonoids A,B in Rn one has voln(A+B)
voln−1(Pu(A+B))

≥ voln(A)
voln−1(Pu(A))

. (MP)

4 For any zonoids A,B,C in Rn one has
voln(A)V(A[n− 2],B,C) ≤ n

n−1 V(A[n− 1],B)V(A[n− 1],C). (Bézout)

5 For any zonoid A in Rn one has
√

1− 〈u, v〉2|A||Pu,vA| ≤ |PuA||PvA|. (P)

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
All preceding inequalities hold in R3.

Method: We prove the inequality in its last form, using projections. Applying a linear
transform we only need to prove that for any zonoid A in R3 one has

|A||Pe1,e2 A| ≤ |Pe1 A||Pe2 A|.
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Proof of the (3B) inequality for zonoids in R3

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
For any zonoid A in R3 one has |A||Pe1,e2 A| ≤ |Pe1 A||Pe2 A|.

Method: By approximation, it is enough to prove it for A zonotope: A =
∑M

i=1[0, ui],
where ui = (xi, yi, zi) ∈ R3, for 1 ≤ i ≤ M. Then we want to prove:

∑
1≤i<j<k≤M

∣∣∣∣∣∣det

xi xj xk
yi yj yk
zi zj zk

∣∣∣∣∣∣
M∑

i=1

|zi| ≤
∑

1≤i<j≤M

∣∣∣∣det

(
yi yj
zi zj

)∣∣∣∣ ∑
1≤i<j≤M

∣∣∣∣det

(
xi xj
zi zj

)∣∣∣∣
We fix y = (y1, . . . , yM) and z = (z1, . . . , zM) in RM and we consider the inequality as a
comparison of two convex functions of x = (x1, . . . , xM) ∈ RM , that are moreover affine
by parts.
So we only need to prove the inequality at infinity and at the critical points of the above
right hand side function.
The limit case reduces to Bonnesen’s inequality in dimension 2. Then we use some
intricate induction.

Remark: for zonoids, see also the recent nice vector valued Maclaurin inequalities put
forward by Brazitikos-McIntyre 2021 and Joós-Lángi 2022+.
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Plan

Analogies
Entropy power and Brunn-Minkowski’s inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas’ conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade’s conjecture



Courtade’s conjecture

1) Statement of the conjecture. Let B,C be compact convex sets in Rn. Is it true that

(|B||C|)1/n + (|Bn
2||B

n
2 + B + C|)1/n ≤ (|Bn

2 + B||Bn
2 + C|)1/n? (CC)

2) n = 2: More is true: (CC) holds for any convex set A instead of Bn
2!

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let A,B,C be convex compact sets in R2. Then√

|B||C|+
√
|A||A + B + C| ≤

√
|A + B||A + C|.

3) Recall: For n ≥ 3, (CC) cannot holds for any convex body A instead of Bn
2.

4) B zonoid

Theorem (F.-Madiman-Zvavitch 2022+)
Let B be a zonoid and C be a compact convex set in Rn. Then
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Proof of Courtade’s conjecture in R2

1) Theorem (F.-Madiman-Meyer-Zvavitch 2022+): Let A,B,C be convex compact sets
in R2. Then √

|B||C|+
√
|A||A + B + C| ≤

√
|A + B||A + C|.

2) Steps of the proof
Squaring both sides we want to prove

2
√
|A||B||C||A + B + C|+ |A||A + B + C|+ |B||C| ≤ |A + B||A + C|

Expanding with mixed volumes, simplifying and squaring again, we rewrite it as

|A||B||C||A + B + C| ≤ (2V(A,B)V(A,C) + V(A,B)|C|+ |B|V(A,C)− |A|V(B,C))2 .

Replacing B by rB and simplifying by r2, we are reduced to proving: αr2 + βr + γ ≥ 0.
Then we use that α = |B|2(V2(A,C)− |A||C|) ≥ 0 and, after some painful calculation,
the discriminant is

∆ = c
(

(|A|V(B,C)− V(A,B)V(A,C))2 −
(

V(A,B)2 − |A||B|
)(

V(A,C)2 − |A||C|
))
≤ 0,

where c = |B|2|A||C||A + C|, and where the last inequality follows from Fenchel’s
inequality.
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Open questions

1) Courtade’s conjecture: Let n ≥ 3 and B,C be convex compact sets in Rn. Then

(|B||C|)1/n + (|Bn
2||B

n
2 + B + C|)1/n ≤ (|Bn

2 + B||Bn
2 + C|)1/n ? (CC)

2) 3 zonoids’ conjecture: Let n ≥ 4. For any zonoids A,B,C in Rn do we have

|A + B + C||A| ≤ |A + B||A + C|? (3B)

3) Strong 3 zonoids’ conjecture: Let n ≥ 3. For any zonoids A,B,C in Rn do we have

(|B||C|)1/n + (|A||A + B + C|)1/n ≤ (|A + B||A + C|)1/n?

4) Concavity for zonoids: Let n ≥ 3. For any zonoids A,B,C in Rn do we have

voln(A + B)

voln−1(Pu(A + B))
≥

voln(A)

voln−1(Pu(A))
+

voln(B)

voln−1(Pu(B))
?

5) Is the golden ratio the optimal constant? Recall that the best constant cn such that
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End

Thank you!
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