# On the volume of Minkowski sum of convex sets. 

## Matthieu Fradelizi

Laboratoire d'Analyse et de Mathématiques Appliquées Université Gustave Eiffel
Recent (posted the 3rd and 5th of June 2022) work in collaboration with Mokshay Madiman, Mathieu Meyer and Artem Zvavitch:
F.-Madiman-Zvavitch: Sumset estimates in convex geometry. arXiv:2206.01565.

FMMZ: On the volume of the Minkowski sum of zonoids. arXiv:2206.02123.
geOmetric anaLysis \& convExity Universidad Sevilla, 2022-06-22

## A nice conjecture of Thomas Courtade 2018

## A nice conjecture of Thomas Courtade 2018

We work in $\mathbb{R}^{n}$ with the Euclidean norm, the Euclidean unit ball $B_{2}^{n}$ and the volume that we denote $|A|=\operatorname{vol}_{n}(A)$.

## A nice conjecture of Thomas Courtade 2018

We work in $\mathbb{R}^{n}$ with the Euclidean norm, the Euclidean unit ball $B_{2}^{n}$ and the volume that we denote $|A|=\operatorname{vol}_{n}(A)$.

## Conjecture (Courtade 2018)

Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

## A nice conjecture of Thomas Courtade 2018

We work in $\mathbb{R}^{n}$ with the Euclidean norm, the Euclidean unit ball $B_{2}^{n}$ and the volume that we denote $|A|=\operatorname{vol}_{n}(A)$.

## Conjecture (Courtade 2018)

Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

More generally one may ask for which compact convex set $A$, the following inequality holds for every compact convex sets $B, C$ in $\mathbb{R}^{n}$ :

$$
(|B||C|)^{1 / n}+(|A||A+B+C|)^{1 / n} \leq(|A+B||A+C|)^{1 / n} ?
$$

## Contents

Analogies
Entropy power and Brunn-Minkowski's inequalities

## Contents

Analogies
Entropy power and Brunn-Minkowski's inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

## Contents

Analogies
Entropy power and Brunn-Minkowski's inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## Plan

Analogies
Entropy power and Brunn-Minkowski's inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## Analogy between EPI and Brunn-Minkowski

## Analogy between EPI and Brunn-Minkowski

1) Brunn-Minkowski inequality for compact sets.

Let $A$ and $B$ be two compact sets in $\mathbb{R}^{n}$. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}}
$$

## Analogy between EPI and Brunn-Minkowski

1) Brunn-Minkowski inequality for compact sets.

Let $A$ and $B$ be two compact sets in $\mathbb{R}^{n}$. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}} .
$$



## Analogy between EPI and Brunn-Minkowski

1) Brunn-Minkowski inequality for compact sets.

Let $A$ and $B$ be two compact sets in $\mathbb{R}^{n}$. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}} .
$$


2) Entropy Power Inequality.

Let $X$ and $Y$ be two independent random vectors in $\mathbb{R}^{n}$. Then

$$
N(X+Y) \geq N(X)+N(Y)
$$

where for $X \sim f, N(X)=\frac{1}{2 \pi e} e^{\frac{2}{n} h(X)}$ and $h(X)=-\int f \log (f)$.

## Analogy between EPI and Brunn-Minkowski

1) Brunn-Minkowski inequality for compact sets.

Let $A$ and $B$ be two compact sets in $\mathbb{R}^{n}$. Then

$$
\operatorname{vol}_{n}(A+B)^{\frac{1}{n}} \geq \operatorname{vol}_{n}(A)^{\frac{1}{n}}+\operatorname{vol}_{n}(B)^{\frac{1}{n}} .
$$


2) Entropy Power Inequality.

Let $X$ and $Y$ be two independent random vectors in $\mathbb{R}^{n}$. Then

$$
N(X+Y) \geq N(X)+N(Y)
$$

where for $X \sim f, N(X)=\frac{1}{2 \pi e} e^{\frac{2}{n} h(X)}$ and $h(X)=-\int f \log (f)$.
3) Brunn-Minkowski inequality for matrices.

Let $A$ and $B$ be two non negative symmetric matrices in $\mathcal{M}_{n}(\mathbb{R})$. Then

$$
\operatorname{det}(A+B)^{\frac{1}{n}} \geq \operatorname{det}(A)^{\frac{1}{n}}+\operatorname{det}(B)^{\frac{1}{n}}
$$

Proof: if $X$ Gaussian with covariance matrix $A: N(X)=\operatorname{det}(A)^{\frac{1}{n}}$.

## Plan

## Analogies <br> Entropy power and Brunn-Minkowski's inequalities

Conjectures on compact sets Concavity of entropy power Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## Analogue of Concavity of entropy power

## Analogue of Concavity of entropy power

Concavity of entropy power: $t \mapsto N(X+\sqrt{t} Z)$ is concave.
Costa-Cover conjecture (1984): For any compact set $A$ in $\mathbb{R}^{n}$,

$$
t \mapsto \operatorname{vol}_{n}\left(A+t B_{2}^{n}\right)^{\frac{1}{n}} \text { is concave. }
$$

## Analogue of Concavity of entropy power

Concavity of entropy power: $t \mapsto N(X+\sqrt{t} Z)$ is concave.
Costa-Cover conjecture (1984): For any compact set $A$ in $\mathbb{R}^{n}$,

$$
t \mapsto \operatorname{vol}_{n}\left(A+t B_{2}^{n}\right)^{\frac{1}{n}} \text { is concave. }
$$

Costa-Cover: by BM, the conjecture holds if $A$ is convex.
Theorem (F.-Marsiglietti (2014))
The conjecture holds true

- in dimension 1
- in dimension 2 for A connected
- in dimension $n$ for $A$ finite and $t \geq t(A)$.

It is false in dimension $n \geq 2$ in general.

## Analogue of Concavity of entropy power

Concavity of entropy power: $t \mapsto N(X+\sqrt{t} Z)$ is concave.
Costa-Cover conjecture (1984): For any compact set $A$ in $\mathbb{R}^{n}$,

$$
t \mapsto \operatorname{vol}_{n}\left(A+t B_{2}^{n}\right)^{\frac{1}{n}} \text { is concave. }
$$

Costa-Cover: by BM, the conjecture holds if $A$ is convex.

## Theorem (F.-Marsiglietti (2014))

The conjecture holds true

- in dimension 1
- in dimension 2 for A connected
- in dimension $n$ for $A$ finite and $t \geq t(A)$.

It is false in dimension $n \geq 2$ in general.
Question: Is it true for $t \geq t(A)$ for any compact $A$ ? For example for $t \geq \operatorname{diam}(\mathrm{A})$ ?

## Plan

## Analogies <br> Entropy power and Brunn-Minkowski's inequalities

Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## Monotonicity of entropy and volume

## Monotonicity of entropy and volume

Monotonicity of entropy: Artstein-Ball-Barthe-Naor (2004) Let $X_{1}, \ldots, X_{m}, \ldots$ be i.i.d. random vectors then

$$
m \mapsto h\left(\frac{X_{1}+\cdots+X_{m}}{\sqrt{m}}\right) \quad \text { is increasing. }
$$

## Monotonicity of entropy and volume

Monotonicity of entropy: Artstein-Ball-Barthe-Naor (2004) Let $X_{1}, \ldots, X_{m}, \ldots$ be i.i.d. random vectors then

$$
m \mapsto h\left(\frac{X_{1}+\cdots+X_{m}}{\sqrt{m}}\right) \quad \text { is increasing. }
$$

Monotonicity of volume: Bobkov-Madiman-Wang's conjecture (2011): For any compact set $A$ in $\mathbb{R}^{n}$, let $A(m)=\frac{A+\cdots+A}{m}$. Then

$$
\operatorname{vol}_{n}(A(m)) \leq \operatorname{vol}_{n}(A(m+1)) ?
$$

## Monotonicity of entropy and volume

Monotonicity of entropy: Artstein-Ball-Barthe-Naor (2004) Let $X_{1}, \ldots, X_{m}, \ldots$ be i.i.d. random vectors then

$$
m \mapsto h\left(\frac{X_{1}+\cdots+X_{m}}{\sqrt{m}}\right) \quad \text { is increasing. }
$$

Monotonicity of volume: Bobkov-Madiman-Wang's conjecture (2011): For any compact set $A$ in $\mathbb{R}^{n}$, let $A(m)=\frac{A+\cdots+A}{m}$. Then

$$
\operatorname{vol}_{n}(A(m)) \leq \operatorname{vol}_{n}(A(m+1)) ?
$$

Remark: for $A$ convex, one has $A(m)=A$ for any $m$ so the result holds, but is not interesting. So we look at sets $A$ which are compact and non-convex!

## Volume of Minkowski averages

## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.


## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).


## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
- $n=12, A=\left([-1,1]^{6} \times\{0\}\right) \cup\left(\{0\} \times[-1,1]^{6}\right)$. Then $\operatorname{vol}_{12}\left(\frac{A+A}{2}\right)>\operatorname{vol}_{12}\left(\frac{A+A+A}{3}\right)$.


## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
- $n=12, A=\left([-1,1]^{6} \times\{0\}\right) \cup\left(\{0\} \times[-1,1]^{6}\right)$. Then $\operatorname{vol}_{12}\left(\frac{A+A}{2}\right)>\operatorname{vol}_{12}\left(\frac{A+A+A}{3}\right)$.



## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
- $n=12, A=\left([-1,1]^{6} \times\{0\}\right) \cup\left(\{0\} \times[-1,1]^{6}\right)$. Then $\operatorname{vol}_{12}\left(\frac{A+A}{2}\right)>\operatorname{vol}_{12}\left(\frac{A+A+A}{3}\right)$.
Questions:


## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
- $n=12, A=\left([-1,1]^{6} \times\{0\}\right) \cup\left(\{0\} \times[-1,1]^{6}\right)$. Then $\operatorname{vol}_{12}\left(\frac{A+A}{2}\right)>\operatorname{vol}_{12}\left(\frac{A+A+A}{3}\right)$.
Questions:
- What happens for $2 \leq n \leq 11$ ? e.g. $n=2$ ? $n=3$ ?


## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.
Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))
Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
- $n=12, A=\left([-1,1]^{6} \times\{0\}\right) \cup\left(\{0\} \times[-1,1]^{6}\right)$. Then $\operatorname{vol}_{12}\left(\frac{A+A}{2}\right)>\operatorname{vol}_{12}\left(\frac{A+A+A}{3}\right)$.
Questions:
- What happens for $2 \leq n \leq 11$ ? e.g. $n=2$ ? $n=3$ ?
- Do we have "eventual" monotonicity? For $m$ large enough?


## Volume of Minkowski averages

Recall that $A(m)=\frac{A+\cdots+A}{m}$.

## Theorem (F., Madiman, Marsiglietti, Zvavitch (2016))

Let $A$ be a compact set in $\mathbb{R}^{n}$. Then $m \mapsto \operatorname{vol}_{n}(A(m))$

- is increasing for $n=1$,
- is not (necessarily) increasing for $n \geq 12$.

Proof:

- $n=1$, adapt Lev (97) and Gyarmati-Matolcsi-Ruzsa (10).
- $n=12, A=\left([-1,1]^{6} \times\{0\}\right) \cup\left(\{0\} \times[-1,1]^{6}\right)$. Then $\operatorname{vol}_{12}\left(\frac{A+A}{2}\right)>\operatorname{vol}_{12}\left(\frac{A+A+A}{3}\right)$.
Questions:
- What happens for $2 \leq n \leq 11$ ? e.g. $n=2$ ? $n=3$ ?
- Do we have "eventual" monotonicity? For $m$ large enough?


## Theorem (F., Lángi, Zvavitch (2022))

Let $A$ be a starshaped compact set in $\mathbb{R}^{n}$. Then $\operatorname{vol}_{n}(A(m)) \leq \operatorname{vol}_{n}(A(m+1))$ for $m \geq(n-1)(n-2)$, thus yes for $n \leq 3$.

## Plan

## Analogies <br> Entropy power and Brunn-Minkowski's inequalities <br> Conjectures on compact sets <br> Concavity of entropy power <br> Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## Blachman-Stam inequality

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$.

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

2) Determinants. Bergstrøm's inequality. For $A, B$ non-negative symmetric matrices

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)}
$$

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

2) Determinants. Bergstrøm's inequality. For $A, B$ non-negative symmetric matrices

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)}
$$

3) Convex. Dembo-Cover-Thomas (1991): Define $J(A)=\frac{\operatorname{vol}(A)}{\partial(A)}$. On the set of convex compact sets, is the function $J$ concave (C)? Or monotone (M)?

$$
\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}+\frac{\operatorname{vol}_{n}(B)}{\partial(B)} ?(C) \quad \text { or } \quad \frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)} ?(M)
$$

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

2) Determinants. Bergstrøm's inequality. For $A, B$ non-negative symmetric matrices

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)}
$$

3) Convex. Dembo-Cover-Thomas (1991): Define $J(A)=\frac{\operatorname{vol}(A)}{\partial(A)}$. On the set of convex compact sets, is the function $J$ concave (C)? Or monotone (M)?

$$
\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}+\frac{\operatorname{vol}_{n}(B)}{\partial(B)} ?(C) \quad \text { or } \quad \frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)} ?(M)
$$

Bonnesen (1929): (C) holds for $n=2: \frac{\operatorname{vol}_{n}(A+B)}{\left|P_{u}(A+B)\right|} \geq \frac{\operatorname{vol}_{n}(A)}{\left|P_{u} A\right|}+\frac{\operatorname{vol}_{n}(B)}{\left|P_{u} B\right|}$

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

2) Determinants. Bergstrøm's inequality. For $A, B$ non-negative symmetric matrices

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)}
$$

3) Convex. Dembo-Cover-Thomas (1991): Define $J(A)=\frac{\operatorname{vol}(A)}{\partial(A)}$. On the set of convex compact sets, is the function $J$ concave (C)? Or monotone (M)?

$$
\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}+\frac{\operatorname{vol}_{n}(B)}{\partial(B)} ?(C) \quad \text { or } \quad \frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)} ?(M)
$$

Bonnesen (1929): (C) holds for $n=2: \frac{\operatorname{vol}_{n}(A+B)}{\left|P_{u}(A+B)\right|} \geq \frac{\operatorname{vol}_{n}(A)}{\left|P_{u} A\right|}+\frac{\operatorname{vol}_{n}(B)}{\left|P_{u} B\right|}$ DCT + Giannopoulos-Hartzoulaki-Paouris (2002): (C) OK for $B=B_{2}^{n}$.

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

2) Determinants. Bergstrøm's inequality. For $A, B$ non-negative symmetric matrices

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)}
$$

3) Convex. Dembo-Cover-Thomas (1991): Define $J(A)=\frac{\operatorname{vol}(A)}{\partial(A)}$. On the set of convex compact sets, is the function $J$ concave (C)? Or monotone $(\mathrm{M})$ ?

$$
\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}+\frac{\operatorname{vol}_{n}(B)}{\partial(B)} ?(C) \quad \text { or } \quad \frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)} ?(M)
$$

Bonnesen (1929): (C) holds for $n=2: \frac{\operatorname{vol}_{n}(A+B)}{\left|P_{u}(A+B)\right|} \geq \frac{\operatorname{vol}_{n}(A)}{\left|P_{u} A\right|}+\frac{\operatorname{vol}_{n}(B)}{\left|P_{u} B\right|}$ DCT + Giannopoulos-Hartzoulaki-Paouris (2002): (C) OK for $B=B_{2}^{n}$. F.-Giannopoulos-Meyer (2003): (M) doesn't hold for $n \geq 3$.

## Blachman-Stam inequality

1) Information. Let $Z$ be standard Gaussian independent of $X$. Recall that the Fisher Information $I(X)$ is: $I(X+\sqrt{t} Z)=2 \frac{d}{d t} h(X+\sqrt{t} Z)$. Blachman-Stam inequality (1964): For $X$ and $Y$ independent

$$
I(X+Y)^{-1} \geq I(X)^{-1}+I(Y)^{-1}
$$

2) Determinants. Bergstrøm's inequality. For $A, B$ non-negative symmetric matrices

$$
\frac{\operatorname{det}(A+B)}{\operatorname{det}\left(A_{1}+B_{1}\right)} \geq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{1}\right)}+\frac{\operatorname{det}(B)}{\operatorname{det}\left(B_{1}\right)}
$$

3) Convex. Dembo-Cover-Thomas (1991): Define $J(A)=\frac{\operatorname{vol}(A)}{\partial(A)}$. On the set of convex compact sets, is the function $J$ concave (C)? Or monotone $(\mathrm{M})$ ?

$$
\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}+\frac{\operatorname{vol}_{n}(B)}{\partial(B)} ?(C) \quad \text { or } \quad \frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)} ?(M)
$$

Bonnesen (1929): (C) holds for $n=2: \frac{\operatorname{vol}_{n}(A+B)}{\left|P_{u}(A+B)\right|} \geq \frac{\operatorname{vol}_{n}(A)}{\left|P_{u} A\right|}+\frac{\operatorname{vol}_{n}(B)}{\left|P_{u} B\right|}$ DCT + Giannopoulos-Hartzoulaki-Paouris (2002): (C) OK for $B=B_{2}^{n}$. F.-Giannopoulos-Meyer (2003): (M) doesn't hold for $n \geq 3$. Artstein-Avidan-Florentin-Ostrover (2014): counterexample for (M).

## Plan

```
Analogies
Entropy power and Brunn-Minkowski's inequalities
Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages
```

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## 3 bodies inequality with constant 1

## 3 bodies inequality with constant 1

1) Information. Let $X, Y, Z$ be independent random vectors in $\mathbb{R}^{n}$. Madiman (2008):

$$
N(X+Y+Z) N(X) \leq N(X+Y) N(X+Z)
$$

## 3 bodies inequality with constant 1

1) Information. Let $X, Y, Z$ be independent random vectors in $\mathbb{R}^{n}$. Madiman (2008):

$$
N(X+Y+Z) N(X) \leq N(X+Y) N(X+Z)
$$

2) Determinants. Madiman (2008). Let $A, B, C \geq 0$ be symmetric matrices. Then

$$
\operatorname{det}(A+B+C) \operatorname{det}(A) \leq \operatorname{det}(A+B) \operatorname{det}(A+C)
$$

## 3 bodies inequality with constant 1

1) Information. Let $X, Y, Z$ be independent random vectors in $\mathbb{R}^{n}$. Madiman (2008):

$$
N(X+Y+Z) N(X) \leq N(X+Y) N(X+Z)
$$

2) Determinants. Madiman (2008). Let $A, B, C \geq 0$ be symmetric matrices. Then

$$
\operatorname{det}(A+B+C) \operatorname{det}(A) \leq \operatorname{det}(A+B) \operatorname{det}(A+C)
$$

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{equation*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ? \tag{3B}
\end{equation*}
$$

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{equation*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ? \tag{3B}
\end{equation*}
$$

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{equation*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ? \tag{3B}
\end{equation*}
$$

Let $f(x, y)=\operatorname{vol}_{n}(A+x B+y C)$. (3B) gives $\frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0$,

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 B) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) . \tag{Bézout}
\end{gather*}
$$

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\qquad \operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 B) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) . \quad \text { (Bézout) }
\end{gather*}
$$

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+.

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 \mathrm{~B}) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) . \tag{Bézout}
\end{gather*}
$$

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+. So (3B) implies (Bézout). The reverse holds also: (Bézout) implies (3B).

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 \mathrm{~B}) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) . \tag{Bézout}
\end{gather*}
$$

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+. So (3B) implies (Bézout). The reverse holds also: (Bézout) implies (3B).

- $n=2$ : From Fenchel's inequality (Bézout) holds for any convex $A, B, C$ in $\mathbb{R}^{2}$.


## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 B) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) .
\end{gather*}
$$

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+. So (3B) implies (Bézout). The reverse holds also: (Bézout) implies (3B).

- $n=2$ : From Fenchel's inequality (Bézout) holds for any convex $A, B, C$ in $\mathbb{R}^{2}$.
- $n \geq 3$ : For $B=[0, u], C=[0, v]$, with $u, v \in S^{n-1},\langle u, v\rangle=0$, we get:


## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 B) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) .
\end{gather*}
$$

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+. So (3B) implies (Bézout). The reverse holds also: (Bézout) implies (3B).

- $n=2$ : From Fenchel's inequality (Bézout) holds for any convex $A, B, C$ in $\mathbb{R}^{2}$.
- $n \geq 3$ : For $B=[0, u], C=[0, v]$, with $u, v \in S^{n-1},\langle u, v\rangle=0$, we get:

$$
|A|\left|P_{u, v} A\right| \leq\left|P_{u} A\right|\left|P_{v} A\right| . \quad(P)
$$

## 3 bodies inequality with constant 1

3) Convexity. One can ask if for every convex sets $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\begin{gather*}
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) ?  \tag{3B}\\
\text { Let } f(x, y)=\operatorname{vol}_{n}(A+x B+y C) .(3 B) \text { gives } \frac{\partial^{2} \log f}{\partial x \partial y}(0,0) \leq 0 \text {, or } \\
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) .
\end{gather*}
$$

See Soprunov-Zvavitch 2016, Saroglou-Soprunov-Zvavitch 2019, Szusterman 2022+. So (3B) implies (Bézout). The reverse holds also: (Bézout) implies (3B).

- $n=2$ : From Fenchel's inequality (Bézout) holds for any convex $A, B, C$ in $\mathbb{R}^{2}$.
- $n \geq 3$ : For $B=[0, u], C=[0, v]$, with $u, v \in S^{n-1},\langle u, v\rangle=0$, we get:

$$
|A|\left|P_{u, v} A\right| \leq\left|P_{u} A\right|\left|P_{v} A\right| . \quad(P)
$$

But from Giannopoulos-Hartzoulaki-Paouris '03 the following inequality is sharp

$$
|A|\left|P_{u, v} A\right| \leq \frac{2(n-1)}{n}\left|P_{u} A\right|\left|P_{v} A\right| .
$$

Thus (Bezout) and (3B) don't hold for some convex sets $A$ in $\mathbb{R}^{n}$, for $n \geq 3$.

## 3 bodies' inequality up to constant

## 3 bodies' inequality up to constant

Let $c_{n}$ be the best constant such that for any $A, B, C$ be convex sets in $\mathbb{R}^{n}$

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

## 3 bodies' inequality up to constant

Let $c_{n}$ be the best constant such that for any $A, B, C$ be convex sets in $\mathbb{R}^{n}$

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

Bobkov-Madiman (2012): proved that $c_{n} \leq 3^{n}$.

## 3 bodies' inequality up to constant

Let $c_{n}$ be the best constant such that for any $A, B, C$ be convex sets in $\mathbb{R}^{n}$

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

Bobkov-Madiman (2012): proved that $c_{n} \leq 3^{n}$.
Theorem (F.-Madiman-Zvavitch 2022+)
$c_{2}=1, c_{3}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n} \leq \varphi^{n}
$$

## 3 bodies' inequality up to constant

Let $c_{n}$ be the best constant such that for any $A, B, C$ be convex sets in $\mathbb{R}^{n}$

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

Bobkov-Madiman (2012): proved that $c_{n} \leq 3^{n}$.
Theorem (F.-Madiman-Zvavitch 2022+)
$c_{2}=1, c_{3}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n} \leq \varphi^{n}
$$

## Methods:

- Upper bound: we develop the volume of the sum with mixed volumes, use some Bézout type inequalities proved by Xiao '19 and optimize.


## 3 bodies' inequality up to constant

Let $c_{n}$ be the best constant such that for any $A, B, C$ be convex sets in $\mathbb{R}^{n}$

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C) .
$$

Bobkov-Madiman (2012): proved that $c_{n} \leq 3^{n}$.
Theorem (F.-Madiman-Zvavitch 2022+)
$c_{2}=1, c_{3}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n} \leq \varphi^{n}
$$

## Methods:

- Upper bound: we develop the volume of the sum with mixed volumes, use some Bézout type inequalities proved by Xiao '19 and optimize.
- Lower bound: Applied to lower dimensional bodies $B$ and $C$, we get that for every subspaces $E, F$ of $\mathbb{R}^{n}$ such that $E^{\perp} \subset F$

$$
\left|P_{E \cap F} A\right||A| \leq c_{n}\left|P_{E} A\right|\left|P_{F} A\right| .
$$

## 3 bodies' inequality up to constant

Let $c_{n}$ be the best constant such that for any $A, B, C$ be convex sets in $\mathbb{R}^{n}$

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

Bobkov-Madiman (2012): proved that $c_{n} \leq 3^{n}$.
Theorem (F.-Madiman-Zvavitch 2022+)
$c_{2}=1, c_{3}=4 / 3$ and let $\varphi=\frac{1+\sqrt{5}}{2}$ be the golden ratio. Then, for $n \geq 3$

$$
(4 / 3)^{n} \leq c_{n} \leq \varphi^{n} .
$$

## Methods:

- Upper bound: we develop the volume of the sum with mixed volumes, use some Bézout type inequalities proved by Xiao '19 and optimize.
- Lower bound: Applied to lower dimensional bodies $B$ and $C$, we get that for every subspaces $E, F$ of $\mathbb{R}^{n}$ such that $E^{\perp} \subset F$

$$
\left|P_{E \cap F} A\right||A| \leq c_{n}\left|P_{E} A\right|\left|P_{F} A\right| .
$$

The optimal constants in these inequalities were computed recently by Brazitikos-Giannopoulos-Liakopoulos '18, Giannopoulos-Koldobsky-Valettas '18 and Alonso-Gutiérrez-Artstein-Avidan-González-Merino-Jiménez-Villa '19.

## Plan

## Analogies <br> Entropy power and Brunn-Minkowski's inequalities <br> Conjectures on compact sets <br> Concavity of entropy power <br> Monotonicity of volume of Minkowski averages

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## 3 bodies conjecture for zonoids

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)
(2) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}$. (M)

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)
(2) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}$. (M)
(3) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}$. (MP)

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)
(2) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}$. (M)
(3) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}$. (MP)
4. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has

$$
\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C) \text {. (Bézout) }
$$

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)
(2) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}$. (M)
(3) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}$. (MP)
4) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)$. (Bézout)
(5) For any zonoid $A$ in $\mathbb{R}^{n}$ one has $\sqrt{1-\langle u, v\rangle^{2}}|A|\left|P_{u, v} A\right| \leq\left|P_{u} A\right|\left|P_{v} A\right|$. (P)

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)
(2) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}$. (M)
(3) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}$. (MP)
4) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)$. (Bézout)
(5) For any zonoid $A$ in $\mathbb{R}^{n}$ one has $\sqrt{1-\langle u, v\rangle^{2}}|A|\left|P_{u, v} A\right| \leq\left|P_{u} A\right|\left|P_{v} A\right|$. (P)

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

All preceding inequalities hold in $\mathbb{R}^{3}$.

## 3 bodies conjecture for zonoids

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

Let $n \geq 2$ be fixed. Then the following properties are equivalent:
(1) For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $|A+B+C||A| \leq|A+B||A+C|$. (3B)
(2) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\partial(A+B)} \geq \frac{\operatorname{vol}_{n}(A)}{\partial(A)}$. (M)
(3) For any zonoids $A, B$ in $\mathbb{R}^{n}$ one has $\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}$. (MP)
4. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ one has $\operatorname{vol}_{n}(A) V(A[n-2], B, C) \leq \frac{n}{n-1} V(A[n-1], B) V(A[n-1], C)$. (Bézout)
(5) For any zonoid $A$ in $\mathbb{R}^{n}$ one has $\sqrt{1-\langle u, v\rangle^{2}}|A|\left|P_{u, v} A\right| \leq\left|P_{u} A\right|\left|P_{v} A\right|$. (P)

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

All preceding inequalities hold in $\mathbb{R}^{3}$.
Method: We prove the inequality in its last form, using projections. Applying a linear transform we only need to prove that for any zonoid $A$ in $\mathbb{R}^{3}$ one has

$$
|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right| .
$$

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.
Method: By approximation, it is enough to prove it for $A$ zonotope: $A=\sum_{i=1}^{M}\left[0, u_{i}\right]$, where $u_{i}=\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{3}$, for $1 \leq i \leq M$.

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.
Method: By approximation, it is enough to prove it for $A$ zonotope: $A=\sum_{i=1}^{M}\left[0, u_{i}\right]$, where $u_{i}=\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{3}$, for $1 \leq i \leq M$. Then we want to prove:

$$
\sum_{1 \leq i<j<k \leq M}\left|\operatorname{det}\left(\begin{array}{lll}
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k} \\
z_{i} & z_{j} & z_{k}
\end{array}\right)\right| \sum_{i=1}^{M}\left|z_{i}\right| \leq \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
y_{i} & y_{j} \\
z_{i} & z_{j}
\end{array}\right)\right| \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
z_{i} & z_{j}
\end{array}\right)\right|
$$

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.
Method: By approximation, it is enough to prove it for $A$ zonotope: $A=\sum_{i=1}^{M}\left[0, u_{i}\right]$, where $u_{i}=\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{3}$, for $1 \leq i \leq M$. Then we want to prove:

$$
\sum_{1 \leq i<j<k \leq M}\left|\operatorname{det}\left(\begin{array}{lll}
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k} \\
z_{i} & z_{j} & z_{k}
\end{array}\right)\right| \sum_{i=1}^{M}\left|z_{i}\right| \leq \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
y_{i} & y_{j} \\
z_{i} & z_{j}
\end{array}\right)\right| \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
z_{i} & z_{j}
\end{array}\right)\right|
$$

We fix $y=\left(y_{1}, \ldots, y_{M}\right)$ and $z=\left(z_{1}, \ldots, z_{M}\right)$ in $\mathbb{R}^{M}$ and we consider the inequality as a comparison of two convex functions of $x=\left(x_{1}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$, that are moreover affine by parts.

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.
Method: By approximation, it is enough to prove it for $A$ zonotope: $A=\sum_{i=1}^{M}\left[0, u_{i}\right]$, where $u_{i}=\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{3}$, for $1 \leq i \leq M$. Then we want to prove:

$$
\sum_{1 \leq i<j<k \leq M}\left|\operatorname{det}\left(\begin{array}{lll}
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k} \\
z_{i} & z_{j} & z_{k}
\end{array}\right)\right| \sum_{i=1}^{M}\left|z_{i}\right| \leq \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
y_{i} & y_{j} \\
z_{i} & z_{j}
\end{array}\right)\right| \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
z_{i} & z_{j}
\end{array}\right)\right|
$$

We fix $y=\left(y_{1}, \ldots, y_{M}\right)$ and $z=\left(z_{1}, \ldots, z_{M}\right)$ in $\mathbb{R}^{M}$ and we consider the inequality as a comparison of two convex functions of $x=\left(x_{1}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$, that are moreover affine by parts.
So we only need to prove the inequality at infinity and at the critical points of the above right hand side function.

## Proof of the $(3 B)$ inequality for zonoids in $\mathbb{R}^{3}$

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.
Method: By approximation, it is enough to prove it for $A$ zonotope: $A=\sum_{i=1}^{M}\left[0, u_{i}\right]$, where $u_{i}=\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{3}$, for $1 \leq i \leq M$. Then we want to prove:

$$
\sum_{1 \leq i<j<k \leq M}\left|\operatorname{det}\left(\begin{array}{ccc}
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k} \\
z_{i} & z_{j} & z_{k}
\end{array}\right)\right| \sum_{i=1}^{M}\left|z_{i}\right| \leq \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
y_{i} & y_{j} \\
z_{i} & z_{j}
\end{array}\right)\right| \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
z_{i} & z_{j}
\end{array}\right)\right|
$$

We fix $y=\left(y_{1}, \ldots, y_{M}\right)$ and $z=\left(z_{1}, \ldots, z_{M}\right)$ in $\mathbb{R}^{M}$ and we consider the inequality as a comparison of two convex functions of $x=\left(x_{1}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$, that are moreover affine by parts.
So we only need to prove the inequality at infinity and at the critical points of the above right hand side function.
The limit case reduces to Bonnesen's inequality in dimension 2. Then we use some intricate induction.

## Proof of the (3B) inequality for zonoids in $\mathbb{R}^{3}$

## Theorem (F.-Madiman-Meyer-Zvavitch 2022+)

For any zonoid $A$ in $\mathbb{R}^{3}$ one has $|A|\left|P_{e_{1}, e_{2}} A\right| \leq\left|P_{e_{1}} A\right|\left|P_{e_{2}} A\right|$.
Method: By approximation, it is enough to prove it for $A$ zonotope: $A=\sum_{i=1}^{M}\left[0, u_{i}\right]$, where $u_{i}=\left(x_{i}, y_{i}, z_{i}\right) \in \mathbb{R}^{3}$, for $1 \leq i \leq M$. Then we want to prove:

$$
\sum_{1 \leq i<j<k \leq M}\left|\operatorname{det}\left(\begin{array}{ccc}
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k} \\
z_{i} & z_{j} & z_{k}
\end{array}\right)\right| \sum_{i=1}^{M}\left|z_{i}\right| \leq \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
y_{i} & y_{j} \\
z_{i} & z_{j}
\end{array}\right)\right| \sum_{1 \leq i<j \leq M}\left|\operatorname{det}\left(\begin{array}{cc}
x_{i} & x_{j} \\
z_{i} & z_{j}
\end{array}\right)\right|
$$

We fix $y=\left(y_{1}, \ldots, y_{M}\right)$ and $z=\left(z_{1}, \ldots, z_{M}\right)$ in $\mathbb{R}^{M}$ and we consider the inequality as a comparison of two convex functions of $x=\left(x_{1}, \ldots, x_{M}\right) \in \mathbb{R}^{M}$, that are moreover affine by parts.
So we only need to prove the inequality at infinity and at the critical points of the above right hand side function.
The limit case reduces to Bonnesen's inequality in dimension 2. Then we use some intricate induction.

Remark: for zonoids, see also the recent nice vector valued Maclaurin inequalities put forward by Brazitikos-McIntyre 2021 and Joós-Lángi 2022+.

## Plan

```
Analogies
Entropy power and Brunn-Minkowski's inequalities
Conjectures on compact sets
Concavity of entropy power
Monotonicity of volume of Minkowski averages
```

Conjectures on convex sets
Dembo-Cover-Thomas' conjectures
General 3 bodies inequalities
3 bodies inequalities for zonoids
Back to Courtade's conjecture

## Courtade's conjecture

## Courtade's conjecture

1) Statement of the conjecture. Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B \| B_{2}^{n}+C\right|\right)^{1 / n} ? \quad(C C)
$$

## Courtade's conjecture

1) Statement of the conjecture. Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $\underline{n=2}$ : More is true: (CC) holds for any convex set $A$ instead of $B_{2}^{n}$ !

## Courtade's conjecture

1) Statement of the conjecture. Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $n=2$ : More is true: (CC) holds for any convex set $A$ instead of $B_{2}^{n}$ !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|}
$$

## Courtade's conjecture

1) Statement of the conjecture. Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $n=2$ : More is true: (CC) holds for any convex set $A$ instead of $B_{2}^{n}$ !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|}
$$

3) Recall: For $n \geq 3$, (CC) cannot holds for any convex body $A$ instead of $B_{2}^{n}$.

## Courtade's conjecture

1) Statement of the conjecture. Let $B, C$ be compact convex sets in $\mathbb{R}^{n}$. Is it true that

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) $n=2$ : More is true: (CC) holds for any convex set $A$ instead of $B_{2}^{n}$ !

Theorem (F.-Madiman-Meyer-Zvavitch 2022+)
Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|}
$$

3) Recall: For $n \geq 3$, (CC) cannot holds for any convex body $A$ instead of $B_{2}^{n}$.
4) $B$ zonoid

Theorem (F.-Madiman-Zvavitch 2022+)
Let $B$ be a zonoid and $C$ be a compact convex set in $\mathbb{R}^{n}$. Then

$$
\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right| \leq\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|
$$

## Proof of Courtade's conjecture in $\mathbb{R}^{2}$

## Proof of Courtade's conjecture in $\mathbb{R}^{2}$

1) Theorem (F.-Madiman-Meyer-Zvavitch 2022+): Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|} .
$$

## Proof of Courtade's conjecture in $\mathbb{R}^{2}$

1) Theorem (F.-Madiman-Meyer-Zvavitch 2022+): Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|} .
$$

2) Steps of the proof Squaring both sides we want to prove

$$
2 \sqrt{|A||B||C||A+B+C|}+|A||A+B+C|+|B||C| \leq|A+B||A+C|
$$

## Proof of Courtade's conjecture in $\mathbb{R}^{2}$

1) Theorem (F.-Madiman-Meyer-Zvavitch 2022+): Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|} .
$$

2) Steps of the proof Squaring both sides we want to prove

$$
2 \sqrt{|A||B||C||A+B+C|}+|A||A+B+C|+|B||C| \leq|A+B||A+C|
$$

Expanding with mixed volumes, simplifying and squaring again, we rewrite it as

$$
|A||B||C||A+B+C| \leq(2 V(A, B) V(A, C)+V(A, B)|C|+|B| V(A, C)-|A| V(B, C))^{2} .
$$

## Proof of Courtade's conjecture in $\mathbb{R}^{2}$

1) Theorem (F.-Madiman-Meyer-Zvavitch 2022+): Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|} .
$$

2) Steps of the proof

Squaring both sides we want to prove

$$
2 \sqrt{|A||B||C||A+B+C|}+|A||A+B+C|+|B||C| \leq|A+B||A+C|
$$

Expanding with mixed volumes, simplifying and squaring again, we rewrite it as

$$
|A||B||C||A+B+C| \leq(2 V(A, B) V(A, C)+V(A, B)|C|+|B| V(A, C)-|A| V(B, C))^{2} .
$$

Replacing $B$ by $r B$ and simplifying by $r^{2}$, we are reduced to proving: $\alpha r^{2}+\beta r+\gamma \geq 0$.

## Proof of Courtade's conjecture in $\mathbb{R}^{2}$

1) Theorem (F.-Madiman-Meyer-Zvavitch 2022+): Let $A, B, C$ be convex compact sets in $\mathbb{R}^{2}$. Then

$$
\sqrt{|B||C|}+\sqrt{|A||A+B+C|} \leq \sqrt{|A+B||A+C|} .
$$

2) Steps of the proof

Squaring both sides we want to prove

$$
2 \sqrt{|A||B||C||A+B+C|}+|A||A+B+C|+|B||C| \leq|A+B||A+C|
$$

Expanding with mixed volumes, simplifying and squaring again, we rewrite it as

$$
|A||B||C||A+B+C| \leq(2 V(A, B) V(A, C)+V(A, B)|C|+|B| V(A, C)-|A| V(B, C))^{2} .
$$

Replacing $B$ by $r B$ and simplifying by $r^{2}$, we are reduced to proving: $\alpha r^{2}+\beta r+\gamma \geq 0$. Then we use that $\alpha=|B|^{2}\left(V^{2}(A, C)-|A||C|\right) \geq 0$ and, after some painful calculation, the discriminant is
$\Delta=c\left((|A| V(B, C)-V(A, B) V(A, C))^{2}-\left(V(A, B)^{2}-|A||B|\right)\left(V(A, C)^{2}-|A||C|\right)\right) \leq 0$,
where $c=|B|^{2}|A||C||A+C|$, and where the last inequality follows from Fenchel's inequality.

## Open questions

## Open questions

1) Courtade's conjecture: Let $n \geq 3$ and $B, C$ be convex compact sets in $\mathbb{R}^{n}$. Then

$$
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \quad(C C)
$$

## Open questions

1) Courtade's conjecture: Let $n \geq 3$ and $B, C$ be convex compact sets in $\mathbb{R}^{n}$. Then

$$
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \quad(C C)
$$

2) 3 zonoids' conjecture: Let $n \geq 4$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
|A+B+C||A| \leq|A+B||A+C| ?
$$

3) Strong 3 zonoids' conjecture: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
(|B||C|)^{1 / n}+(|A||A+B+C|)^{1 / n} \leq(|A+B||A+C|)^{1 / n} ?
$$

## Open questions

1) Courtade's conjecture: Let $n \geq 3$ and $B, C$ be convex compact sets in $\mathbb{R}^{n}$. Then

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) 3 zonoids' conjecture: Let $n \geq 4$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
|A+B+C||A| \leq|A+B||A+C| ?
$$

3) Strong 3 zonoids' conjecture: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
(|B||C|)^{1 / n}+(|A||A+B+C|)^{1 / n} \leq(|A+B||A+C|)^{1 / n} ?
$$

4) Concavity for zonoids: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}+\frac{\operatorname{vol}_{n}(B)}{\operatorname{vol}_{n-1}\left(P_{u}(B)\right)} ?
$$

## Open questions

1) Courtade's conjecture: Let $n \geq 3$ and $B, C$ be convex compact sets in $\mathbb{R}^{n}$. Then

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) 3 zonoids' conjecture: Let $n \geq 4$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
|A+B+C||A| \leq|A+B||A+C| ?
$$

3) Strong 3 zonoids' conjecture: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
(|B||C|)^{1 / n}+(|A||A+B+C|)^{1 / n} \leq(|A+B||A+C|)^{1 / n} ?
$$

4) Concavity for zonoids: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}+\frac{\operatorname{vol}_{n}(B)}{\operatorname{vol}_{n-1}\left(P_{u}(B)\right)} ?
$$

5) Is the golden ratio the optimal constant? Recall that the best constant $c_{n}$ such that for any compact convex sets $A, B, C$ in $\mathbb{R}^{n}$ :

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

satisfy $(4 / 3)^{n} \leq c_{n} \leq \varphi^{n}$.

## Open questions

1) Courtade's conjecture: Let $n \geq 3$ and $B, C$ be convex compact sets in $\mathbb{R}^{n}$. Then

$$
\begin{equation*}
(|B||C|)^{1 / n}+\left(\left|B_{2}^{n}\right|\left|B_{2}^{n}+B+C\right|\right)^{1 / n} \leq\left(\left|B_{2}^{n}+B\right|\left|B_{2}^{n}+C\right|\right)^{1 / n} ? \tag{CC}
\end{equation*}
$$

2) 3 zonoids' conjecture: Let $n \geq 4$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
\begin{equation*}
|A+B+C||A| \leq|A+B||A+C| ? \tag{3B}
\end{equation*}
$$

3) Strong 3 zonoids' conjecture: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
(|B||C|)^{1 / n}+(|A||A+B+C|)^{1 / n} \leq(|A+B||A+C|)^{1 / n} ?
$$

4) Concavity for zonoids: Let $n \geq 3$. For any zonoids $A, B, C$ in $\mathbb{R}^{n}$ do we have

$$
\frac{\operatorname{vol}_{n}(A+B)}{\operatorname{vol}_{n-1}\left(P_{u}(A+B)\right)} \geq \frac{\operatorname{vol}_{n}(A)}{\operatorname{vol}_{n-1}\left(P_{u}(A)\right)}+\frac{\operatorname{vol}_{n}(B)}{\operatorname{vol}_{n-1}\left(P_{u}(B)\right)} ?
$$

5) Is the golden ratio the optimal constant? Recall that the best constant $c_{n}$ such that for any compact convex sets $A, B, C$ in $\mathbb{R}^{n}$ :

$$
\operatorname{vol}_{n}(A+B+C) \operatorname{vol}_{n}(A) \leq c_{n} \operatorname{vol}_{n}(A+B) \operatorname{vol}_{n}(A+C)
$$

satisfy $(4 / 3)^{n} \leq c_{n} \leq \varphi^{n}$. Question: do we have $c_{n}^{1 / n} \rightarrow \varphi$ ?

## End

Thank you!

