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MOTIVATION

DEFINITION

The Minkowski sum of finitely many segments in Rd is
called a zonotope.

THEOREM (MCMULLEN 1971, SHEPHARD 1974)

If Z =
∑n

i=1[o,pi ], where 1 ≤ i ≤ n, is a zonotope in Rd ,
then

Vd (Z ) =
∑

1≤i1<i2<...<id≤n

|pi1 ∧ pi2 ∧ . . . ∧ pid |.
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MOTIVATION

FIGURE: Decomposition of a zonotope Z into parallelotopes
generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If Z =
∑n

i=1[o,pi ], where 1 ≤ i ≤ n, then Z can be
decomposed into a family F of parallelotopes such that
each element of F is a translate of a d-dimensional
parallelotope P =

∑d
j=1[o,pij ] for some

1 ≤ i1 < i2 < . . . < id ≤ n, and for every such parallelotope
P there is a unique element of F which is a translate of P.
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NOTATION

Let d ≥ 2.
1 Z =

∑n
i=1[o,pi ] is a zonotope with pi ∈ Rd for all values

of i .
2 PZ = {p1, . . . ,pn}, for any 0 ≤ k ≤ d , PZ

k : the family of
k -element subsets of PZ containing linearly
independent vectors.

3 For any I ∈ PZ
k with k ≥ 1, P(I) =

∑
i∈I [o,pi ]; for k = 0,

P(∅) = {o} (regarded as a 0-dimensional parallelotope)
4 for any P(I) with I ∈ PZ

k , B⊥(I) := Bd ∩ (aff P(I))⊥ and
S⊥(I) := Sd−1 ∩ (aff P(I))⊥, where (aff P(I))⊥ denotes
the orthogonal complement of aff P(I).
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GENERALIZED DECOMPOSITION THEOREM

THEOREM (JOÓS, L. 2022)

For any t ≥ 0, the set Z + tBd can be decomposed into a
family FZ of mutually non-overlapping convex bodies of the
form X + tBX such that

1 for any X + tBX ∈ FZ , X is a translate of some
parallelotope P(I) with I ∈ PZ

k for some 0 ≤ k ≤ d, and
BX ⊆ B⊥(I) is the convex hull of o and a spherically
convex, compact subset of S⊥(I);

2 if for any 0 ≤ k ≤ d and I ∈ PZ
k , FZ (I) denotes the

subfamily of the elements X + tBX of FZ , where X is a
translate of P(I), then {BX : X + tBX ∈ FZ (I)} is a
decomposition of B⊥(I).
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GENERALIZED DECOMPOSITION THEOREM

FIGURE: The body Z + tBd if Z is a cube generated by 3 mutually
orthogonal segments. There are 4 translates of every generating
segment appearing as edges of Z . The solid bodies in the picture
correspond to the sets X + tBX , where X is a translate of a fixed
generating segment.
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GENERALIZED DECOMPOSITION THEOREM

cubical zonotope: any d generating vectors are linearly
independent (equivalently, any face is an affine cube)

REMARK

If Z is cubical, then the sets X (X ⊂ bd(Z )) in the theorem
are the proper faces of Z , and BX is the set of the outer
normal vectors of X of length at most one.

COROLLARY

For any zonotope Z =
∑n

i=1[o,pi ] in Rd , and any 0 ≤ k ≤ d,
the kth intrinsic volume of Z is

Vk (Z ) =
∑

1≤i1<i2<...<ik≤n

|pi1 ∧ pi2 ∧ . . . ∧ pik |. (1)

Corollary is proved by Brazitikos and McIntyre in 2021 using
an integral geometric formula.
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ISOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
1 Isoperimetric problems for zonotopes in Rd generated

by d or d + 1 segments (parallelotopes and rhombic
dodecahedra).

2 Isoperimetric problems for zonotopes in Rd generated
by n� d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius
(minimal width) denoted by ir(·), circumradius (diameter)
denoted by cr(·).

Zd ,n: family of d-dimensional zonotopes generated by n
segments.
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ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:

Zp := Zd ,d
Zrd := Zd ,d+1
Z reg

p ∈ Zd ,d is a cube
Z reg

rd ∈ Zd ,d+1 is a regular rhombic dodecahedron
Z reg

rd =
∑d+1

i=1 [o,qi ], where conv{q1,q2, . . . ,qd+1} is a regular
simplex centered at o.

THEOREM (BEZDEK 2000)
Let 1 ≤ k ≤ d be arbitrary. Among rhombic dodecahedra in
Rd of unit inradius, the ones with minimal kth intrinsic
volumes are the regular ones.
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THEOREM (JOÓS, L. 2022)
Let 1 ≤ k ≤ d − 1. Then, for any Zi ∈ Zi with
Vd (Zi) = Vd (Z reg

i ), where i ∈ {p, rd}, we have

Vk (Zi) ≥ Vk (Z reg
i )

with equality if and only if Zi is congruent to Z reg
i .

Furthermore, we cr(Zi) ≥ cr(Z reg
i ).

COROLLARY

For any Zi ∈ Zi with ir(Zi) = ir(Z reg
i ), where i ∈ {p, rd}, we

have
cr(Zi) ≥ cr(Z reg

i )

with equality if and only if Zi is congruent to Z reg
i .



ZONOTOPES

Z. LÁNGI

ZONOTOPES WITH A FEW GENERATING VECTORS,
PART 1

THEOREM (JOÓS, L. 2022)
Let 1 ≤ k ≤ d − 1. Then, for any Zi ∈ Zi with
Vd (Zi) = Vd (Z reg

i ), where i ∈ {p, rd}, we have

Vk (Zi) ≥ Vk (Z reg
i )

with equality if and only if Zi is congruent to Z reg
i .

Furthermore, we cr(Zi) ≥ cr(Z reg
i ).

COROLLARY

For any Zi ∈ Zi with ir(Zi) = ir(Z reg
i ), where i ∈ {p, rd}, we

have
cr(Zi) ≥ cr(Z reg

i )

with equality if and only if Zi is congruent to Z reg
i .



ZONOTOPES

Z. LÁNGI

ZONOTOPES WITH A FEW GENERATING VECTORS,
PART 1

THEOREM (JOÓS, L. 2022)
Let 1 ≤ k ≤ d − 1. Then, for any Zi ∈ Zi with
Vd (Zi) = Vd (Z reg

i ), where i ∈ {p, rd}, we have

Vk (Zi) ≥ Vk (Z reg
i )

with equality if and only if Zi is congruent to Z reg
i .

Furthermore, we cr(Zi) ≥ cr(Z reg
i ).

COROLLARY

For any Zi ∈ Zi with ir(Zi) = ir(Z reg
i ), where i ∈ {p, rd}, we

have
cr(Zi) ≥ cr(Z reg

i )

with equality if and only if Zi is congruent to Z reg
i .



ZONOTOPES

Z. LÁNGI

ZONOTOPES WITH A FEW GENERATING VECTORS,
PART 2

THEOREM (JOÓS, L. 2022)

If Z ∈ Zp satisfies V1(Z ) = V1(Z reg
p ), then cr(Z ) ≥ cr(Z reg

p ),
with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let d ≥ 2. Then for any Z =
∑d+1

i=1 [o,pi ] ∈ Zrd satisfying∑d+1
i=1 pi = o and V1(Z ) = V1(Z reg

rd ), we have

cr(Z ) ≥ cr(Z reg
rd ),

with equality if and only if Z is congruent to Z reg
rd .

Furthermore, if d is odd, then there is a rhombic
dodecahedron Z ′ =

∑d+1
i=1 [o,p′i ] with V1(Z ′) = V1(Z reg

rd ) and
cr(Z ′) < cr(Z reg

rd ).
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PROPOSITION (JOÓS, L. 2022)

For any Z ∈ Zp with V1(Z ) = V1(Z reg
p ), we have

V2(Z ) ≤ V2(Z reg
p ), with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let Z reg
rd =

∑d+1
i=1 [o,qi ], where qi ∈ Sd−1 for all values of i.

Then, if Z =
∑d+1

i=1 [o,pi ] is a rhombic dodecahedron with
pi ∈ Sd−1 for all values of i, then

V2(Z ) ≥ V2(Z reg
rd ),

with equality if and only if Z is regular.
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Total squared k -content of a simplex: sum of the squares of
the k -volumes of all k -faces
THEOREM (TANNER 1974)

Let 2 ≤ k ≤ d. Among simplices in Rd with a given total
squared 1-content, the ones with maximal total squared
k-content are the regular ones.

σk
m(x1, x2, . . . , xm): elementary symmetric polynomial of

degree k with the variables x1, x2, . . . , xk

LEMMA (MACLAURIN’S INEQUALITY)
Let 1 ≤ k < m be integers, and x1, . . . , xm > 0 be positive
real numbers. Then(

σk
m(x1, x2, . . . , xm)(m

k

) ) 1
k

≥

(
σk+1

m (x1, x2, . . . , xm)( m
k+1

) ) 1
k+1

.
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CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let x1, x2, . . . , xn ∈ Rd be given with 1 ≤ d ≤ n. Then for
any p ∈ [0,∞] and 2 ≤ k ≤ d, we have(∑

1≤i1<...<ik≤n |xi1 ∧ xi2 ∧ . . . ∧ xik |p(n
k

) ) 1
pk

≤

≤

(∑
1≤i1<...<ik−1≤n |xi1 ∧ xi2 ∧ . . . ∧ xik−1 |p( n

k−1

) ) 1
p(k−1)

,

with equality if and only if n = d and the vectors form an
orthonormal basis.

Proved for p = 0 and p =∞, for p = 2 and n = d , and for
p = 1, n = d and k = 2,3,d .
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Let Z =
∑n

i=1[o, xi ] ⊂ Rd .

Vk ,p(Z ) =
∑

1≤i1<...<ik≤n

|xi1 ∧ xi2 ∧ . . . ∧ xik |
p

THEOREM

Let Z be a rhombic dodecahedron in Rd . Then, for any
1 ≤ k < m ≤ d, the quantity(

Vk ,2(Z )
)m(

Vm,2(Z )
)k

is minimal if and only if Z is regular.
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PROBLEM (BETKE, MCMULLEN 1983)

For any ε > 0, find the smallest number N = N(ε) such that
the Euclidean ball can be approximated within error ε (in
Hausdorff distance) by a zonotope generated by N
segments.

THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993,
LINHART 1989, BOURGAIN, LINDENSTRAUSS, MILMAN 1989,
MATOUŠEK 1996)
There are constants c,C > 0 depending only on the
dimension d such that

cε
−2(d−1)

d+2 ≤ N(ε) ≤

 Cε
−2(d−1)

d+2 , if d = 2 or d ≥ 5,

C
(
ε−2 log |ε|

) (d−1)
d+2 , otherwise.
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Zd ,n: family of d-dimensional zonotopes generated by n
segments

Ud (n) =


√

log n

n
d+2

2d−2
, if d = 3 or d = 4,

1

n
d+2

2d−2
, if d = 2 or d ≥ 5.

THEOREM

Let d ≥ 2 be fixed. Then there are positive constants
c = c(d) and C = C(d) depending only on the dimension
such that for any n ≥ d + 1,

c

n
d+2

2d−2

≤ min

{
cr(Z )

ir(Z )
− 1 : Z ∈ Zd ,n

}
≤ CUd (n).
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: Z ∈ Zd ,n
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Vd (Bd )
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d
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APPLICATION I

`1-polarization problem:
For a multiset ωn = {x1, x2, . . . , xn} in Sd−1, the
`1-polarization of ωn is defined as

M1(ωn) = max

{
n∑

i=1

|〈xi ,u〉| : u ∈ Sd−1

}
,

and the quantity

M1
n (Sd−1) = min

{
Mp(ωn) : ωn ⊂ Sd−1

}
is called the `p-polarization (or Chebyshev) constant of
Sd−1. The `1-polarization problem on the sphere asks for
determining the value of M1

n (Sd−1) for all values of n and d .
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For Z =
∑n

i=1[o,pi ] ⊂ Rd ,

V1(Z ) =
n∑

i=1

|pi |,

cr(Z ) =
1
2

max

{
n∑

i=1

|〈u, xi〉| : u ∈ Sd−1

}
.

PROBLEM

For any n ≥ d ≥ 1, find the minimal circumradius of all
equilateral zonotopes in Zd ,n with a given mean width.
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REMARK

It was shown by Ambrus and Nietert in 2019 that

M1
n (Sd−1) = nµd ,1 + o

(
n√
d

)

if n,d →∞ and n = ω
(
d2 log d

)
, where µd ,1 =

Γ( d
2 )

√
πΓ( d+1

2 )
.

Our theorems yield that

M1
n (Sd−1) = nµd ,1 + O

(
n

d−4
2d−2

√
log n

)
for any fixed d ≥ 2.
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CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let x1, x2, . . . , xn ∈ Rd be given with 1 ≤ d ≤ n. Then for
any p ∈ [0,∞] and 2 ≤ k ≤ d, we have(∑

1≤i1<...<ik≤n |xi1 ∧ xi2 ∧ . . . ∧ xik |p(n
k

) ) 1
pk

≤

≤

(∑
1≤i1<...<ik−1≤n |xi1 ∧ xi2 ∧ . . . ∧ xik−1 |p( n

k−1

) ) 1
p(k−1)

,

with equality if and only if n = d and the vectors form an
orthonormal basis.

Proved for p = 0 and p =∞, for p = 2 and n = d , and for
p = 1, n = d and k = 2,3,d .
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THEOREM

Let n ≥ d and Z =
∑n

i=1[o, xi ] be a zonotope in Rd . Then,
for any 1 ≤ k < d, the quantity(

Vk ,2(Z )(n
k

) ) 1
k

≥

(
Vk+1,2(Z )( n

k+1

) ) 1
k+1

,

with equality if and only if n = d and Z is a cube, or if the
dimension of Z is at most k − 1.
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