ISOPERIMETRIC PROBLEMS FOR ZONOTOPES

Zsolt Lángi (joint work with Antal Joós)

HAS-BUTE Morphodynamics Research Group
Department of Geometry, Budapest University of Technology and Economics, Hungary

June 21, 2022

Motivation

DEFINITION

The Minkowski sum of finitely many segments in \mathbb{R}^{d} is called a zonotope.

THEOREM (MCMULLEN 1971, SHEPHARD 1974)
If $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$, where $1 \leq i \leq n$, is a zonotope in \mathbb{R}^{d}.
then

Motivation

DEFINITION

The Minkowski sum of finitely many segments in \mathbb{R}^{d} is called a zonotope.

THEOREM (MCMULLEN 1971, SHEPHARD 1974)

 If $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$, where $1 \leq i \leq n$, is a zonotope in \mathbb{R}^{d}, then$$
V_{d}(Z)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{d} \leq n}\left|p_{i_{1}} \wedge p_{i_{2}} \wedge \ldots \wedge p_{i_{d}}\right| .
$$

Motivation

Figure: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

Theorem (Shephard 1974)
If $Z=\sum_{i=1}^{n}\left[0, p_{i}\right]$, where $1 \leq i \leq n$, then Z can be
decomposed into a family \mathcal{F} of parallelotopes such that
each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P=\sum_{j=1}^{d}\left[o, p_{i j}\right]$ for some
$1 \leq i_{1}<i_{2}<\ldots<i_{d} \leq n$, and for every such parallelotope
P there is a unique element of \mathcal{F} which is a translate of P.

Motivation

Figure: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z=\sum_{i=1}^{n}\left[0, p_{i}\right]$, where $1 \leq i \leq n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that

Motivation

Figure: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z=\sum_{i=1}^{n}\left[0, p_{i}\right]$, where $1 \leq i \leq n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P=\sum_{j=1}^{d}\left[o, p_{i j}\right]$ for some $1 \leq i_{1}<i_{2}<\ldots<i_{d} \leq n$, and for every such parallelotope

Motivation

Figure: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z=\sum_{i=1}^{n}\left[0, p_{i}\right]$, where $1 \leq i \leq n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P=\sum_{j=1}^{d}\left[o, p_{i j}\right]$ for some
$1 \leq i_{1}<i_{2}<\ldots<i_{d} \leq n$, and for every such parallelotope
P there is a unique element of \mathcal{F} which is a translate of P.

NOTATION

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[0, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(1) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$.

NOTATION

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(© $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(© For any $I \in \mathcal{P}_{k}^{z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(c) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{-}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$.

NOTATION

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(1) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$.

NOTATION

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$,
\square
© for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{R}^{d} \cap(\text { aff } P(I))^{\perp}$ and $S^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, where $(\text { aff } P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$

NOTATION

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$;
(4) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$.

Notation

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(a) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=B^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$.

Notation

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(9) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and the orthogonal complement of aff $P(I)$

Notation

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(9) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, the orthogonal complement of aff $P(I)$

Notation

Let $d \geq 2$.
(1) $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ is a zonotope with $p_{i} \in \mathbb{R}^{d}$ for all values of i.
(2) $\mathcal{P}^{Z}=\left\{p_{1}, \ldots, p_{n}\right\}$, for any $0 \leq k \leq d, \mathcal{P}_{k}^{Z}$: the family of k-element subsets of \mathcal{P}^{Z} containing linearly independent vectors.
(3) For any $I \in \mathcal{P}_{k}^{Z}$ with $k \geq 1, P(I)=\sum_{i \in I}\left[0, p_{i}\right]$; for $k=0$, $P(\emptyset)=\{0\}$ (regarded as a 0-dimensional parallelotope)
(9) for any $P(I)$ with $I \in \mathcal{P}_{k}^{Z}, B^{\perp}(I):=\mathbf{B}^{d} \cap(\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I):=\mathbb{S}^{d-1} \cap(\operatorname{aff} P(I))^{\perp}$, where $(\text { aff } P(I))^{\perp}$ denotes the orthogonal complement of aff $P(I)$.

GENERALIZED DECOMPOSITION THEOREM

Theorem (Joós, L. 2022)

For any $t \geq 0$, the set $Z+t \mathbf{B}^{d}$ can be decomposed into a family \mathcal{F}_{Z} of mutually non-overlapping convex bodies of the form $X+t B_{X}$ such that
(1) for any $X+t B_{X} \in \mathcal{F}_{Z}, X$ is a translate of some parallelotope $P(I)$ with $I \in \mathcal{P}_{k}^{Z}$ for some $0 \leq k \leq d$, and $B_{X} \subseteq B^{\perp}(I)$ is the convex hull of o and a spherically convex, compact subset of $S^{\perp}(I)$;
(2) if for any $0 \leq k \leq d$ and $I \in \mathcal{P}_{k}^{Z}, \mathcal{F}_{Z}(I)$ denotes the subfamily of the elements $X+t B_{X}$ of \mathcal{F}_{Z}, where X is a translate of $P(I)$, then $\left\{B_{X}: X+t B_{X} \in \mathcal{F}_{Z}(I)\right\}$ is a decomposition of $B^{-}(I)$

GENERALIZED DECOMPOSITION THEOREM

Theorem (Joós, L. 2022)

For any $t \geq 0$, the set $Z+t \mathbf{B}^{d}$ can be decomposed into a family \mathcal{F}_{Z} of mutually non-overlapping convex bodies of the form $X+t B_{X}$ such that
(1) for any $X+t B_{X} \in \mathcal{F}_{Z}, X$ is a translate of some parallelotope $P(I)$ with $I \in \mathcal{P}_{k}^{Z}$ for some $0 \leq k \leq d$, and $B_{X} \subseteq B^{\perp}(I)$ is the convex hull of o and a spherically convex, compact subset of $S^{\perp}(I)$;

GENERALIZED DECOMPOSITION THEOREM

Theorem (Joós, L. 2022)

For any $t \geq 0$, the set $Z+t \mathbf{B}^{d}$ can be decomposed into a family \mathcal{F}_{Z} of mutually non-overlapping convex bodies of the form $X+t B_{X}$ such that
(1) for any $X+t B_{X} \in \mathcal{F}_{Z}, X$ is a translate of some parallelotope $P(I)$ with $I \in \mathcal{P}_{k}^{Z}$ for some $0 \leq k \leq d$, and $B_{X} \subseteq B^{\perp}(I)$ is the convex hull of o and a spherically convex, compact subset of $S^{\perp}(I)$;
(2) if for any $0 \leq k \leq d$ and $I \in \mathcal{P}_{k}^{Z}, \mathcal{F}_{Z}(I)$ denotes the subfamily of the elements $X+t B_{X}$ of \mathcal{F}_{Z}, where X is a translate of $P(I)$, then $\left\{B_{X}: X+t B_{X} \in \mathcal{F}_{Z}(I)\right\}$ is a decomposition of $B^{\perp}(I)$.

GENERALIZED DECOMPOSITION THEOREM

Figure: The body $Z+t \mathbf{B}^{d}$ if Z is a cube generated by 3 mutually orthogonal segments. There are 4 translates of every generating segment appearing as edges of Z. The solid bodies in the picture correspond to the sets $X+t B_{X}$, where X is a translate of a fixed generating segment.

GENERALIZED DECOMPOSITION THEOREM

Z. LÁNGI
cubical zonotope: any d generating vectors are linearly independent (equivalently, any face is an affine cube)

REMARK
 If Z is cubical, then the sets $X(X \subset b d(Z))$ in the theorem are the proper faces of Z, and B_{X} is the set of the outer normal vectors of X of length at most one.

COROLLARY

For any zonotope $Z=\sum_{i=1}\left[0, p_{i}\right]$ in \mathbb{R}^{d}, and any $0 \leq k \leq d$ the kth intrinsic volume of Z is

Corollary is proved by Brazitikos and McIntyre in 2021 using an integral geometric formula.

GENERALIZED DECOMPOSITION THEOREM

Z. LÁNGI
cubical zonotope: any d generating vectors are linearly independent (equivalently, any face is an affine cube)

REMARK
 If Z is cubical, then the sets $X(X \subset b d(Z))$ in the theorem are the proper faces of Z, and $B x$ is the set of the outer normal vectors of X of length at most one.

COROLLARY

For any zonotope $Z=\sum_{i=1}^{n}\left[0, p_{i}\right]$ in \mathbb{R}^{d}, and any $0 \leq k \leq d$ the k th intrinsic volume of Z is

Corollary is proved by Brazitikos and McIntyre in 2021 using an integral geometric formula.

GENERALIZED DECOMPOSITION THEOREM

cubical zonotope: any d generating vectors are linearly independent (equivalently, any face is an affine cube)

REMARK

If Z is cubical, then the sets $X(X \subset b d(Z))$ in the theorem are the proper faces of Z, and B_{X} is the set of the outer normal vectors of X of length at most one.

Corollary is proved by Brazitikos and McIntyre in 2021 using an integral geometric formula.

GENERALIZED DECOMPOSITION THEOREM

cubical zonotope: any d generating vectors are linearly independent (equivalently, any face is an affine cube)

REMARK

If Z is cubical, then the sets $X(X \subset b d(Z))$ in the theorem are the proper faces of Z, and B_{X} is the set of the outer normal vectors of X of length at most one.

Corollary

For any zonotope $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ in \mathbb{R}^{d}, and any $0 \leq k \leq d$, the k th intrinsic volume of Z is

$$
\begin{equation*}
V_{k}(Z)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n}\left|p_{i_{1}} \wedge p_{i_{2}} \wedge \ldots \wedge p_{i_{k}}\right| . \tag{1}
\end{equation*}
$$

Corollary is proved by Brazitikos and McIntyre in 2021 using

 an integral geometric formula.
GENERALIZED DECOMPOSITION THEOREM

cubical zonotope: any d generating vectors are linearly independent (equivalently, any face is an affine cube)

REMARK

If Z is cubical, then the sets $X(X \subset b d(Z))$ in the theorem are the proper faces of Z, and B_{X} is the set of the outer normal vectors of X of length at most one.

Corollary

For any zonotope $Z=\sum_{i=1}^{n}\left[o, p_{i}\right]$ in \mathbb{R}^{d}, and any $0 \leq k \leq d$, the k th intrinsic volume of Z is

$$
\begin{equation*}
V_{k}(Z)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n}\left|p_{i_{1}} \wedge p_{i_{2}} \wedge \ldots \wedge p_{i_{k}}\right| . \tag{1}
\end{equation*}
$$

Corollary is proved by Brazitikos and McIntyre in 2021 using an integral geometric formula.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:

- Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
© Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter) denoted by cr(•).
$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).

- Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates)
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter) denoted by $\mathrm{cr}(\cdot)$.
$\mathcal{z}_{d, n}$: family of d-dimensional zonotopes generated by n segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
(2) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter) denoted by cr(•).
$Z_{d, n}$: family of d-dimensional zonotopes generated by n
segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
(2) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter) denoted by cr(•).
$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n
segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
(2) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter)
denoted by cr(•).
$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n
segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
(2) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter)
denoted by cr(•)
$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n
segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
(2) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter) denoted by $\mathrm{cr}(\cdot)$.
$Z_{d, n}$: family of d-dimensional zonotopes generated by n
segments.

IsOPERIMETRIC PROBLEMS FOR ZONOTOPES

Two parts:
(1) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by d or $d+1$ segments (parallelotopes and rhombic dodecahedra).
(2) Isoperimetric problems for zonotopes in \mathbb{R}^{d} generated by $n \gg d$ segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by ir(•), circumradius (diameter) denoted by $\mathrm{cr}(\cdot)$.
$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:
$\mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d}$
$\mathcal{Z}_{\mathrm{rd}}:=\mathcal{Z}_{d, d+1}$
$Z_{p}^{\text {reg }} \in \mathcal{Z}_{d, d}$ is a cube
$Z_{r d}^{\text {reg }} \in \mathcal{Z}_{d, d+1}$ is a regular rhombic dodecahedron
$Z_{\mathrm{rd}}^{\text {reg }}=\sum_{i=1}^{d+1}\left[0, q_{i}\right]$, where conv $\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\}$ is a regular simplex centered at 0 .

Theorem (Bezdek 2000)

Let $1 \leq k \leq d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic
volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:

$$
\mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d}
$$

$z_{\mathrm{rd}}:=\mathcal{Z}_{d, d+1}$
$Z_{\mathrm{p}}^{\text {reg }} \in \mathcal{Z}_{d, d}$ is a cube
$Z^{\text {reg }} \in \mathcal{Z}_{d_{d+1}}$ is a regular rhombic dodecahedron
$Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right]$, where conv$\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\}$ is a regular simplex centered at o.

THEOREM (BEZDEK 2000)

Let $1 \leq k \leq d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic
volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d} \\
& \mathcal{Z}_{\mathrm{rd}}:=\mathcal{Z}_{d, d+1}
\end{aligned}
$$

$$
Z_{p}^{\text {reg }} \in \mathcal{Z}_{d, d} \text { is a cube }
$$

$$
\mathcal{Z}_{\mathrm{rd}}^{\mathrm{reg}} \in \mathcal{Z}_{d, d+1} \text { is a regular rhombic dodecahedron }
$$

$$
Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right], \text { where } \operatorname{conv}\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\} \text { is a regular }
$$

$$
\text { simplex centered at } o .
$$

Theorem (Bezdek 2000)

Let $1<k<d$ be arbitrarv. Among rhombic dodecahedra in \mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic
volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:
$\mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d}$
$\mathcal{Z}_{\mathrm{rd}}:=\mathcal{Z}_{d, d+1}$
$Z_{p}^{\text {reg }} \in \mathcal{Z}_{d, d}$ is a cube
$Z_{\mathrm{rd}}^{\text {reg }} \in \mathcal{Z}_{d, d+1}$ is a regular rhombic dodecahedron
$Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right]$, where $\operatorname{conv}\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\}$ is a regular simplex centered at o.

ThEOREM (BEZDEK 2000)
Let $1 \leq k \leq d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic
volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:

$$
\begin{aligned}
& \mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d} \\
& \mathcal{Z}_{\mathrm{r}}:=\mathcal{Z}_{d, d+1} \\
& \mathcal{Z}_{\mathrm{p}}^{\text {reg }} \in \mathcal{Z}_{d, d} \text { is a cube } \\
& \mathcal{Z}_{\mathrm{rd}}^{\text {reg }} \in \mathcal{Z}_{d, d+1} \text { is a regular rhombic dodecahedron }
\end{aligned}
$$

$$
Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right], \text { where } \operatorname{conv}\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\} \text { is a regular }
$$

$$
\text { simplex centered at } o \text {. }
$$

Theorem (Bezdek 2000)

Let $1 \leq k \leq d$ be arbitrary. Among rhombic dodecahedra in
\mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic
volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:
$\mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d}$
$\mathcal{Z}_{\mathrm{rd}}:=\mathcal{Z}_{d, d+1}$
$Z_{p}^{\text {reg }} \in \mathcal{Z}_{d, d}$ is a cube
$Z_{\mathrm{rd}}^{\text {reg }} \in \mathcal{Z}_{d, d+1}$ is a regular rhombic dodecahedron
$Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right]$, where $\operatorname{conv}\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\}$ is a regular simplex centered at o.

THEOREM (BEZDEK 2000)
Let $1 \leq k \leq d$ be arbitrary. Among rhombic dodecahedra in
\mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic
volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

Notation:

```
\(\mathcal{Z}_{\mathrm{p}}:=\mathcal{Z}_{d, d}\)
\(\mathcal{Z}_{\mathrm{rd}}:=\mathcal{Z}_{d, d+1}\)
\(Z_{p}^{\text {reg }} \in \mathcal{Z}_{d, d}\) is a cube
\(Z_{\mathrm{rd}}^{\text {reg }} \in \mathcal{Z}_{d, d+1}\) is a regular rhombic dodecahedron
\(Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right]\), where \(\operatorname{conv}\left\{q_{1}, q_{2}, \ldots, q_{d+1}\right\}\) is a regular simplex centered at \(o\).
```

THEOREM (BEZDEK 2000)
Let $1 \leq k \leq d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^{d} of unit inradius, the ones with minimal k th intrinsic volumes are the regular ones.

THEOREM (Joós, L. 2022)

Let $1 \leq k \leq d-1$. Then, for any $Z_{i} \in \mathcal{Z}_{i}$ with
$V_{d}\left(Z_{i}\right)=V_{d}\left(Z_{i}^{\mathrm{reg}}\right)$, where $i \in\{\mathrm{p}, \mathrm{rd}\}$, we have

$$
V_{k}\left(Z_{i}\right) \geq V_{k}\left(Z_{i}^{\mathrm{reg}}\right)
$$

with equality if and only if Z_{i} is congruent to Z_{i}^{reg}.
Furthermore
For any $Z_{i} \in \mathcal{Z}_{i}$ with $\operatorname{ir}\left(Z_{i}\right)=\operatorname{ir}\left(Z_{i}^{\text {reg }}\right)$, where $i \in\{\mathrm{p}, \mathrm{rd}\}$, we
have
with equality if and only if Z_{i} is congruent to $Z_{i}^{\text {reg }}$

THEOREM (Joós, L. 2022)

Let $1 \leq k \leq d-1$. Then, for any $Z_{i} \in \mathcal{Z}_{i}$ with
$V_{d}\left(Z_{i}\right)=V_{d}\left(Z_{i}^{\mathrm{reg}}\right)$, where $i \in\{\mathrm{p}, \mathrm{rd}\}$, we have

$$
V_{k}\left(Z_{i}\right) \geq V_{k}\left(Z_{i}^{\mathrm{reg}}\right)
$$

with equality if and only if Z_{i} is congruent to Z_{i}^{reg}.
Furthermore, we $\operatorname{cr}\left(Z_{i}\right) \geq \operatorname{cr}\left(Z_{i}^{\text {reg }}\right)$.

Corollary
For any $Z_{i} \in \mathcal{Z}_{i}$ with $\operatorname{ir}\left(Z_{i}\right)=\operatorname{ir}\left(Z_{i}^{\text {reg }}\right)$, where $i \in\{\mathrm{p}, \mathrm{rd}\}$, we
have
with equality if and only if Z_{i} is congruent to $Z_{i}^{\text {reg }}$.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 1
THEOREM (Joós, L. 2022)

Let $1 \leq k \leq d-1$. Then, for any $Z_{i} \in \mathcal{Z}_{i}$ with
$V_{d}\left(Z_{i}\right)=V_{d}\left(Z_{i}^{\text {reg }}\right)$, where $i \in\{\mathrm{p}, \mathrm{rd}\}$, we have

$$
V_{k}\left(Z_{i}\right) \geq V_{k}\left(Z_{i}^{\mathrm{reg}}\right)
$$

with equality if and only if Z_{i} is congruent to Z_{i}^{reg}.
Furthermore, we $\operatorname{cr}\left(Z_{i}\right) \geq \operatorname{cr}\left(Z_{i}^{\text {reg }}\right)$.

Corollary

For any $Z_{i} \in \mathcal{Z}_{i}$ with $\operatorname{ir}\left(Z_{i}\right)=\operatorname{ir}\left(Z_{i}^{\text {reg }}\right)$, where $i \in\{\mathrm{p}, \mathrm{rd}\}$, we have

$$
\operatorname{cr}\left(Z_{i}\right) \geq \operatorname{cr}\left(Z_{i}^{\mathrm{reg}}\right)
$$

with equality if and only if Z_{i} is congruent to Z_{i}^{reg}.

THEOREM (Joós, L. 2022)
If $Z \in \mathcal{Z}_{\mathrm{p}}$ satisfies $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, then $\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, with equality if and only if Z is a cube.

THEOREM (Joós, L. 2022)
Let $d \geq 2$. Then for any $Z=\sum_{i=1}^{d+1}\left[o, p_{i}\right] \in \mathcal{Z}_{\mathrm{rd}}$ satisfying
$\sum_{i=1}^{d+1} p_{i}=0$ and $V_{1}(Z)=V_{1}\left(Z_{\text {rd }}^{\text {reg }}\right)$, we have

$$
\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right),
$$

with equality if and only if Z is congruent to $Z_{\mathrm{rd}}^{\text {reg }}$.
Furthermore, if d is odd, then there is a rhombic dodecahedron $Z^{\prime}=\sum_{i=1}^{d+1}\left[0, p_{i}^{\prime}\right]$ with $V_{1}\left(Z^{\prime}\right)=V_{1}\left(Z_{\mathrm{rd}}^{\text {reg }}\right)$ and $\operatorname{cr}\left(Z^{\prime}\right)<\operatorname{cr}\left(Z_{\text {rd }}^{\text {reg }}\right)$.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 2
Theorem (Joós, L. 2022)
 If $Z \in \mathcal{Z}_{\mathrm{p}}$ satisfies $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, then $\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, with equality if and only if Z is a cube.

Theorem (Joós, L. 2022)
Let $d \geq$ 2. Then for any $Z=\sum_{i=1}^{d+1}\left[0, p_{i}\right] \in \mathbb{Z}_{\mathrm{rd}}$ satisfying

we have

with equality if and only if Z is congruent to $Z_{\mathrm{rd}}^{\mathrm{reg}}$.
Furthermore, if d is odd, then there is a rhombic dodecahedron $Z^{\prime}=\sum_{i=1}^{d+1}\left[0, p_{i}^{\prime}\right]$ with $V_{1}\left(Z^{\prime}\right)=V_{1}\left(Z_{\mathrm{rd}}^{\text {reg }}\right)$ and $\operatorname{cr}\left(Z^{\prime}\right)<\operatorname{cr}\left(Z^{\text {reg }}\right)$

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 2
THEOREM (Joós, L. 2022)

If $Z \in \mathcal{Z}_{\mathrm{p}}$ satisfies $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\mathrm{reg}}\right)$, then $\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{p}}^{\mathrm{reg}}\right)$, with equality if and only if Z is a cube.

Theorem (Joós, L. 2022)

Let $d \geq 2$. Then for any $Z=\sum_{i=1}^{d+1}\left[o, p_{i}\right] \in \mathcal{Z}_{\text {rd }}$ satisfying $\sum_{i=1}^{d+1} p_{i}=o$ and $V_{1}(Z)=V_{1}\left(Z_{\mathrm{rd}}^{\text {reg }}\right)$, we have

$$
\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right)
$$

with equality if and only if Z is congruent to $Z_{\mathrm{rd}}^{\mathrm{reg}}$.

Furthermore, if d is odd, then there is a rhombic dodecahedron $Z^{\prime}=\sum_{i=1}^{d+1}\left[0, p_{i}^{\prime}\right]$ with

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 2
THEOREM (Joós, L. 2022)

If $Z \in \mathcal{Z}_{\mathrm{p}}$ satisfies $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, then $\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, with equality if and only if Z is a cube.

Theorem (Joós, L. 2022)

Let $d \geq 2$. Then for any $Z=\sum_{i=1}^{d+1}\left[o, p_{i}\right] \in \mathcal{Z}_{\mathrm{rd}}$ satisfying $\sum_{i=1}^{d+1} p_{i}=0$ and $V_{1}(Z)=V_{1}\left(Z_{\mathrm{rd}}^{\text {reg }}\right)$, we have

$$
\operatorname{cr}(Z) \geq \operatorname{cr}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right),
$$

with equality if and only if Z is congruent to $Z_{\mathrm{rd}}^{\mathrm{reg}}$. Furthermore, if d is odd, then there is a rhombic dodecahedron $Z^{\prime}=\sum_{i=1}^{d+1}\left[0, p_{i}^{\prime}\right]$ with $V_{1}\left(Z^{\prime}\right)=V_{1}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right)$ and $\operatorname{cr}\left(Z^{\prime}\right)<\operatorname{cr}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right)$.

Proposition (Joós, L. 2022)

For any $Z \in \mathcal{Z}_{\mathrm{p}}$ with $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\mathrm{reg}}\right)$, we have $V_{2}(Z) \leq V_{2}\left(Z_{p}^{\text {reg }}\right)$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)
Let $Z_{\mathrm{rd}}^{\text {reg }}=\sum_{i=1}^{d+1}\left[0, q_{i}\right]$, where $q_{i} \in \mathbb{S}^{d-1}$ for all values of i. Then, if $Z=\sum_{i=1}^{d+1}\left[o, p_{i}\right]$ is a rhombic dodecahedron with $p_{i} \in \mathbb{S}^{d-1}$ for all values of i, then

$$
V_{2}(Z) \geq V_{2}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right)
$$

with equality if and only if Z is regular.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 3
Proposition (Joós, L. 2022)

For any $Z \in \mathcal{Z}_{\mathrm{p}}$ with $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, we have $V_{2}(Z) \leq V_{2}\left(Z_{p}^{\text {reg }}\right)$, with equality if and only if Z is a cube.

Theorem (Joós, L. 2022)

Let $Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right]$, where $q_{i} \in \mathbb{S}^{d-1}$ for all values of i. Then, if $Z=\sum_{i=1}^{d+1}\left[0, p_{i}\right]$ is a rhombic dodecahedron with $p_{i} \in \mathbb{S}^{d-1}$ for all values of i, then

$$
\text { with equality if and only if } Z \text { is regular. }
$$

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 3
Proposition (Joós, L. 2022)

For any $Z \in \mathcal{Z}_{\mathrm{p}}$ with $V_{1}(Z)=V_{1}\left(Z_{\mathrm{p}}^{\text {reg }}\right)$, we have $V_{2}(Z) \leq V_{2}\left(Z_{p}^{\text {reg }}\right)$, with equality if and only if Z is a cube.

Theorem (Joós, L. 2022)

Let $Z_{\mathrm{rd}}^{\mathrm{reg}}=\sum_{i=1}^{d+1}\left[o, q_{i}\right]$, where $q_{i} \in \mathbb{S}^{d-1}$ for all values of i. Then, if $Z=\sum_{i=1}^{d+1}\left[0, p_{i}\right]$ is a rhombic dodecahedron with $p_{i} \in \mathbb{S}^{d-1}$ for all values of i, then

$$
V_{2}(Z) \geq V_{2}\left(Z_{\mathrm{rd}}^{\mathrm{reg}}\right)
$$

with equality if and only if Z is regular.

ZONOTOPES WITH A FEW GENERATING VECTORS, PART 4

Total squared k-content of a simplex: sum of the squares of the k-volumes of all k-faces

Theorem (TANNER 1974)
Let $2 \leq k \leq d$. Among simplices in \mathbb{R}^{d} with a given total squared 1-content, the ones with maximal total squared k-content are the regular ones.
$\sigma_{m}^{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$: elementary symmetric polynomial of degree k with the variables $x_{1}, x_{2}, \ldots, x_{k}$

Lemma (Maclaurin's inequality)
Let $1 \leq k<m$ be integers, and $x_{1}, \ldots, x_{m}>0$ be positive real numbers. Then

Total squared k-content of a simplex: sum of the squares of the k-volumes of all k-faces

THEOREM (TANNER 1974)

Let $2 \leq k \leq d$. Among simplices in \mathbb{R}^{d} with a given total squared 1-content, the ones with maximal total squared k-content are the regular ones.
\square
elementary symmetric polynomial of degree k with the variables $x_{1}, x_{2}, \ldots, x_{k}$

Let $1 \leq k<m$ be integers, and $x_{1}, \ldots, x_{m}>0$ be positive real numbers. Then

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4Total squared k-content of a simplex: sum of the squares of the k-volumes of all k-faces

THEOREM (TANNER 1974)

Let $2 \leq k \leq d$. Among simplices in \mathbb{R}^{d} with a given total squared 1-content, the ones with maximal total squared k-content are the regular ones.
$\sigma_{m}^{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$: elementary symmetric polynomial of degree k with the variables $x_{1}, x_{2}, \ldots, x_{k}$

Let $1 \leq k<m$ be integers, and $x_{1}, \ldots, x_{m}>0$ be positive real numbers. Then

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4Total squared k-content of a simplex: sum of the squares of the k-volumes of all k-faces

THEOREM (TANNER 1974)

Let $2 \leq k \leq d$. Among simplices in \mathbb{R}^{d} with a given total squared 1-content, the ones with maximal total squared k-content are the regular ones.
$\sigma_{m}^{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$: elementary symmetric polynomial of degree k with the variables $x_{1}, x_{2}, \ldots, x_{k}$
LEMMA (MACLAURIN'S INEQUALITY)
Let $1 \leq k<m$ be integers, and $x_{1}, \ldots, x_{m}>0$ be positive real numbers.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4Total squared k-content of a simplex: sum of the squares of the k-volumes of all k-faces

THEOREM (TANNER 1974)

Let $2 \leq k \leq d$. Among simplices in \mathbb{R}^{d} with a given total squared 1-content, the ones with maximal total squared k-content are the regular ones.
$\sigma_{m}^{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)$: elementary symmetric polynomial of degree k with the variables $x_{1}, x_{2}, \ldots, x_{k}$

LEMMA (MACLAURIN'S INEQUALITY)

Let $1 \leq k<m$ be integers, and $x_{1}, \ldots, x_{m}>0$ be positive real numbers. Then

$$
\left(\frac{\sigma_{m}^{k}\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\binom{m}{k}}\right)^{\frac{1}{k}} \geq\left(\frac{\sigma_{m}^{k+1}\left(x_{1}, x_{2}, \ldots, x_{m}\right)}{\binom{m}{k+1}}\right)^{\frac{1}{k+1}}
$$

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

Conjecture (Brazitikos, McIntyre 2021)
Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4
Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

$$
\begin{aligned}
& \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}}{\binom{n}{k}}\right)^{\frac{1}{p k}} \leq \\
\leq & \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k-1} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k-1}}\right|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},
\end{aligned}
$$

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

$$
\begin{aligned}
& \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}}{\binom{n}{k}}\right)^{\frac{1}{p k}} \leq \\
\leq & \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k-1} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k-1}}\right|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},
\end{aligned}
$$

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

$$
\begin{aligned}
& \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}}{\binom{n}{k}}\right)^{\frac{1}{p k}} \leq \\
\leq & \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k-1} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k-1}}\right|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},
\end{aligned}
$$

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4Let $Z=\sum_{i=1}^{n}\left[0, x_{i}\right] \subset \mathbb{R}^{d}$.

THEOREM

Let Z be a rhombic dodecahedron in \mathbb{R}^{d}. Then, for any $1 \leq k<m \leq d$, the quantity

$$
\frac{\left(V_{k, 2}(Z)\right)^{m}}{\left(V_{m, 2}(Z)\right)^{k}}
$$

is minimal if and only if Z is regular.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4ZONOTOPES
Z. LÁNGI

Let $Z=\sum_{i=1}^{n}\left[0, x_{i}\right] \subset \mathbb{R}^{d}$.

$$
V_{k, p}(Z)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}
$$

THEOREM

Let Z be a rhombic dodecahedron in \mathbb{R}^{d}. Then, for any $1 \leq k<m \leq d$, the quantity

$$
\frac{\left(V_{k, 2}(Z)\right)^{m}}{\left(V_{m, 2}(Z)\right)^{k}}
$$

is minimal if and only if Z is regular.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4Let $Z=\sum_{i=1}^{n}\left[0, x_{i}\right] \subset \mathbb{R}^{d}$.

$$
V_{k, p}(Z)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}
$$

THEOREM

Let Z be a rhombic dodecahedron in \mathbb{R}^{d}. Then, for any $m \leq d$, the quantity

is minimal if and only if Z is regular.

ZONOTOPES WITH A FEW GENERATING VECTORS,

 PART 4Let $Z=\sum_{i=1}^{n}\left[0, x_{i}\right] \subset \mathbb{R}^{d}$.

$$
V_{k, p}(Z)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}
$$

Theorem

Let Z be a rhombic dodecahedron in \mathbb{R}^{d}. Then, for any $1 \leq k<m \leq d$, the quantity

$$
\frac{\left(V_{k, 2}(Z)\right)^{m}}{\left(V_{m, 2}(Z)\right)^{k}}
$$

is minimal if and only if Z is regular.

ZONOTOPES WITH MANY GENERATING VECTORS

Problem (Betke, McMullen 1983)

For any $\varepsilon>0$, find the smallest number $N=N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993. LINHART 1989, BOURGAIN, LINDENSTRAUSS, MILMAN 1989 Matoušek 1996)

There are constants c, C >0 depending only on the dimension d such that

ZONOTOPES WITH MANY GENERATING VECTORS

Problem (Betke, McMullen 1983)

For any $\varepsilon>0$, find the smallest number $N=N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

> THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993, LinHart 1989, BoURGAIN, Lindenstrauss, MiLMAN 1989, MATOUŠEK 1996)

There are constants c, $C>0$ depending only on the dimension d such that

ZONOTOPES WITH MANY GENERATING VECTORS

Problem (Betke, McMullen 1983)

For any $\varepsilon>0$, find the smallest number $N=N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993, Linhart 1989, Bourgain, Lindenstrauss, Milman 1989, Matoušek 1996)
There are constants $c, C>0$ depending only on the dimension d such that

$$
\boldsymbol{c} \varepsilon^{\frac{-2(d-1)}{d+2}} \leq N(\varepsilon) \leq\left\{\begin{array}{l}
C \varepsilon^{\frac{-2(d-1)}{d-2}}, \text { if } d=2 \text { or } d \geq 5 \\
C\left(\varepsilon^{-2} \log |\varepsilon|\right)^{\frac{(d-1)}{d+2}}, \text { otherwise. }
\end{array}\right.
$$

ZONOTOPES WITH MANY GENERATING VECTORS

Problem (Betke, McMullen 1983)

For any $\varepsilon>0$, find the smallest number $N=N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993, Linhart 1989, Bourgain, Lindenstrauss, Milman 1989, Matoušek 1996)
There are constants $c, C>0$ depending only on the dimension d such that

$$
c \varepsilon^{\frac{-2(d-1)}{d+2}} \leq N(\varepsilon) \leq\left\{\begin{array}{l}
C \varepsilon^{\frac{-2(d-1)}{d+2}}, \text { if } d=2 \text { or } d \geq 5 \\
C\left(\varepsilon^{-2} \log |\varepsilon|\right)^{\frac{(d-1)}{d+2}}, \text { otherwise }
\end{array}\right.
$$

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 1$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments

THEOREM

Let $d \geq 2$ be fixed. Then there are positive constants $c=c(d)$ and $C=C(d)$ depending only on the dimension such that for any $n \geq d+1$,

$$
\frac{c}{n^{\frac{d+2}{2 d-2}}} \leq \min \left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)}-1: Z \in \mathcal{Z}_{d, n}\right\} \leq C U_{d}(n)
$$

$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments

$$
U_{d}(n)= \begin{cases}\frac{\sqrt{\log n}}{\frac{d+2}{2+2}}, & \text { if } d=3 \text { or } d=4, \\ \frac{n^{1} \frac{1}{2-2}}{n^{\frac{d+2}{2 d-2}}}, & \text { if } d=2 \text { or } d \geq 5 .\end{cases}
$$

THEOREM

Lei $a^{\prime}>2$ be fixed. Then there are positive constants $c=c(d)$ and $C=C(d)$ depending only on the dimension such that for any $n \geq d+1$,

$$
\frac{c}{n^{\frac{d+2}{2 d-2}}} \leq \min \left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)}-1: Z \in \mathcal{Z}_{d, n}\right\} \leq C U_{d}(n)
$$

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 1$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments

$$
U_{d}(n)=\left\{\begin{array}{l}
\frac{\sqrt{\log n}}{\frac{n^{2+2}}{2 d-2}}, \text { if } d=3 \text { or } d=4, \\
\frac{1}{n^{\frac{d+2}{2 d-2}}}, \text { if } d=2 \text { or } d \geq 5 .
\end{array}\right.
$$

THEOREM

Let $d \geq 2$ be fixed. Then there are positive constants
$c=c(d)$ and $C=C(d)$ depending only on the dimension such that for any $n \geq d+1$,

$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments

$$
U_{d}(n)= \begin{cases}\frac{\sqrt{\log n}}{\frac{d+2}{2+2}}, & \text { if } d=3 \text { or } d=4, \\ \frac{1}{\frac{d+2}{2-2}}, & \text { if } d=2 \text { or } d \geq 5 .\end{cases}
$$

THEOREM

Let $d \geq 2$ be fixed. Then there are positive constants $c=c(d)$ and $C=C(d)$ depending only on the dimension such that for any $n \geq d+1$,
$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments

$$
U_{d}(n)= \begin{cases}\frac{\sqrt{\log n}}{\frac{n^{+2}}{2 d}}, & \text { if } d=3 \text { or } d=4, \\ \frac{1}{n^{\frac{d+2}{2 d-2}}}, & \text { if } d=2 \text { or } d \geq 5 .\end{cases}
$$

THEOREM

Let $d \geq 2$ be fixed. Then there are positive constants $c=c(d)$ and $C=C(d)$ depending only on the dimension such that for any $n \geq d+1$,

$$
\frac{c}{n^{\frac{d+2}{2 d-2}}} \leq \min \left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)}-1: Z \in \mathcal{Z}_{d, n}\right\}
$$

$\mathcal{Z}_{d, n}$: family of d-dimensional zonotopes generated by n segments

$$
U_{d}(n)= \begin{cases}\frac{\sqrt{\log n}}{\frac{n^{+2}}{2 d}}, & \text { if } d=3 \text { or } d=4, \\ \frac{1}{n^{\frac{d+2}{2 d-2}}}, & \text { if } d=2 \text { or } d \geq 5 .\end{cases}
$$

THEOREM

Let $d \geq 2$ be fixed. Then there are positive constants $c=c(d)$ and $C=C(d)$ depending only on the dimension such that for any $n \geq d+1$,

$$
\frac{c}{n^{\frac{d+2}{2 d-2}}} \leq \min \left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)}-1: Z \in \mathcal{Z}_{d, n}\right\} \leq C U_{d}(n)
$$

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 2
THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$
depending only on d such that for any sufficiently large value of n, we have
$\frac{4 i}{5 d n^{2}} \leq \min \left\{\frac{V_{i}(Z)}{V_{i}\left(\mathbf{B}^{d}\right)}-1: Z \in \mathcal{Z}_{d, n}\right.$, ir $\left.(Z)=1\right\} \leq C U_{d}(n)$.

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 2
THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$ depending only on d such that for any sufficiently large value of n, we have

THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$ depending only on d such that for any sufficiently large value of n, we have

$$
\begin{equation*}
\frac{4 i}{5 d n^{2}} \leq \min \left\{\frac{V_{i}(Z)}{V_{i}\left(\mathbf{B}^{d}\right)}-1: Z \in \mathcal{Z}_{d, n}, \operatorname{ir}(Z)=1\right\} \tag{d}
\end{equation*}
$$

THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$ depending only on d such that for any sufficiently large value of n, we have

$$
\frac{4 i}{5 d n^{2}} \leq \min \left\{\frac{V_{i}(Z)}{V_{i}\left(\mathbf{B}^{d}\right)}-1: Z \in \mathcal{Z}_{d, n}, \operatorname{ir}(Z)=1\right\} \leq C U_{d}(n)
$$

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 3
THEOREM

Let $1 \leq \boldsymbol{i} \leq \boldsymbol{d}$. Then there is a positive constant $C=C(d)$
such that for any sufficiently large value of n,

$$
\frac{2 i}{5 n^{2}} \leq \min \left\{1-\frac{V_{i}(Z)}{V_{i}\left(\mathbf{B}^{d}\right)}: Z \in \mathcal{Z}_{d, n}, \operatorname{cr}(Z)=1\right\} \leq C U_{d}(n)
$$

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 3
THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$ such that for any sufficiently large value of n,

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 3
THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$ such that for any sufficiently large value of n,

$$
\frac{2 i}{5 n^{2}} \leq \min \left\{1-\frac{V_{i}(Z)}{V_{i}\left(\mathbf{B}^{d}\right)}: Z \in \mathcal{Z}_{d, n}, \operatorname{cr}(Z)=1\right\} \leq C U_{d}(n)
$$

ZONOTOPES WITH MANY GENERATING VECTORS,

 PART 3
THEOREM

Let $1 \leq i \leq d$. Then there is a positive constant $C=C(d)$ such that for any sufficiently large value of n,

$$
\frac{2 i}{5 n^{2}} \leq \min \left\{1-\frac{V_{i}(Z)}{V_{i}\left(\mathbf{B}^{d}\right)}: Z \in \mathcal{Z}_{d, n}, \operatorname{cr}(Z)=1\right\} \leq C U_{d}(n)
$$

ZONOTOPES WITH MANY GENERATING VECTORS，

 PART 4ZONOTOPES

Z．LÁNGI

THEOREM

Let $1 \leq i<k \leq d$ ．Then there are positive constants c，C depending only on d such that for any sufficiently large value of n ，

Furthermore，there is a constant $\bar{c}>0$ depending on d such that

THEOREM

Let $1 \leq i<k \leq d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,
$\frac{c}{n^{\frac{(d+2)(d+3)}{4 d-4}}} \leq \min \left\{\frac{\left(V_{i}(Z)\right)^{\frac{1}{i}}}{\left(V_{k}(Z)\right)^{\frac{1}{k}}}-\frac{\left(V_{i}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{i}}}{\left(V_{k}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{k}}}: Z \in \mathcal{Z}_{d, n}\right\} \leq \frac{C}{n}$
Furthermore, there is a constant $\bar{c}>0$ depending on d such that

THEOREM

Let $1 \leq i<k \leq d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,

$$
\frac{c}{n^{\frac{(d+2)(d+3)}{4 d-4}}} \leq \min \left\{\frac{\left(V_{i}(Z)\right)^{\frac{1}{i}}}{\left(V_{k}(Z)\right)^{\frac{1}{k}}}-\frac{\left(V_{i}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{i}}}{\left(V_{k}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{k}}}: Z \in \mathcal{Z}_{d, n}\right\} \leq \frac{C}{n}
$$

Furthermore, there is a constant $\bar{c}>0$ depending on d such that

THEOREM

Let $1 \leq i<k \leq d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,

$$
\frac{c}{n^{\frac{(d+2)(d+3)}{4 d-4}}} \leq \min \left\{\frac{\left(V_{i}(Z)\right)^{\frac{1}{i}}}{\left(V_{k}(Z)\right)^{\frac{1}{k}}}-\frac{\left(V_{i}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{i}}}{\left(V_{k}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{k}}}: Z \in \mathcal{Z}_{d, n}\right\} \leq \frac{C}{n}
$$

Furthermore, there is a constant $\bar{c}>0$ depending on d such that

$$
\frac{\bar{c}}{n^{2}} \leq \min \left\{\frac{\left(V_{d-1}(Z)\right)^{\frac{1}{d-1}}}{\left(V_{d}(Z)\right)^{\frac{1}{d}}}-\frac{\left(V_{d-1}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{d-1}}}{\left(V_{d}\left(\mathbf{B}^{d}\right)\right)^{\frac{1}{d}}}: Z \in \mathcal{Z}_{d, n}\right\}
$$

APPLICATION I

ℓ_{1}-polarization problem:

For a multiset $\omega_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in \mathbb{S}^{d-1}, the ℓ_{1}-polarization of ω_{n} is defined as

$$
M_{1}\left(\omega_{n}\right)=\max \left\{\sum_{i=1}^{n}\left|\left\langle x_{i}, u\right\rangle\right|: u \in \mathbb{S}^{d-1}\right\}
$$

and the quantity

$$
M_{n}^{1}\left(\mathbb{S}^{d-1}\right)=\min \left\{M_{p}\left(\omega_{n}\right): \omega_{n} \subset \mathbb{S}^{d-1}\right\}
$$

is called the ℓ_{p}-polarization (or Chebyshev) constant of \mathbb{S}^{d-1}. The ℓ_{1}-polarization problem on the sphere asks for determining the value of $M_{n}^{1}\left(\mathbb{S}^{d-1}\right)$ for all values of n and d.

APPLICATION I

ℓ_{1}-polarization problem:
For a multiset $\omega_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in \mathbb{S}^{d-1}, the ℓ_{1}-polarization of ω_{n} is defined as

$$
M_{1}\left(\omega_{n}\right)=\max \left\{\sum_{i=1}^{n}\left|\left\langle x_{i}, u\right\rangle\right|: u \in \mathbb{S}^{d-1}\right\}
$$

and the quantity

is called the ℓ_{p}-polarization (or Chebyshev) constant of \mathbb{S}^{d-1}. The ℓ_{1}-polarization problem on the sphere asks for determining the value of $M_{n}^{1}\left(\mathbb{S}^{d-1}\right)$ for all values of n and d.

APPLICATION I

ℓ_{1}-polarization problem:

For a multiset $\omega_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in \mathbb{S}^{d-1}, the ℓ_{1}-polarization of ω_{n} is defined as

$$
M_{1}\left(\omega_{n}\right)=\max \left\{\sum_{i=1}^{n}\left|\left\langle x_{i}, u\right\rangle\right|: u \in \mathbb{S}^{d-1}\right\}
$$

and the quantity

$$
M_{n}^{1}\left(\mathbb{S}^{d-1}\right)=\min \left\{M_{p}\left(\omega_{n}\right): \omega_{n} \subset \mathbb{S}^{d-1}\right\}
$$

is called the ℓ_{p}-polarization (or Chebyshev) constant of \mathbb{S}^{d-1}. The ℓ_{1}-polarization problem on the sphere asks for

APPLICATION I

ℓ_{1}-polarization problem:

For a multiset $\omega_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in \mathbb{S}^{d-1}, the ℓ_{1}-polarization of ω_{n} is defined as

$$
M_{1}\left(\omega_{n}\right)=\max \left\{\sum_{i=1}^{n}\left|\left\langle x_{i}, u\right\rangle\right|: u \in \mathbb{S}^{d-1}\right\}
$$

and the quantity

$$
M_{n}^{1}\left(\mathbb{S}^{d-1}\right)=\min \left\{M_{p}\left(\omega_{n}\right): \omega_{n} \subset \mathbb{S}^{d-1}\right\}
$$

is called the ℓ_{p}-polarization (or Chebyshev) constant of \mathbb{S}^{d-1}. The ℓ_{1}-polarization problem on the sphere asks for determining the value of $M_{n}^{1}\left(\mathbb{S}^{d-1}\right)$ for all values of n and d.

ApPLICATION I

For $Z=\sum_{i=1}^{n}\left[o, p_{i}\right] \subset \mathbb{R}^{d}$,

PROBLEM

For any $n>d \geq 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d, n}$ with a given mean width.

Application I

ZONOTOPES
Z. LÁNGI

For $Z=\sum_{i=1}^{n}\left[o, p_{i}\right] \subset \mathbb{R}^{d}$,

$$
V_{1}(Z)=\sum_{i=1}^{n}\left|p_{i}\right|,
$$

PROBLEM

For any $n \geq d \geq 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d, n}$ with a given mean width.

Application I

ZONOTOPES
Z. LÁNGI

For $Z=\sum_{i=1}^{n}\left[o, p_{i}\right] \subset \mathbb{R}^{d}$,

$$
V_{1}(Z)=\sum_{i=1}^{n}\left|p_{i}\right|
$$

$$
\operatorname{cr}(Z)=\frac{1}{2} \max \left\{\sum_{i=1}^{n}\left|\left\langle u, x_{i}\right\rangle\right|: u \in \mathbb{S}^{d-1}\right\} .
$$

PRoblem

For any $n \geq d \geq 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d, n}$ with a given mean width.

APPLICATION I

For $Z=\sum_{i=1}^{n}\left[o, p_{i}\right] \subset \mathbb{R}^{d}$,

$$
V_{1}(Z)=\sum_{i=1}^{n}\left|p_{i}\right|,
$$

$$
\operatorname{cr}(Z)=\frac{1}{2} \max \left\{\sum_{i=1}^{n}\left|\left\langle u, x_{i}\right\rangle\right|: u \in \mathbb{S}^{d-1}\right\} .
$$

PRoblem

For any $n \geq d \geq 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d, n}$ with a given mean width.

APPLICATION I

REMARK

It was shown by Ambrus and Nietert in 2019 that

$$
M_{n}^{1}\left(\mathbb{S}^{d-1}\right)=n \mu_{d, 1}+o\left(\frac{n}{\sqrt{d}}\right)
$$

if $n, d \rightarrow \infty$ and $n=\omega\left(d^{2} \log d\right)$, where $\mu_{d, 1}=\frac{\Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}$.
Our theorems yield that

for any fixed $d \geq 2$.

APPLICATION I

REMARK

It was shown by Ambrus and Nietert in 2019 that

$$
M_{n}^{1}\left(\mathbb{S}^{d-1}\right)=n \mu_{d, 1}+o\left(\frac{n}{\sqrt{d}}\right)
$$

if $n, d \rightarrow \infty$ and $n=\omega\left(d^{2} \log d\right)$, where $\mu_{d, 1}=\frac{\Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}$.
Our theorems yield that

$$
M_{n}^{1}\left(\mathbb{S}^{d-1}\right)=n \mu_{d, 1}+O\left(n^{\frac{d-4}{2 d-2}} \sqrt{\log n}\right)
$$

for any fixed $d \geq 2$.

APPLICATION II

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

APPLICATION II

Conjecture (Brazitikos, McIntyre 2021)
Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

APPLICATION II

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

$$
\begin{aligned}
& \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}}{\binom{n}{k}}\right)^{\frac{1}{p k}} \leq \\
\leq & \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k-1} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k-1}}\right|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}}
\end{aligned}
$$

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

APPLICATION II

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

$$
\begin{aligned}
& \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}}{\binom{n}{k}}\right)^{\frac{1}{p k}} \leq \\
\leq & \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k-1} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k-1}}\right|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},
\end{aligned}
$$

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

APPLICATION II

Conjecture (Brazitikos, McIntyre 2021)

Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ be given with $1 \leq d \leq n$. Then for any $p \in[0, \infty]$ and $2 \leq k \leq d$, we have

$$
\begin{aligned}
& \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k}}\right|^{p}}{\binom{n}{k}}\right)^{\frac{1}{p k}} \leq \\
\leq & \left(\frac{\sum_{1 \leq i_{1}<\ldots<i_{k-1} \leq n}\left|x_{i_{1}} \wedge x_{i_{2}} \wedge \ldots \wedge x_{i_{k-1}}\right|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},
\end{aligned}
$$

with equality if and only if $n=d$ and the vectors form an orthonormal basis.

Proved for $p=0$ and $p=\infty$, for $p=2$ and $n=d$, and for $p=1, n=d$ and $k=2,3, d$.

APPLICATION II

THEOREM

Let $n \geq d$ and $Z=\sum_{i=1}^{n}\left[o, x_{i}\right]$ be a zonotope in \mathbb{R}^{d}. Then, for any $1 \leq k<d$, the quantity

with equality if and only if $n=d$ and Z is a cube, or if the dimension of Z is at most $k-1$.

APPLICATION II

THEOREM

Let $n \geq d$ and $Z=\sum_{i=1}^{n}\left[0, x_{i}\right]$ be a zonotope in \mathbb{R}^{d}. Then, for any $1 \leq k<d$, the quantity

$$
\left(\frac{V_{k, 2}(Z)}{\binom{n}{k}}\right)^{\frac{1}{k}} \geq\left(\frac{V_{k+1,2}(Z)}{\binom{n}{k+1}}\right)^{\frac{1}{k+1}}
$$

with equality if and only if $n=d$ and Z is a cube, or if the dimension of Z is at most $k-1$.

APPLICATION II

THEOREM

Let $n \geq d$ and $Z=\sum_{i=1}^{n}\left[0, x_{i}\right]$ be a zonotope in \mathbb{R}^{d}. Then, for any $1 \leq k<d$, the quantity

$$
\left(\frac{V_{k, 2}(Z)}{\binom{n}{k}}\right)^{\frac{1}{k}} \geq\left(\frac{V_{k+1,2}(Z)}{\binom{n}{k+1}}\right)^{\frac{1}{k+1}}
$$

with equality if and only if $n=d$ and Z is a cube, or if the dimension of Z is at most $k-1$.

GRACIAS POR SU ATENCIÓN

