ZONOTOPES

Z. Lángi

ISOPERIMETRIC PROBLEMS FOR ZONOTOPES

Zsolt Lángi (joint work with Antal Joós)

HAS-BUTE Morphodynamics Research Group Department of Geometry, Budapest University of Technology and Economics, Hungary

June 21, 2022

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

ZONOTOPES

Z. Lángi

DEFINITION

The Minkowski sum of finitely many segments in \mathbb{R}^d is called a zonotope.

Theorem (McMullen 1971, Shephard 1974)

If $Z = \sum_{i=1}^{n} [o, p_i]$, where $1 \le i \le n$, is a zonotope in \mathbb{R}^d , then

$$V_d(Z) = \sum_{1 \leq i_1 < i_2 < \ldots < i_d \leq n} |p_{i_1} \wedge p_{i_2} \wedge \ldots \wedge p_{i_d}|.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ♡へぐ

ZONOTOPES

Z. Lángi

DEFINITION

The Minkowski sum of finitely many segments in \mathbb{R}^d is called a zonotope.

THEOREM (MCMULLEN 1971, SHEPHARD 1974)

If $Z = \sum_{i=1}^{n} [o, p_i]$, where $1 \le i \le n$, is a zonotope in \mathbb{R}^d , then

$$V_d(Z) = \sum_{1 \leq i_1 < i_2 < \ldots < i_d \leq n} |p_{i_1} \wedge p_{i_2} \wedge \ldots \wedge p_{i_d}|.$$

・ロト・日本・日本・日本・日本・日本

ZONOTOPES

Z. Lángi

FIGURE: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z = \sum_{i=1}^{n} [o, p_i]$, where $1 \le i \le n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P = \sum_{j=1}^{d} [o, p_{i_j}]$ for some $1 \le i_1 < i_2 < \ldots < i_d \le n$, and for every such parallelotope P there is a unique element of \mathcal{F} which is a translate of P.

ZONOTOPES

Z. Lángi

FIGURE: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z = \sum_{i=1}^{n} [o, p_i]$, where $1 \le i \le n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P = \sum_{j=1}^{d} [o, p_j]$ for some $1 \le i_1 < i_2 < \ldots < i_d \le n$, and for every such parallelotope P there is a unique element of \mathcal{F} which is a translate of P.

ZONOTOPES

Z. Lángi

FIGURE: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z = \sum_{i=1}^{n} [o, p_i]$, where $1 \le i \le n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P = \sum_{j=1}^{d} [o, p_{i_j}]$ for some $1 \le i_1 < i_2 < \ldots < i_d \le n$, and for every such parallelotope P there is a unique element of \mathcal{F} which is a translate of P.

ZONOTOPES

Z. Lángi

FIGURE: Decomposition of a zonotope Z into parallelotopes generated by the generating segments of Z

THEOREM (SHEPHARD 1974)

If $Z = \sum_{i=1}^{n} [o, p_i]$, where $1 \le i \le n$, then Z can be decomposed into a family \mathcal{F} of parallelotopes such that each element of \mathcal{F} is a translate of a d-dimensional parallelotope $P = \sum_{j=1}^{d} [o, p_{i_j}]$ for some $1 \le i_1 < i_2 < \ldots < i_d \le n$, and for every such parallelotope P there is a unique element of \mathcal{F} which is a translate of P.

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with I ∈ P^Z_k, B[⊥](I) := B^d ∩ (aff P(I))[⊥] and S[⊥](I) := S^{d-1} ∩ (aff P(I))[⊥], where (aff P(I))[⊥] denotes the orthogonal complement of aff P(I).

ZONOTOPES

Z. Lángi

Let $d \ge 2$.

• $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.

- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with I ∈ P^Z_k, B[⊥](I) := B^d ∩ (aff P(I))[⊥] and S[⊥](I) := S^{d-1} ∩ (aff P(I))[⊥], where (aff P(I))[⊥] denotes the orthogonal complement of aff P(I).

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with I ∈ P^Z_k, B[⊥](I) := B^d ∩ (aff P(I))[⊥] and S[⊥](I) := S^{d-1} ∩ (aff P(I))[⊥], where (aff P(I))[⊥] denotes the orthogonal complement of aff P(I).

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- Sor any *I* ∈ P^Z_k with *k* ≥ 1, *P*(*I*) = ∑_{*i*∈*I*}[*o*, *p_i*]; for *k* = 0, *P*(Ø) = {*o*} (regarded as a 0-dimensional parallelotope)
 for any *P*(*I*) with *I* ∈ P^Z_k, *B*[⊥](*I*) := **B**^d ∩ (aff *P*(*I*))[⊥] and
 - $\mathbb{S}^{\perp}(I) := \mathbb{S}^{d-1} \cap (\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of $\operatorname{aff} P(I)$.

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- So For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with $I \in \mathcal{P}_k^Z$, $B^{\perp}(I) := B^d \cap (\operatorname{aff} P(I))^{\perp}$ and $S^{\perp}(I) := S^{d-1} \cap (\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of $\operatorname{aff} P(I)$.

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- So For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with I ∈ P^Z_k, B[⊥](I) := B^d ∩ (aff P(I))[⊥] and S[⊥](I) := S^{d-1} ∩ (aff P(I))[⊥], where (aff P(I))[⊥] denotes the orthogonal complement of aff P(I).

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- So For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- If or any P(I) with I ∈ P^Z_k, B[⊥](I) := B^d ∩ (aff P(I))[⊥] and S[⊥](I) := S^{d-1} ∩ (aff P(I))[⊥], where (aff P(I))[⊥] denotes the orthogonal complement of aff P(I).

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- So For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with $I \in \mathcal{P}_k^Z$, $\mathcal{B}^{\perp}(I) := \mathcal{B}^d \cap (\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I) := \mathbb{S}^{d-1} \cap (\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of $\operatorname{aff} P(I)$.

ZONOTOPES

Z. Lángi

- $Z = \sum_{i=1}^{n} [o, p_i]$ is a zonotope with $p_i \in \mathbb{R}^d$ for all values of *i*.
- P^Z = {p₁,..., p_n}, for any 0 ≤ k ≤ d, P^Z_k: the family of k-element subsets of P^Z containing linearly independent vectors.
- So For any $I \in \mathcal{P}_k^Z$ with $k \ge 1$, $P(I) = \sum_{i \in I} [o, p_i]$; for k = 0, $P(\emptyset) = \{o\}$ (regarded as a 0-dimensional parallelotope)
- for any P(I) with $I \in \mathcal{P}_k^Z$, $\mathcal{B}^{\perp}(I) := \mathbf{B}^d \cap (\operatorname{aff} P(I))^{\perp}$ and $\mathbb{S}^{\perp}(I) := \mathbb{S}^{d-1} \cap (\operatorname{aff} P(I))^{\perp}$, where $(\operatorname{aff} P(I))^{\perp}$ denotes the orthogonal complement of aff P(I).

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

For any $t \ge 0$, the set $Z + t\mathbf{B}^d$ can be decomposed into a family \mathcal{F}_Z of mutually non-overlapping convex bodies of the form $X + tB_X$ such that

for any X + tB_X ∈ F_Z, X is a translate of some parallelotope P(I) with I ∈ P^Z_k for some 0 ≤ k ≤ d, and B_X ⊆ B[⊥](I) is the convex hull of o and a spherically convex, compact subset of S[⊥](I);

if for any 0 ≤ k ≤ d and I ∈ P^Z_k, F_Z(I) denotes the subfamily of the elements X + tB_X of F_Z, where X is a translate of P(I), then {B_X : X + tB_X ∈ F_Z(I)} is a decomposition of B[⊥](I).

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

For any $t \ge 0$, the set $Z + t\mathbf{B}^d$ can be decomposed into a family \mathcal{F}_Z of mutually non-overlapping convex bodies of the form $X + tB_X$ such that

• for any $X + tB_X \in \mathcal{F}_Z$, X is a translate of some parallelotope P(I) with $I \in \mathcal{P}_k^Z$ for some $0 \le k \le d$, and $B_X \subseteq B^{\perp}(I)$ is the convex hull of o and a spherically convex, compact subset of $S^{\perp}(I)$;

if for any 0 ≤ k ≤ d and I ∈ P^Z_k, F_Z(I) denotes the subfamily of the elements X + tB_X of F_Z, where X is a translate of P(I), then {B_X : X + tB_X ∈ F_Z(I)} is a decomposition of B[⊥](I).

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

For any $t \ge 0$, the set $Z + t\mathbf{B}^d$ can be decomposed into a family \mathcal{F}_Z of mutually non-overlapping convex bodies of the form $X + tB_X$ such that

- for any $X + tB_X \in \mathcal{F}_Z$, X is a translate of some parallelotope P(I) with $I \in \mathcal{P}_k^Z$ for some $0 \le k \le d$, and $B_X \subseteq B^{\perp}(I)$ is the convex hull of o and a spherically convex, compact subset of $S^{\perp}(I)$;
- if for any 0 ≤ k ≤ d and I ∈ P^Z_k, F_Z(I) denotes the subfamily of the elements X + tB_X of F_Z, where X is a translate of P(I), then {B_X : X + tB_X ∈ F_Z(I)} is a decomposition of B[⊥](I).

Z. Láng

FIGURE: The body $Z + t\mathbf{B}^d$ if Z is a cube generated by 3 mutually orthogonal segments. There are 4 translates of every generating segment appearing as edges of Z. The solid bodies in the picture correspond to the sets $X + tB_X$, where X is a translate of a fixed generating segment.

ZONOTOPES

Z. Lángi

cubical zonotope: any *d* generating vectors are linearly independent (equivalently, any face is an affine cube)

Remark

If Z is cubical, then the sets $X (X \subset bd(Z))$ in the theorem are the proper faces of Z, and B_X is the set of the outer normal vectors of X of length at most one.

COROLLARY

For any zonotope $Z = \sum_{i=1}^{n} [o, p_i]$ in \mathbb{R}^d , and any $0 \le k \le d$, the kth intrinsic volume of Z is

$$V_k(Z) = \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} |p_{i_1} \land p_{i_2} \land \ldots \land p_{i_k}|.$$
(1)

ZONOTOPES

Z. Lángi

cubical zonotope: any *d* generating vectors are linearly independent (equivalently, any face is an affine cube)

Remark

If Z is cubical, then the sets $X (X \subset bd(Z))$ in the theorem are the proper faces of Z, and B_X is the set of the outer normal vectors of X of length at most one.

COROLLARY

For any zonotope $Z = \sum_{i=1}^{n} [o, p_i]$ in \mathbb{R}^d , and any $0 \le k \le d$, the kth intrinsic volume of Z is

$$V_k(Z) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} |p_{i_1} \wedge p_{i_2} \wedge \ldots \wedge p_{i_k}|.$$
(1)

ZONOTOPES

Z. Lángi

cubical zonotope: any *d* generating vectors are linearly independent (equivalently, any face is an affine cube)

Remark

If Z is cubical, then the sets X ($X \subset bd(Z)$) in the theorem are the proper faces of Z, and B_X is the set of the outer normal vectors of X of length at most one.

Corollary

For any zonotope $Z = \sum_{i=1}^{n} [o, p_i]$ in \mathbb{R}^d , and any $0 \le k \le d$, the kth intrinsic volume of Z is

$$V_k(Z) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} |p_{i_1} \wedge p_{i_2} \wedge \ldots \wedge p_{i_k}|.$$
(1)

ZONOTOPES

Z. Lángi

cubical zonotope: any *d* generating vectors are linearly independent (equivalently, any face is an affine cube)

Remark

If Z is cubical, then the sets X ($X \subset bd(Z)$) in the theorem are the proper faces of Z, and B_X is the set of the outer normal vectors of X of length at most one.

COROLLARY

For any zonotope $Z = \sum_{i=1}^{n} [o, p_i]$ in \mathbb{R}^d , and any $0 \le k \le d$, the *k*th intrinsic volume of *Z* is

$$V_k(Z) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} |p_{i_1} \wedge p_{i_2} \wedge \ldots \wedge p_{i_k}|.$$
(1)

ZONOTOPES

Z. Lángi

cubical zonotope: any *d* generating vectors are linearly independent (equivalently, any face is an affine cube)

Remark

If Z is cubical, then the sets X ($X \subset bd(Z)$) in the theorem are the proper faces of Z, and B_X is the set of the outer normal vectors of X of length at most one.

COROLLARY

For any zonotope $Z = \sum_{i=1}^{n} [o, p_i]$ in \mathbb{R}^d , and any $0 \le k \le d$, the *k*th intrinsic volume of *Z* is

$$V_k(Z) = \sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} |p_{i_1} \wedge p_{i_2} \wedge \ldots \wedge p_{i_k}|.$$
(1)

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

 $Z_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments.

(日) (日) (日) (日) (日) (日) (日)

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

 $Z_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments.

(日) (日) (日) (日) (日) (日) (日)

ZONOTOPES

Z. Lángi

Two parts:

- Isoperimetric problems for zonotopes in ℝ^d generated by *d* or *d* + 1 segments (parallelotopes and rhombic dodecahedra).
- Isoperimetric problems for zonotopes in ℝ^d generated by n ≫ d segments (asymptotic estimates).

Examined geometric quantities: intrinsic volumes, inradius (minimal width) denoted by $ir(\cdot)$, circumradius (diameter) denoted by $cr(\cdot)$.

ZONOTOPES WITH A FEW GENERATING VECTORS

ZONOTOPES

Z. Lángi

Notation:

 $\begin{array}{l} \mathcal{Z}_{\mathrm{p}} := \mathcal{Z}_{d,d} \\ \mathcal{Z}_{\mathrm{rd}} := \mathcal{Z}_{d,d+1} \\ \mathcal{Z}_{\mathrm{p}}^{\mathrm{reg}} \in \mathcal{Z}_{d,d} \text{ is a cube} \\ \mathcal{Z}_{\mathrm{rd}}^{\mathrm{reg}} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ \mathcal{Z}_{\mathrm{rd}}^{\mathrm{reg}} = \sum_{i=1}^{d+1} [o,q_i], \text{ where } \mathrm{conv}\{q_1,q_2,\ldots,q_{d+1}\} \text{ is a regular simplex centered at } o. \end{array}$

Theorem (Bezdek 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.

ZONOTOPES WITH A FEW GENERATING VECTORS

ZONOTOPES

Z. Lángi

Notation:

 $\boldsymbol{\mathcal{Z}}_p := \boldsymbol{\mathcal{Z}}_{d,d}$

 $\begin{array}{l} \mathcal{Z}_{rd} := \mathcal{Z}_{d,d+1} \\ \mathcal{Z}_{p}^{reg} \in \mathcal{Z}_{d,d} \text{ is a cube} \\ \mathcal{Z}_{rd}^{reg} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ \mathcal{Z}_{rd}^{reg} = \sum_{i=1}^{d+1} [o,q_i], \text{ where } \operatorname{conv}\{q_1,q_2,\ldots,q_{d+1}\} \text{ is a regular simplex centered at } o. \end{array}$

Theorem (Bezdek 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

ZONOTOPES WITH A FEW GENERATING VECTORS

ZONOTOPES

Z. Lángi

Notation:

$$\begin{split} &\mathcal{Z}_{\mathbf{p}} := \mathcal{Z}_{d,d} \\ &\mathcal{Z}_{\mathbf{rd}} := \mathcal{Z}_{d,d+1} \\ &Z_{\mathbf{p}}^{\mathrm{reg}} \in \mathcal{Z}_{d,d+1} \\ &Z_{\mathbf{rd}}^{\mathrm{reg}} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ &Z_{\mathbf{rd}}^{\mathrm{reg}} = \sum_{i=1}^{d+1} [o,q_i], \text{ where } \operatorname{conv}\{q_1,q_2,\ldots,q_{d+1}\} \text{ is a regular simplex centered at } o. \end{split}$$

Theorem (Bezdek 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.
ZONOTOPES

Z. Lángi

Notation:

$$\begin{split} \mathcal{Z}_{\mathbf{p}} &:= \mathcal{Z}_{d,d} \\ \mathcal{Z}_{\mathbf{rd}} &:= \mathcal{Z}_{d,d+1} \\ \mathcal{Z}_{\mathbf{p}}^{\mathsf{reg}} \in \mathcal{Z}_{d,d} \text{ is a cube} \\ \mathcal{Z}_{\mathbf{rd}}^{\mathsf{reg}} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ \mathcal{Z}_{\mathbf{rd}}^{\mathsf{reg}} &= \sum_{i=1}^{d+1} [o,q_i], \text{ where } \operatorname{conv}\{q_1,q_2,\ldots,q_{d+1}\} \text{ is a regular simplex centered at } o. \end{split}$$

Theorem (Bezdek 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.

ZONOTOPES

Z. Láng

Notation:

$$\begin{split} \mathcal{Z}_{p} &:= \mathcal{Z}_{d,d} \\ \mathcal{Z}_{rd} &:= \mathcal{Z}_{d,d+1} \\ \mathbf{Z}_{p}^{reg} \in \mathcal{Z}_{d,d} \text{ is a cube} \\ \mathbf{Z}_{rd}^{reg} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ \mathbf{Z}_{rd}^{reg} &= \sum_{i=1}^{d+1} [o, q_i], \text{ where } \operatorname{conv}\{q_1, q_2, \dots, q_{d+1}\} \text{ is a regular simplex centered at } o. \end{split}$$

Theorem (Bezdek 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

ZONOTOPES

Z. Lángi

Notation:

 $\begin{array}{l} \mathcal{Z}_p := \mathcal{Z}_{d,d} \\ \mathcal{Z}_{rd} := \mathcal{Z}_{d,d+1} \\ \mathcal{Z}_p^{reg} \in \mathcal{Z}_{d,d} \text{ is a cube} \\ \mathcal{Z}_{rd}^{reg} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ \mathcal{Z}_{rd}^{reg} = \sum_{i=1}^{d+1} [o,q_i], \text{ where } \operatorname{conv}\{q_1,q_2,\ldots,q_{d+1}\} \text{ is a regular simplex centered at } o. \end{array}$

Theorem (Bezdek 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.

シック・ 川 ・ 山 ・ 小田 ・ 小田 ・ 小田 ・

ZONOTOPES

Z. Lángi

Notation:

 $\begin{array}{l} \mathcal{Z}_p := \mathcal{Z}_{d,d} \\ \mathcal{Z}_{rd} := \mathcal{Z}_{d,d+1} \\ \mathcal{Z}_p^{reg} \in \mathcal{Z}_{d,d} \text{ is a cube} \\ \mathcal{Z}_{rd}^{reg} \in \mathcal{Z}_{d,d+1} \text{ is a regular rhombic dodecahedron} \\ \mathcal{Z}_{rd}^{reg} = \sum_{i=1}^{d+1} [o,q_i], \text{ where } \operatorname{conv}\{q_1,q_2,\ldots,q_{d+1}\} \text{ is a regular simplex centered at } o. \end{array}$

THEOREM (BEZDEK 2000)

Let $1 \le k \le d$ be arbitrary. Among rhombic dodecahedra in \mathbb{R}^d of unit inradius, the ones with minimal kth intrinsic volumes are the regular ones.

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

Let $1 \le k \le d - 1$. Then, for any $Z_i \in \mathcal{Z}_i$ with $V_d(Z_i) = V_d(Z_i^{reg})$, where $i \in \{p, rd\}$, we have

 $V_k(Z_i) \geq V_k(Z_i^{\operatorname{reg}})$

with equality if and only if Z_i is congruent to Z_i^{reg} . Furthermore, we $\operatorname{cr}(Z_i) \ge \operatorname{cr}(Z_i^{\text{reg}})$.

COROLLARY

For any $Z_i \in \mathcal{Z}_i$ with $ir(Z_i) = ir(Z_i^{reg})$, where $i \in \{p, rd\}$, we have

 $\operatorname{cr}(Z_i) \geq \operatorname{cr}(Z_i^{\operatorname{reg}})$

with equality if and only if Z_i is congruent to Z_i^{reg} .

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

Let $1 \le k \le d - 1$. Then, for any $Z_i \in \mathcal{Z}_i$ with $V_d(Z_i) = V_d(Z_i^{reg})$, where $i \in \{p, rd\}$, we have

 $V_k(Z_i) \geq V_k(Z_i^{\operatorname{reg}})$

with equality if and only if Z_i is congruent to Z_i^{reg} . Furthermore, we $\operatorname{cr}(Z_i) \ge \operatorname{cr}(Z_i^{\text{reg}})$.

COROLLARY

For any $Z_i \in \mathcal{Z}_i$ with $ir(Z_i) = ir(Z_i^{reg})$, where $i \in \{p, rd\}$, we have

 $\operatorname{cr}(Z_i) \geq \operatorname{cr}(Z_i^{\operatorname{reg}})$

with equality if and only if Z_i is congruent to Z_i^{reg} .

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

Let $1 \le k \le d - 1$. Then, for any $Z_i \in \mathcal{Z}_i$ with $V_d(Z_i) = V_d(Z_i^{reg})$, where $i \in \{p, rd\}$, we have

 $V_k(Z_i) \geq V_k(Z_i^{\operatorname{reg}})$

with equality if and only if Z_i is congruent to Z_i^{reg} . Furthermore, we $\operatorname{cr}(Z_i) \ge \operatorname{cr}(Z_i^{\text{reg}})$.

COROLLARY

For any $Z_i \in \mathcal{Z}_i$ with $ir(Z_i) = ir(Z_i^{reg})$, where $i \in \{p, rd\}$, we have

 $\operatorname{cr}(Z_i) \geq \operatorname{cr}(Z_i^{\operatorname{reg}})$

with equality if and only if Z_i is congruent to Z_i^{reg} .

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

If $Z \in \mathcal{Z}_p$ satisfies $V_1(Z) = V_1(Z_p^{reg})$, then $cr(Z) \ge cr(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $d \ge 2$. Then for any $Z = \sum_{i=1}^{d+1} [o, p_i] \in \mathbb{Z}_{rd}$ satisfying $\sum_{i=1}^{d+1} p_i = o$ and $V_1(Z) = V_1(Z_{rd}^{reg})$, we have

 $\operatorname{cr}(Z) \ge \operatorname{cr}(Z_{\operatorname{rd}}^{\operatorname{reg}}),$

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

If $Z \in \mathcal{Z}_p$ satisfies $V_1(Z) = V_1(Z_p^{reg})$, then $cr(Z) \ge cr(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $d \ge 2$. Then for any $Z = \sum_{i=1}^{d+1} [o, p_i] \in \mathbb{Z}_{rd}$ satisfying $\sum_{i=1}^{d+1} p_i = o$ and $V_1(Z) = V_1(Z_{rd}^{reg})$, we have

 $\operatorname{cr}(Z) \ge \operatorname{cr}(Z_{\operatorname{rd}}^{\operatorname{reg}}),$

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

If $Z \in \mathcal{Z}_p$ satisfies $V_1(Z) = V_1(Z_p^{reg})$, then $cr(Z) \ge cr(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $d \ge 2$. Then for any $Z = \sum_{i=1}^{d+1} [o, p_i] \in \mathbb{Z}_{rd}$ satisfying $\sum_{i=1}^{d+1} p_i = o$ and $V_1(Z) = V_1(Z_{rd}^{reg})$, we have

 $\operatorname{cr}(Z) \ge \operatorname{cr}(Z_{\operatorname{rd}}^{\operatorname{reg}}),$

ZONOTOPES

Z. Lángi

THEOREM (JOÓS, L. 2022)

If $Z \in \mathcal{Z}_p$ satisfies $V_1(Z) = V_1(Z_p^{reg})$, then $cr(Z) \ge cr(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $d \ge 2$. Then for any $Z = \sum_{i=1}^{d+1} [o, p_i] \in \mathbb{Z}_{rd}$ satisfying $\sum_{i=1}^{d+1} p_i = o$ and $V_1(Z) = V_1(Z_{rd}^{reg})$, we have

 $\operatorname{cr}(Z) \ge \operatorname{cr}(Z_{\operatorname{rd}}^{\operatorname{reg}}),$

ZONOTOPES

Z. Lángi

PROPOSITION (JOÓS, L. 2022)

For any $Z \in \mathcal{Z}_p$ with $V_1(Z) = V_1(Z_p^{reg})$, we have $V_2(Z) \le V_2(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $Z_{rd}^{reg} = \sum_{i=1}^{d+1} [o, q_i]$, where $q_i \in \mathbb{S}^{d-1}$ for all values of *i*. Then, if $Z = \sum_{i=1}^{d+1} [o, p_i]$ is a rhombic dodecahedron with $p_i \in \mathbb{S}^{d-1}$ for all values of *i*, then

 $V_2(Z) \geq V_2(Z_{\rm rd}^{\rm reg}),$

(日) (日) (日) (日) (日) (日) (日)

with equality if and only if Z is regular.

ZONOTOPES

Z. Lángi

PROPOSITION (JOÓS, L. 2022)

For any $Z \in \mathcal{Z}_p$ with $V_1(Z) = V_1(Z_p^{reg})$, we have $V_2(Z) \le V_2(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $Z_{rd}^{reg} = \sum_{i=1}^{d+1} [o, q_i]$, where $q_i \in \mathbb{S}^{d-1}$ for all values of *i*. Then, if $Z = \sum_{i=1}^{d+1} [o, p_i]$ is a rhombic dodecahedron with $p_i \in \mathbb{S}^{d-1}$ for all values of *i*, then

 $V_2(Z) \geq V_2(Z_{\rm rd}^{\rm reg}),$

with equality if and only if Z is regular.

ZONOTOPES

Z. Lángi

PROPOSITION (JOÓS, L. 2022)

For any $Z \in \mathcal{Z}_p$ with $V_1(Z) = V_1(Z_p^{reg})$, we have $V_2(Z) \le V_2(Z_p^{reg})$, with equality if and only if Z is a cube.

THEOREM (JOÓS, L. 2022)

Let $Z_{rd}^{reg} = \sum_{i=1}^{d+1} [o, q_i]$, where $q_i \in \mathbb{S}^{d-1}$ for all values of *i*. Then, if $Z = \sum_{i=1}^{d+1} [o, p_i]$ is a rhombic dodecahedron with $p_i \in \mathbb{S}^{d-1}$ for all values of *i*, then

 $V_2(Z) \geq V_2(Z_{\rm rd}^{\rm reg}),$

with equality if and only if Z is regular.

ZONOTOPES

Z. Láng

Total squared *k*-content of a simplex: sum of the squares of the *k*-volumes of all *k*-faces

THEOREM (TANNER 1974)

Let $2 \le k \le d$. Among simplices in \mathbb{R}^d with a given total squared 1-content, the ones with maximal total squared *k*-content are the regular ones.

 $\sigma_m^k(x_1, x_2, \dots, x_m)$: elementary symmetric polynomial of degree k with the variables x_1, x_2, \dots, x_k

Lemma (Maclaurin's inequality)

$$\left(\frac{\sigma_m^k(x_1, x_2, \dots, x_m)}{\binom{m}{k}}\right)^{\frac{1}{k}} \ge \left(\frac{\sigma_m^{k+1}(x_1, x_2, \dots, x_m)}{\binom{m}{k+1}}\right)^{\frac{1}{k+1}}$$

ZONOTOPES

Z. Lángi

Total squared *k*-content of a simplex: sum of the squares of the *k*-volumes of all *k*-faces

THEOREM (TANNER 1974)

Let $2 \le k \le d$. Among simplices in \mathbb{R}^d with a given total squared 1-content, the ones with maximal total squared *k*-content are the regular ones.

 $\sigma_m^k(x_1, x_2, \dots, x_m)$: elementary symmetric polynomial of degree k with the variables x_1, x_2, \dots, x_k

Lemma (Maclaurin's inequality)

$$\left(\frac{\sigma_m^k(x_1, x_2, \dots, x_m)}{\binom{m}{k}}\right)^{\frac{1}{k}} \ge \left(\frac{\sigma_m^{k+1}(x_1, x_2, \dots, x_m)}{\binom{m}{k+1}}\right)^{\frac{1}{k+1}}$$

ZONOTOPES

Z. Lángi

Total squared *k*-content of a simplex: sum of the squares of the *k*-volumes of all *k*-faces

THEOREM (TANNER 1974)

Let $2 \le k \le d$. Among simplices in \mathbb{R}^d with a given total squared 1-content, the ones with maximal total squared *k*-content are the regular ones.

 $\sigma_m^k(x_1, x_2, \dots, x_m)$: elementary symmetric polynomial of degree *k* with the variables x_1, x_2, \dots, x_k

Lemma (Maclaurin's inequality)

$$\left(\frac{\sigma_m^k(x_1, x_2, \dots, x_m)}{\binom{m}{k}}\right)^{\frac{1}{k}} \ge \left(\frac{\sigma_m^{k+1}(x_1, x_2, \dots, x_m)}{\binom{m}{k+1}}\right)^{\frac{1}{k+1}}$$

ZONOTOPES

Z. Lángi

Total squared *k*-content of a simplex: sum of the squares of the *k*-volumes of all *k*-faces

THEOREM (TANNER 1974)

Let $2 \le k \le d$. Among simplices in \mathbb{R}^d with a given total squared 1-content, the ones with maximal total squared *k*-content are the regular ones.

 $\sigma_m^k(x_1, x_2, ..., x_m)$: elementary symmetric polynomial of degree *k* with the variables $x_1, x_2, ..., x_k$

LEMMA (MACLAURIN'S INEQUALITY)

$$\left(\frac{\sigma_m^k(x_1, x_2, \dots, x_m)}{\binom{m}{k}}\right)^{\frac{1}{k}} \ge \left(\frac{\sigma_m^{k+1}(x_1, x_2, \dots, x_m)}{\binom{m}{k+1}}\right)^{\frac{1}{k+1}}$$

ZONOTOPES

Z. Lángi

Total squared *k*-content of a simplex: sum of the squares of the *k*-volumes of all *k*-faces

THEOREM (TANNER 1974)

Let $2 \le k \le d$. Among simplices in \mathbb{R}^d with a given total squared 1-content, the ones with maximal total squared *k*-content are the regular ones.

 $\sigma_m^k(x_1, x_2, \dots, x_m)$: elementary symmetric polynomial of degree *k* with the variables x_1, x_2, \dots, x_k

LEMMA (MACLAURIN'S INEQUALITY)

$$\left(\frac{\sigma_m^k(x_1, x_2, \ldots, x_m)}{\binom{m}{k}}\right)^{\frac{1}{k}} \ge \left(\frac{\sigma_m^{k+1}(x_1, x_2, \ldots, x_m)}{\binom{m}{k+1}}\right)^{\frac{1}{k+1}}$$

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

ZONOTOPES.

Z. Lángi

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with 1 < d < n. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_1<\ldots< i_{k-1}\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_{k-1}}|^p}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}}$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_1<\ldots< i_{k-1}\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_{k-1}}|^{\rho}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_{1}<...< i_{k-1}\leq n}|x_{i_{1}}\wedge x_{i_{2}}\wedge \ldots \wedge x_{i_{k-1}}|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_{1}<...< i_{k-1}\leq n}|x_{i_{1}}\wedge x_{i_{2}}\wedge \ldots \wedge x_{i_{k-1}}|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

Let
$$Z = \sum_{i=1}^{n} [o, x_i] \subset \mathbb{R}^d$$
.

$$V_{k,p}(Z) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} |x_{i_1} \wedge x_{i_2} \wedge \ldots \wedge x_{i_k}|^p$$

THEOREM

Let *Z* be a rhombic dodecahedron in \mathbb{R}^d . Then, for any $1 \le k < m \le d$, the quantity

$$\frac{\left(V_{k,2}(Z)\right)^m}{\left(V_{m,2}(Z)\right)^k}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ZONOTOPES

Z. Lángi

Let
$$Z = \sum_{i=1}^{n} [o, x_i] \subset \mathbb{R}^d$$
.

$$V_{k,p}(Z) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} |x_{i_1} \wedge x_{i_2} \wedge \ldots \wedge x_{i_k}|^p$$

THEOREM

Let *Z* be a rhombic dodecahedron in \mathbb{R}^d . Then, for any $1 \le k < m \le d$, the quantity

$$\frac{\left(V_{k,2}(Z)\right)^m}{\left(V_{m,2}(Z)\right)^k}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ZONOTOPES

Z. Lángi

Let
$$Z = \sum_{i=1}^{n} [o, x_i] \subset \mathbb{R}^d$$
.

$$V_{k,p}(Z) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} |x_{i_1} \wedge x_{i_2} \wedge \ldots \wedge x_{i_k}|^p$$

THEOREM

Let *Z* be a rhombic dodecahedron in \mathbb{R}^d . Then, for any $1 \le k < m \le d$, the quantity

$$\frac{\left(V_{k,2}(Z)\right)^m}{\left(V_{m,2}(Z)\right)^k}$$

ZONOTOPES

Z. Lángi

Let
$$Z = \sum_{i=1}^{n} [o, x_i] \subset \mathbb{R}^d$$
.

$$V_{k,p}(Z) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} |x_{i_1} \wedge x_{i_2} \wedge \ldots \wedge x_{i_k}|^p$$

THEOREM

Let *Z* be a rhombic dodecahedron in \mathbb{R}^d . Then, for any $1 \le k < m \le d$, the quantity

$$\frac{\left(V_{k,2}(Z)\right)^m}{\left(V_{m,2}(Z)\right)^k}$$

ZONOTOPES

Z. Lángi

PROBLEM (BETKE, MCMULLEN 1983)

For any $\varepsilon > 0$, find the smallest number $N = N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

Theorem (Bourgain, Lindenstrauss 1988 and 1993, Linhart 1989, Bourgain, Lindenstrauss, Milman 1989, Matoušek 1996)

$$c\varepsilon^{rac{-2(d-1)}{d+2}} \le N(\varepsilon) \le \left\{ egin{array}{l} C\varepsilon^{rac{-2(d-1)}{d+2}}, \ \textit{if } d=2 \ \textit{or } d \ge 5, \ C\left(\varepsilon^{-2}\log|\varepsilon|
ight)^{rac{(d-1)}{d+2}}, \ \textit{otherwise.} \end{array}
ight.$$

ZONOTOPES

Z. Lángi

PROBLEM (BETKE, MCMULLEN 1983)

For any $\varepsilon > 0$, find the smallest number $N = N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

Theorem (Bourgain, Lindenstrauss 1988 and 1993, Linhart 1989, Bourgain, Lindenstrauss, Milman 1989, Matoušek 1996)

$$c\varepsilon^{\frac{-2(d-1)}{d+2}} \le N(\varepsilon) \le \begin{cases} C\varepsilon^{\frac{-2(d-1)}{d+2}}, \text{ if } d = 2 \text{ or } d \ge 5, \\ C\left(\varepsilon^{-2} \log |\varepsilon|\right)^{\frac{(d-1)}{d+2}}, \text{ otherwise.} \end{cases}$$

ZONOTOPES

Z. Lángi

PROBLEM (BETKE, MCMULLEN 1983)

For any $\varepsilon > 0$, find the smallest number $N = N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

Theorem (Bourgain, Lindenstrauss 1988 and 1993, Linhart 1989, Bourgain, Lindenstrauss, Milman 1989, Matoušek 1996)

$$\boldsymbol{c}\varepsilon^{\frac{-2(d-1)}{d+2}} \leq \boldsymbol{N}(\varepsilon) \leq \begin{cases} C\varepsilon^{\frac{-2(d-1)}{d+2}}, \text{ if } d=2 \text{ or } d \geq 5, \\ C\left(\varepsilon^{-2} \log |\varepsilon|\right)^{\frac{(d-1)}{d+2}}, \text{ otherwise.} \end{cases}$$

ZONOTOPES

Z. Lángi

PROBLEM (BETKE, MCMULLEN 1983)

For any $\varepsilon > 0$, find the smallest number $N = N(\varepsilon)$ such that the Euclidean ball can be approximated within error ε (in Hausdorff distance) by a zonotope generated by N segments.

Theorem (Bourgain, Lindenstrauss 1988 and 1993, Linhart 1989, Bourgain, Lindenstrauss, Milman 1989, Matoušek 1996)

$$c\varepsilon^{rac{-2(d-1)}{d+2}} \leq N(\varepsilon) \leq \left\{ egin{array}{l} C\varepsilon^{rac{-2(d-1)}{d+2}}, \ \textit{if } d=2 \ \textit{or } d\geq 5, \ C\left(\varepsilon^{-2}\log|\varepsilon|
ight)^{rac{(d-1)}{d+2}}, \ \textit{otherwise.} \end{array}
ight.$$

ZONOTOPES

Z. Lángi

$\mathcal{Z}_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments

$$U_d(n) = \begin{cases} \frac{\sqrt{\log n}}{d+2}, & \text{if } d = 3 \text{ or } d = 4, \\ \frac{n^{2d-2}}{d+2}, & \text{if } d = 2 \text{ or } d \ge 5. \end{cases}$$

THEOREM

$$\frac{c}{n^{\frac{d+2}{2d-2}}} \leq \min\left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)} - 1 : Z \in \mathcal{Z}_{d,n}\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

 $\mathcal{Z}_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments

$$U_d(n) = \left\{ egin{array}{c} \frac{\sqrt{\log n}}{d+2}, \ ext{if } d = 3 \ ext{or } d = 4, \ \frac{n^{2d-2}}{d+2}, \ ext{if } d = 2 \ ext{or } d \geq 5. \end{array}
ight.$$

THEOREM

$$\frac{c}{n^{\frac{d+2}{2d-2}}} \leq \min\left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)} - 1 : Z \in \mathcal{Z}_{d,n}\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

 $\mathcal{Z}_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments

$$U_d(n) = \left\{ egin{array}{c} rac{\sqrt{\log n}}{d+2}, \ ext{if } d = 3 \ ext{or } d = 4, \ rac{n^{2d-2}}{d+2}, \ ext{if } d = 2 \ ext{or } d \geq 5. \end{array}
ight.$$

THEOREM

$$\frac{c}{n^{\frac{d+2}{2d-2}}} \leq \min\left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)} - 1 : Z \in \mathcal{Z}_{d,n}\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

 $\mathcal{Z}_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments

$$U_d(n) = \left\{ egin{array}{c} rac{\sqrt{\log n}}{d+2}, \ ext{if } d = 3 \ ext{or } d = 4, \ rac{n^{2d-2}}{d+2}, \ ext{if } d = 2 \ ext{or } d \geq 5. \end{array}
ight.$$

THEOREM

$$\frac{c}{n^{\frac{d+2}{2d-2}}} \leq \min\left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)} - 1 : Z \in \mathcal{Z}_{d,n}\right\} \leq CU_d(n).$$
ZONOTOPES

Z. Lángi

 $\mathcal{Z}_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments

$$U_d(n) = \left\{ egin{array}{c} \frac{\sqrt{\log n}}{d+2}, \ ext{if } d = 3 \ ext{or } d = 4, \ n^{2d-2}, \ rac{1}{d+2}, \ ext{if } d = 2 \ ext{or } d \geq 5. \end{array}
ight.$$

THEOREM

Let $d \ge 2$ be fixed. Then there are positive constants c = c(d) and C = C(d) depending only on the dimension such that for any $n \ge d + 1$,

$$\frac{c}{n^{\frac{d+2}{2d-2}}} \leq \min\left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)} - 1 : Z \in \mathcal{Z}_{d,n}\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

 $\mathcal{Z}_{d,n}$: family of *d*-dimensional zonotopes generated by *n* segments

$$U_d(n) = \left\{ egin{array}{c} \frac{\sqrt{\log n}}{d+2}, \ {
m if} \ d=3 \ {
m or} \ d=4, \ n^{2d-2}, \ {
m if} \ d=2 \ {
m or} \ d\geq 5. \ rac{1}{n^{2d-2}}, \ {
m if} \ d=2 \ {
m or} \ d\geq 5. \end{array}
ight.$$

THEOREM

Let $d \ge 2$ be fixed. Then there are positive constants c = c(d) and C = C(d) depending only on the dimension such that for any $n \ge d + 1$,

$$\frac{c}{n^{\frac{d+2}{2d-2}}} \leq \min\left\{\frac{\operatorname{cr}(Z)}{\operatorname{ir}(Z)} - 1 : Z \in \mathcal{Z}_{d,n}\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) depending only on d such that for any sufficiently large value of n, we have

 $\frac{4i}{5dn^2} \leq \min\left\{\frac{V_i(Z)}{V_i(\mathbf{B}^d)} - 1 : Z \in \mathcal{Z}_{d,n}, \text{ir}(Z) = 1\right\} \leq CU_d(n).$

(日) (日) (日) (日) (日) (日) (日)

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) depending only on d such that for any sufficiently large value of n, we have

 $\frac{4i}{5dn^2} \leq \min\left\{\frac{V_i(Z)}{V_i(\mathbf{B}^d)} - 1 : Z \in \mathcal{Z}_{d,n}, \operatorname{ir}(Z) = 1\right\} \leq CU_d(n).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) depending only on d such that for any sufficiently large value of n, we have

$$\frac{4i}{5dn^2} \leq \min\left\{\frac{V_i(Z)}{V_i(\mathbf{B}^d)} - 1 : Z \in \mathcal{Z}_{d,n}, \operatorname{ir}(Z) = 1\right\} \leq CU_d(n).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) depending only on d such that for any sufficiently large value of n, we have

$$\frac{4i}{5dn^2} \leq \min\left\{\frac{V_i(Z)}{V_i(\mathbf{B}^d)} - 1 : Z \in \mathcal{Z}_{d,n}, \operatorname{ir}(Z) = 1\right\} \leq CU_d(n).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) such that for any sufficiently large value of n,

 $\frac{2i}{5n^2} \leq \min\left\{1 - \frac{V_i(Z)}{V_i(\mathbf{B}^d)} : Z \in \mathcal{Z}_{d,n}, \operatorname{cr}(Z) = 1\right\} \leq CU_d(n).$

(日) (日) (日) (日) (日) (日) (日)

ZONOTOPES

Z. Lángi

Theorem

Let $1 \le i \le d$. Then there is a positive constant C = C(d) such that for any sufficiently large value of n,

 $\frac{2i}{5n^2} \leq \min\left\{1 - \frac{V_i(Z)}{V_i(\mathbf{B}^d)} : Z \in \mathcal{Z}_{d,n}, \operatorname{cr}(Z) = 1\right\} \leq CU_d(n).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) such that for any sufficiently large value of n,

$$\frac{2i}{5n^2} \leq \min\left\{1 - \frac{V_i(Z)}{V_i(\mathbf{B}^d)} : Z \in \mathcal{Z}_{d,n}, \operatorname{cr}(Z) = 1\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

THEOREM

Let $1 \le i \le d$. Then there is a positive constant C = C(d) such that for any sufficiently large value of n,

$$\frac{2i}{5n^2} \leq \min\left\{1 - \frac{V_i(Z)}{V_i(\mathbf{B}^d)} : Z \in \mathcal{Z}_{d,n}, \operatorname{cr}(Z) = 1\right\} \leq CU_d(n).$$

ZONOTOPES

Z. Lángi

Theorem

Let $1 \le i < k \le d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,

$$\frac{c}{n^{\frac{(d+2)(d+3)}{4d-4}}} \le \min\left\{\frac{(V_i(Z))^{\frac{1}{7}}}{(V_k(Z))^{\frac{1}{k}}} - \frac{(V_i(\mathbf{B}^d))^{\frac{1}{7}}}{(V_k(\mathbf{B}^d))^{\frac{1}{k}}} : Z \in \mathcal{Z}_{d,n}\right\} \le \frac{c}{n}.$$

Furthermore, there is a constant $\bar{c}>0$ depending on d such that

$$\frac{\bar{c}}{n^2} \le \min\left\{\frac{(V_{d-1}(Z))^{\frac{1}{d-1}}}{(V_d(Z))^{\frac{1}{d}}} - \frac{(V_{d-1}(\mathbf{B}^d))^{\frac{1}{d-1}}}{(V_d(\mathbf{B}^d))^{\frac{1}{d}}} : Z \in \mathcal{Z}_{d,n}\right\}.$$

ZONOTOPES

Z. Lángi

Theorem

Let $1 \le i < k \le d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,

$$\frac{c}{n^{\frac{(d+2)(d+3)}{4d-4}}} \le \min\left\{\frac{(V_i(Z))^{\frac{1}{i}}}{(V_k(Z))^{\frac{1}{k}}} - \frac{(V_i(\mathbf{B}^d))^{\frac{1}{i}}}{(V_k(\mathbf{B}^d))^{\frac{1}{k}}} : Z \in \mathcal{Z}_{d,n}\right\} \le \frac{C}{n}$$

Furthermore, there is a constant $\bar{c}>0$ depending on d such that

$$\frac{\bar{c}}{n^2} \le \min\left\{\frac{(V_{d-1}(Z))^{\frac{1}{d-1}}}{(V_d(Z))^{\frac{1}{d}}} - \frac{(V_{d-1}(\mathbf{B}^d))^{\frac{1}{d-1}}}{(V_d(\mathbf{B}^d))^{\frac{1}{d}}} : Z \in \mathcal{Z}_{d,n}\right\}.$$

ZONOTOPES

Z. Lángi

Theorem

Let $1 \le i < k \le d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,

$$\frac{c}{n^{\frac{(d+2)(d+3)}{4d-4}}} \leq \min\left\{\frac{(V_i(Z))^{\frac{1}{i}}}{(V_k(Z))^{\frac{1}{k}}} - \frac{(V_i(\mathbf{B}^d))^{\frac{1}{i}}}{(V_k(\mathbf{B}^d))^{\frac{1}{k}}} : Z \in \mathcal{Z}_{d,n}\right\} \leq \frac{c}{n}.$$

Furthermore, there is a constant $\bar{c}>0$ depending on d such that

$$\frac{\bar{c}}{n^2} \le \min\left\{\frac{(V_{d-1}(Z))^{\frac{1}{d-1}}}{(V_d(Z))^{\frac{1}{d}}} - \frac{(V_{d-1}(\mathbf{B}^d))^{\frac{1}{d-1}}}{(V_d(\mathbf{B}^d))^{\frac{1}{d}}} : Z \in \mathcal{Z}_{d,n}\right\}.$$

(日)

э

ZONOTOPES

Z. Lángi

Theorem

Let $1 \le i < k \le d$. Then there are positive constants c, C depending only on d such that for any sufficiently large value of n,

$$\frac{c}{n^{\frac{(d+2)(d+3)}{4d-4}}} \leq \min\left\{\frac{(V_i(Z))^{\frac{1}{i}}}{(V_k(Z))^{\frac{1}{k}}} - \frac{(V_i(\mathbf{B}^d))^{\frac{1}{i}}}{(V_k(\mathbf{B}^d))^{\frac{1}{k}}} : Z \in \mathcal{Z}_{d,n}\right\} \leq \frac{c}{n}.$$

Furthermore, there is a constant $\bar{c}>0$ depending on d such that

$$\frac{\bar{c}}{n^2} \le \min\left\{\frac{(V_{d-1}(Z))^{\frac{1}{d-1}}}{(V_d(Z))^{\frac{1}{d}}} - \frac{(V_{d-1}(\mathbf{B}^d))^{\frac{1}{d-1}}}{(V_d(\mathbf{B}^d))^{\frac{1}{d}}} : Z \in \mathcal{Z}_{d,n}\right\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ● ●

ZONOTOPES

Z. Lángi

ℓ_1 -polarization problem:

For a multiset $\omega_n = \{x_1, x_2, \dots, x_n\}$ in \mathbb{S}^{d-1} , the ℓ_1 -polarization of ω_n is defined as

$$M_1(\omega_n) = \max\left\{\sum_{i=1}^n |\langle x_i, u \rangle| : u \in \mathbb{S}^{d-1}
ight\},$$

and the quantity

$$M_n^1(\mathbb{S}^{d-1}) = \min\left\{M_p(\omega_n) : \omega_n \subset \mathbb{S}^{d-1}\right\}$$

ZONOTOPES

Z. Láng

ℓ_1 -polarization problem:

For a multiset $\omega_n = \{x_1, x_2, \dots, x_n\}$ in \mathbb{S}^{d-1} , the ℓ_1 -polarization of ω_n is defined as

$$M_1(\omega_n) = \max\left\{\sum_{i=1}^n |\langle x_i, u \rangle| : u \in \mathbb{S}^{d-1}\right\},\$$

and the quantity

$$M_n^1(\mathbb{S}^{d-1}) = \min\left\{M_p(\omega_n) : \omega_n \subset \mathbb{S}^{d-1}\right\}$$

ZONOTOPES

Z. Láng

ℓ_1 -polarization problem:

For a multiset $\omega_n = \{x_1, x_2, \dots, x_n\}$ in \mathbb{S}^{d-1} , the ℓ_1 -polarization of ω_n is defined as

$$M_1(\omega_n) = \max\left\{\sum_{i=1}^n |\langle x_i, u \rangle| : u \in \mathbb{S}^{d-1}\right\},$$

and the quantity

$$M_n^1(\mathbb{S}^{d-1}) = \min\left\{M_p(\omega_n) : \omega_n \subset \mathbb{S}^{d-1}\right\}$$

ZONOTOPES.

Z. Láng

ℓ_1 -polarization problem:

For a multiset $\omega_n = \{x_1, x_2, \dots, x_n\}$ in \mathbb{S}^{d-1} , the ℓ_1 -polarization of ω_n is defined as

$$M_1(\omega_n) = \max\left\{\sum_{i=1}^n |\langle x_i, u \rangle| : u \in \mathbb{S}^{d-1}\right\},$$

and the quantity

$$M_n^1(\mathbb{S}^{d-1}) = \min\left\{M_p(\omega_n) : \omega_n \subset \mathbb{S}^{d-1}\right\}$$

ZONOTOPES

Z. Lángi

For
$$Z = \sum_{i=1}^{n} [o, p_i] \subset \mathbb{R}^d$$
,

$$V_1(Z) = \sum_{i=1}^n |p_i|,$$
$$(Z) = \frac{1}{2} \max\left\{\sum_{i=1}^n |\langle u, x_i \rangle| : u \in \mathbb{S}^{d-1}\right\}$$

Problem

For any $n \ge d \ge 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d,n}$ with a given mean width.

ZONOTOPES

Z. Lángi

For
$$Z = \sum_{i=1}^{n} [o, p_i] \subset \mathbb{R}^d$$
,

$$V_1(Z) = \sum_{i=1}^n |p_i|,$$

$$\operatorname{cr}(Z) = rac{1}{2} \max\left\{\sum_{i=1}^n |\langle u, x_i
angle| : u \in \mathbb{S}^{d-1}
ight\}.$$

Problem

For any $n \ge d \ge 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d,n}$ with a given mean width.

ZONOTOPES

Z. Lángi

For
$$Z = \sum_{i=1}^{n} [o, p_i] \subset \mathbb{R}^d$$
,

$$V_1(Z) = \sum_{i=1}^n |p_i|,$$
$$\operatorname{cr}(Z) = \frac{1}{2} \max\left\{\sum_{i=1}^n |\langle u, x_i \rangle| : u \in \mathbb{S}^{d-1}\right\}.$$

Problem

For any $n \ge d \ge 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d,n}$ with a given mean width.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

ZONOTOPES

Z. Lángi

For
$$Z = \sum_{i=1}^{n} [o, p_i] \subset \mathbb{R}^d$$
,

$$V_1(Z) = \sum_{i=1}^n |p_i|,$$

$$\operatorname{cr}(Z) = rac{1}{2} \max\left\{\sum_{i=1}^n |\langle u, x_i \rangle| : u \in \mathbb{S}^{d-1}\right\}.$$

PROBLEM

For any $n \ge d \ge 1$, find the minimal circumradius of all equilateral zonotopes in $\mathcal{Z}_{d,n}$ with a given mean width.

ZONOTOPES

Z. Lángi

Remark

It was shown by Ambrus and Nietert in 2019 that

$$M_n^1(\mathbb{S}^{d-1}) = n\mu_{d,1} + o\left(\frac{n}{\sqrt{d}}\right)$$

if $n, d \to \infty$ and $n = \omega \left(d^2 \log d \right)$, where $\mu_{d,1} = \frac{\Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{d+1}{2}\right)}$. Our theorems yield that

$$M_n^1(\mathbb{S}^{d-1}) = n\mu_{d,1} + O\left(n^{\frac{d-4}{2d-2}}\sqrt{\log n}\right)$$

for any fixed $d \ge 2$.

ZONOTOPES

Z. Lángi

Remark

It was shown by Ambrus and Nietert in 2019 that

$$M_n^1(\mathbb{S}^{d-1}) = n\mu_{d,1} + o\left(\frac{n}{\sqrt{d}}\right)$$

if $n, d \to \infty$ and $n = \omega \left(d^2 \log d \right)$, where $\mu_{d,1} = \frac{\Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi}\Gamma\left(\frac{d+1}{2}\right)}$. Our theorems yield that

$$M_n^1(\mathbb{S}^{d-1}) = n\mu_{d,1} + O\left(n^{\frac{d-4}{2d-2}}\sqrt{\log n}\right)$$

for any fixed $d \ge 2$.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, ..., x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_1<\ldots< i_{k-1}\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_{k-1}}|^p}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$= \begin{pmatrix} & \binom{n}{k-1} \end{pmatrix}$$
with equality if and only if $n = d$ and the vectors form an orthonormal basis

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_{1}<...< i_{k-1}\leq n}|x_{i_{1}}\wedge x_{i_{2}}\wedge...\wedge x_{i_{k-1}}|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_{1}<...< i_{k-1}\leq n}|x_{i_{1}}\wedge x_{i_{2}}\wedge \ldots \wedge x_{i_{k-1}}|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Let $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$ be given with $1 \le d \le n$. Then for any $p \in [0, \infty]$ and $2 \le k \le d$, we have

$$\left(\frac{\sum_{1\leq i_1<\ldots< i_k\leq n}|x_{i_1}\wedge x_{i_2}\wedge\ldots\wedge x_{i_k}|^p}{\binom{n}{k}}\right)^{\frac{1}{pk}}\leq$$

$$\leq \left(\frac{\sum_{1\leq i_{1}<...< i_{k-1}\leq n}|x_{i_{1}}\wedge x_{i_{2}}\wedge \ldots \wedge x_{i_{k-1}}|^{p}}{\binom{n}{k-1}}\right)^{\frac{1}{p(k-1)}},$$

with equality if and only if n = d and the vectors form an orthonormal basis.

ZONOTOPES

Z. Lángi

Theorem

Let $n \ge d$ and $Z = \sum_{i=1}^{n} [o, x_i]$ be a zonotope in \mathbb{R}^d . Then, for any $1 \le k < d$, the quantity

$$\left(\frac{V_{k,2}(Z)}{\binom{n}{k}}\right)^{\frac{1}{k}} \ge \left(\frac{V_{k+1,2}(Z)}{\binom{n}{k+1}}\right)^{\frac{1}{k+1}}$$

with equality if and only if n = d and Z is a cube, or if the dimension of Z is at most k - 1.

ZONOTOPES

Z. Lángi

Theorem

Let $n \ge d$ and $Z = \sum_{i=1}^{n} [o, x_i]$ be a zonotope in \mathbb{R}^d . Then, for any $1 \le k < d$, the quantity

$$\left(\frac{V_{k,2}(Z)}{\binom{n}{k}}\right)^{\frac{1}{k}} \geq \left(\frac{V_{k+1,2}(Z)}{\binom{n}{k+1}}\right)^{\frac{1}{k+1}},$$

with equality if and only if n = d and Z is a cube, or if the dimension of Z is at most k - 1.

ZONOTOPES

Z. Lángi

Theorem

Let $n \ge d$ and $Z = \sum_{i=1}^{n} [o, x_i]$ be a zonotope in \mathbb{R}^d . Then, for any $1 \le k < d$, the quantity

$$\left(\frac{V_{k,2}(Z)}{\binom{n}{k}}\right)^{\frac{1}{k}} \geq \left(\frac{V_{k+1,2}(Z)}{\binom{n}{k+1}}\right)^{\frac{1}{k+1}}$$

with equality if and only if n = d and Z is a cube, or if the dimension of Z is at most k - 1.

ZONOTOPES

Z. Lángi

GRACIAS POR SU ATENCIÓN

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで