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THEOREM (MCMULLEN 1971, SHEPHARD 1974)

IfZ="3"1,lo,pi, where 1 < i < n, is a zonotope inRY,
then

Vo)=Y 1B AP A APl

1<ii<ib<...<ig<n
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THEOREM (SHEPHARD 1974)

IfZ=>"1,lo,pi], where1 < i< n, then Z can be
decomposed into a family F of parallelotopes such that
each element of F is a translate of a d-dimensional
parallelotope P = 27:1 [0, p;] for some
1<ii<ih<...<ly<n,and forevery such parallelotope
P there is a unique element of F which is a translate of P.
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Letd > 2.

@ Z=>"",[o,pj is azonotope with p; € RRY for all values
of /.

@ P? ={p1,...,pn}, forany 0 < k < d, P¢: the family of
k-element subsets of PZ containing linearly
independent vectors.

@ Forany / € PZ with k > 1, P(I) = 3_,,[o, pi]; for k = 0,
P(0) = {o} (regarded as a 0-dimensional parallelotope)

© for any P(/) with | € PZ, B*(/) := BY N (aff P(/))* and
SL(1) := s9-1 N (aff P(1))*, where (aff P(1))* denotes
the orthogonal complement of aff P(/).
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ZONOTOPES

THEOREM (JOOsS, L. 2022)

Forany t > 0, the set Z + tBY can be decomposed into a
family Fz of mutually non-overlapping convex bodies of the
form X + tBx such that

Q@ forany X + tBx € Fz, X is a translate of some
parallelotope P(1) with | € PZ for some 0 < k < d, and
Bx C B*(I) is the convex hull of o and a spherically
convex, compact subset of S*(I);

@ ifforany0 < k < d and | € P#, Fz(I) denotes the
subfamily of the elements X + tBx of Fz, where X is a
translate of P(I), then {Bx : X +tBx € Fz(I)} is a
decomposition of B*(1).
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FIGURE: The body Z + tBY if Z is a cube generated by 3 mutually
orthogonal segments. There are 4 translates of every generating
segment appearing as edges of Z. The solid bodies in the picture
correspond to the sets X + tBx, where X is a translate of a fixed
generating segment.
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are the proper faces of Z, and By is the set of the outer
normal vectors of X of length at most one.

COROLLARY
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the kth intrinsic volume of Z is
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Corollary is proved by Brazitikos and Mcintyre in 2021 using
an integral geometric formula.
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ZONOTOPES

Two parts:
@ Isoperimetric problems for zonotopes in R? generated
by d or d + 1 segments (parallelotopes and rhombic
dodecahedra).
@ Isoperimetric problems for zonotopes in R? generated
by n > d segments (asymptotic estimates).
Examined geometric quantities: intrinsic volumes, inradius
(minimal width) denoted by ir(-), circumradius (diameter)
denoted by cr(+).

Z4.n- family of d-dimensional zonotopes generated by n
segments.
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ZONOTOPES

Notation:

Z,:=2g4d
Za = Zq,d41
Zy*® € Z44is acube
Z\\% € Z4 441 is a regular rhombic dodecahedron
d+1 :
Z:8 =>""""[o,q, where conv{q1, Gz, . .., Q4+1} is a regular
simplex centered at o.

THEOREM (BEZDEK 2000)

Let1 < k < d be arbitrary. Among rhombic dodecahedra in
R of unit inradius, the ones with minimal kth intrinsic
volumes are the regular ones.




Z.ONOTOPES WITH A FEW GENERATING VECTORS,
PART 1

THEOREM (JOOS, L. 2022)

Let1 < k< d-—1. Then, for any Z; € Z; with
Viy(Z) = Vo(Z%), where i € {p,rd}, we have

ZONOTOPES

Vil(Zi) > Vil(Z%)

reg

with equality if and only if Z; is congruent to Z;=.




Z.ONOTOPES WITH A FEW GENERATING VECTORS,
PART 1

THEOREM (JOOS, L. 2022)

Let1 < k< d-—1. Then, for any Z; € Z; with
Viy(Z) = Vo(Z%), where i € {p,rd}, we have

ZONOTOPES

Vil(Zi) > Vil(Z%)

reg

with equality if and only if Z; is congruent to Z;=.
Furthermore, we cr(Z;) > cr(Z;®).




Z.ONOTOPES WITH A FEW GENERATING VECTORS,
PART 1

ZONOTOPES

THEOREM (JOOS, L. 2022)

Let1 < k< d-—1. Then, for any Z; € Z; with
Viy(Z) = Vo(Z%), where i € {p,rd}, we have

Vil(Zi) > Vil(Z%)

with equality if and only if Z; is congruent to Z;**.
Furthermore, we cr(Z;) > cr(Z;®).

COROLLARY

For any Z; € Z; withir(Z)) = ir(Z*), where i € {p,rd}, we
have
cr(Zy) > er(ZF)

with equality if and only if Z; is congruent to Z;**.
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THEOREM (JOOS 2022)

Letd > 2. Then forany Z = 3"%"'[0, pj] € Z. satisfying
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THEOREM (JOOS 2022)

Letd > 2. Then forany Z = 3"%"'[0, pj] € Z. satisfying
9 i = 0 and V4 (Z) = V4(Z5%), we have

cr(Z) = er(Z4),

with equality if and only if Z is congruent to Z,3®.
Furthermore, if d is odd, then there is a rhombic
dodecahedron Z' = Zd+1 [0, pj] with V4(Z') = V4(Z5%) and
cr(Z') < er(Zy®).
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PROPOSITION (JOOS, L. 2022)

For any Z € Z, with V1(Z) = V4(Z,*), we have
Vo(2) < Vg(Zreg) with equality if and only if Z is a cube.

THEOREM (JOOs, L. 2022)

Let Z%¢ = "% 10, q;], where g; € S for all values of i.

Then, ifZ = 3.%""[0, pj] is a rhombic dodecahedron with
pi € S for all values of i, then

Vo(Z) > Va(ZF),

with equality if and only if Z is regular.
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ZONOTOPES Total squared k-content of a simplex: sum of the squares of
the k-volumes of all k-faces

THEOREM (TANNER 1974)

Let2 < k < d. Among simplices in RY with a given total
squared 1-content, the ones with maximal total squared
k-content are the regular ones.

ok (X4, X0,..., Xxm): elementary symmetric polynomial of
degree k with the variables xi, Xo, . .., Xk

LEMMA (MACLAURIN’S INEQUALITY)
Let1 < k < m be integers, and X1, . .., Xm > 0 be positive

real numbers. Then

1 1
(o—,’;(xhxz,...,xm)) “ - (m’ﬁ” (X1,X2,---7Xm)) o
m = m ’
(%) (c11)
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_1
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— )
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with equality if and only if n = d and the vectors form an
orthonormal basis.
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CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Letxq, Xz, ..., xn € RY be given with1 < d < n. Then for
any p € [0,00] and2 < k < d, we have

ZONOTOPES

1
(Z1§i1<4..<ik§n |Xi1 A Xi2 VANRAN Xik‘p> pk _
n -_—
(%)
_1
< <Z1Si1<...<ik_1§n |X[1 N Xi2 VANAN Xik—1 ’p> p(k—T1)
- )

(k1)

with equality if and only if n = d and the vectors form an
orthonormal basis. )

Proved for p = 0 and p = oo, for p =2 and n = d, and for
p=1,n=dand k=2,3,d.
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Let Z =" ,[0, x] C RC.

\@pCZ): E: LM1AXbA-~'AXﬂw

1<ip<..<ig<n

THEOREM

Let Z be a rhombic dodecahedron in R9. Then, for any
1 < k < m<d, the quantity

(Vka(2)"
(Vina(2))"

is minimal if and only if Z is regular.




ZONOTOPES WITH MANY GENERATING VECTORS

ZONOTOPES

PROBLEM (BETKE, MCMULLEN 1983)

For any ¢ > 0, find the smallest number N = N(g) such that
the Euclidean ball can be approximated within error ¢ (in
Hausdorff distance) by a zonotope generated by N
segments.




ZONOTOPES WITH MANY GENERATING VECTORS

ZONOTOPES

PROBLEM (BETKE, MCMULLEN 1983)
Z. LANGI

For any £ > 0, find the smallest number N = N(e) such that
the Euclidean ball can be approximated within error ¢ (in
Hausdorff distance) by a zonotope generated by N
segments.

THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993,

LINHART 1989, BOURGAIN, LINDENSTRAUSS, MILMAN 1989,
MATOUSEK 1996)

There are constants ¢, C > 0 depending only on the
dimension d such that




ZONOTOPES WITH MANY GENERATING VECTORS

ZONOTOPES

PROBLEM (BETKE, MCMULLEN 1983)
Z. LANGI

For any £ > 0, find the smallest number N = N(e) such that
the Euclidean ball can be approximated within error ¢ (in
Hausdorff distance) by a zonotope generated by N
segments.

THEOREM (BOURGAIN, LINDENSTRAUSS 1988 AND 1993,

LINHART 1989, BOURGAIN, LINDENSTRAUSS, MILMAN 1989,
MATOUSEK 1996)

There are constants ¢, C > 0 depending only on the
dimension d such that

—2(d—1)
ce a2 < N(e)
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C (e 2logle]) 9% , otherwise.
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1
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Let1 < i < k < d. Then there are positive constants c, C
depending only on d such that for any sufficiently large
value of n,

x| =

e _ o Jw@yt ey . | _c
e (V(2)F  (Vi(BY)F "N

Furthermore, there is a constant ¢ > 0 depending on d
such that

e _ ] (Vaa(2)
n? - (Va(2))

Ql=| q

(Va(BY))

= B (Vd—1(Bd))1T1 ;ZEZdn}'
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For a multiset w, = {Xq, Xo, ..., Xp} in S9=7, the
{y-polarization of wy, is defined as

M (wn) = max{zn: [(x;, u)| - uesi? },

i=1

and the quantity
M} (S9=1) = min {Mp(wn) twp C Sd_1}
is called the ¢,-polarization (or Chebyshev) constant of

S9-1. The ¢4-polarization problem on the sphere asks for
determining the value of M} (S9~") for all values of n and d.
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ZONOTOPES

For Z = -74[0.p] € R,

n
Vi(Z)=>_Ipil.
i=1

PROBLEM

For any n > d > 1, find the minimal circumradius of all
equilateral zonotopes in Z4 , with a given mean width.
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It was shown by Ambrus and Nietert in 2019 that

n
Mp(S?™") = npgs + 0 (ﬁ)

d
it n,d — 0o and n = w (0?log d), where g = %r(%)ﬁ—)
wl (S

Our theorems yield that
1 /qd—1 o=
My(S9") = nug 1 + O (nzd—z /log n)

for any fixed d > 2.
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Letx1,Xo, ..., Xn € RY be given with1 < d < n. Then for
any p € [0,00] and2 < k < d, we have

1
: s : Pk
(Z1§i1<“.<ik§n |Xl1 A Xi ARERRA X’k‘p> P <
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_1
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— )
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with equality if and only if n = d and the vectors form an
orthonormal basis.




APPLICATION II

ZONOTOPES
. CONJECTURE (BRAZITIKOS, MCINTYRE 2021)

Letxq, Xz, ..., xn € RY be given with1 < d < n. Then for
any p € [0,00] and2 < k < d, we have

() -

_1
< <Z1§i1<...<ik_1§n |Xf1 A Xi ARERRA Xi_1 ’p) A=
— )

1
: s : Pk
(Z1§i1<“.<ik§n |Xl1 A Xi ARERRA X’k‘p> P <

(k1)

with equality if and only if n = d and the vectors form an
orthonormal basis. )

Proved for p = 0 and p = oo, for p =2 and n = d, and for
p=1,n=dand k=2,3,d.
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THEOREM

Letn>d andZ =37 ,[o, x;] be a zonotope in RY. Then,
for any 1 < k < d, the quantity

1 1
< Vk,2(2)> ‘ - <Vk+1,2(z)> o
() U )
with equality if and only if n = d and Z is a cube, or if the
dimension of Z is at most k — 1.
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