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Yoram Gordon 1940–2022

Many results in Local Theory of Banach Spaces and Asymptotic Geometric Analysis.

Celebrated mini-max theorem, Gaussian approach to Dvoretzky theorem, related
results on Banach-Mazur distances, “low M∗-estimate”, diameters of sections ...
Inverse Santaló inequality up to logarithm
Series of works with C. Schütt, E. Werner and myself on Orlicz norms of sequences
of sandom variables, order statistics and applications to convex geometry.

Theorem (Gordon, L., Meyer, Pajor, 2004)
Let K,L ⊂ Rn be convex bodies such that 0 ∈ int L and K is in the maximal volume
position in L. The ∃ z ∈ K such that denoting Kz := K − z and Lz := L− z,

∃m ≤ n2 + n, ∃xi ∈ Kz ∩ Lz, ∃yi ∈ K0
z ∩ L0

z , 〈xi, yi〉 = 1, ∃ci > 0 (i ≤ m),

such that

I =
m∑

i=1

ci xi ⊗ yi and
m∑

i=1

cixi =

m∑
i=1

ciyi = 0.
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One can show that in this case

Kz ⊂ Lz ⊂ −nKz,

solving one of B. Grünbaum problems from his seminal 1963 paper.
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Nicole Tomczak-Jaegermann 1945–2022

Many deep results in both, the classical infinite-dimensional Banach space theory and
in its finite-dimensional counterpart, Asymptotic Geometric Analysis.

Very influential book “Banach-Mazur distances and finite-dimensional operator
ideals" and a survey (with P. Mankiewicz) “Quotients of finite dimensional Banach
spaces; random phenomena” in Handbook of the geometry of Banach spaces.

Theorem (Adamczak, L., Pajor, Tomczak-Jaegermann, 2010)
Let ε > 0 and X1, . . . ,XN be i.i.d. random vectors, distributed according to an
isotropic log-concave probability measure on Rn. If N ≥ Cεn, then

P
(∥∥∥ 1

N

N∑
i=1

Xi ⊗ Xi − I
∥∥∥ ≤ ε) ≥ 1− e−c

√
n.

Equivalently,

P
(

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(〈Xi, y〉2 − E〈Xi, y〉2)
∣∣∣ ≤ ε) ≥ 1− e−c

√
n.
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Random ±1 matrices

An old problem: Let B be an n× n random matrix with i.i.d. ±1 entries, that is,

B = {δij}i,j≤n, δij =

{
1, with probability 1/2
−1, with probability 1/2

(such variables are often called Rademacher random variables).

Question. What is
Pn := P {B is singular}?

Equivalently: Let X1,X2, . . . ,Xn be independent random vectors uniformly
distributed on the vertices of the n-dimensional cube [−1, 1]n.

Question. What is the probability that the vectors are linearly dependent?
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The trivial lower bound:

Pn ≥ P {Two rows/columns of B are equal up to a sign} ≥ (1− on(1)) 2n2 2−n.

A natural conjecture: This is the main reason for singularity.

Conjecture 1. Pn = (1/2 + on(1))
n
= 2−(1+on(1))n.

Conjecture 2. Pn = (1+on(1)) 2n2 2−n.
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Known results

Komlós (67): Pn → 0.

Kahn, Komlós and Szemerédi (95): Pn ≤ 0.999n.

Tao–Vu (07): Pn ≤ (3/4 + on(1))n.

Bourgain–Vu–P.M. Wood (10): Pn ≤ (1/
√

2 + on(1))n.

K. Tikhomirov (20): Pn ≤ (1/2 + on(1))n (this solves Conjecture 1).
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Bernoulli random matrices

One can ask a similar question about Bernoulli 0/1 random matrices:

Let p ∈ (0, 1/2) and let Bp be an n× n random matrix with i.i.d. 0/1 random
variables taking value 1 with probability p, that is

B = {δij}i,j≤n, δij =

{
1, with probability p
0, with probability 1− p

Note that Bp can be viewed as the adjacency matrix of (directed) Erdős–Rényi graph
— a random graph on n vertices whose edges appear independently of others with
probability p.

Question: What is
Pn := P {Bp is singular}?
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Conjecture 3.

Pn = (1 + on(1))P {∃ a zero row or a zero column} = (1 + on(1)) 2n(1− p)n.

Geometrically the condition means that either
(i) there is a zero column or
(ii) there a coordinate hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries):
Götze–A. Tikhomirov, Costello–Vu, Basak–Rudelson, Rudelson–K. Tikhomirov,
Tao–Vu, ...

Alexander Litvak (Univ. of Alberta) On singularity of random ±1 and 0/1 matrices. Seville, 2022 10 / 20



Conjecture 3.

Pn = (1 + on(1))P {∃ a zero row or a zero column} = (1 + on(1)) 2n(1− p)n.

Geometrically the condition means that either
(i) there is a zero column or
(ii) there a coordinate hyperplane such that all columns belong to it.

Many works on different models of sparse matrices (with iid entries):
Götze–A. Tikhomirov, Costello–Vu, Basak–Rudelson, Rudelson–K. Tikhomirov,
Tao–Vu, ...

Alexander Litvak (Univ. of Alberta) On singularity of random ±1 and 0/1 matrices. Seville, 2022 10 / 20



Bernoulli random matrices

Basak–Rudelson (17): for p = p(n) ≥ (C ln n)/n

Pn ≤ exp(−cnp).

K. Tikhomirov (20): for p ∈ (0, 1/2] (note, p is independent of n)

Pn ≤ (1− p + on(1))n.

(compare with the conjectured bound (1 + on(1)) 2n(1− p)n).

As usual in such results corresponding bounds were given for the smallest singular
value

sn(M) = inf
‖x‖2=1

‖Mx‖2 = inf{‖M − T : `n
2 → `n

2‖ | T is singular} = 1
‖M−1‖

.
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Solution of the conjecture

Conjecture 3. Let p ∈ (0, 1/2) and let Bp be an n× n random matrix with i.i.d. 0/1
random variables taking value 1 with probability p. Then

Pn = P {Bp is singular} = (1 + on(1))P {∃ a zero row or a zero column}.

Remark. If (pn− ln n)→∞ then

P {∃ a zero row or a zero column} = (2 + on(1))n(1− p)n.

Conjecture 3 has been recently verified (bounds on sn were also provided):

Basak–Rudelson (21): For p = p(n) ≤ ln n+on(ln ln n)
n .

L.–K.Tikhomirov (21): For C ln n
n ≤ p = p(n) ≤ c.

Han Huang (22): For ln n
n ≤ p = p(n) ≤ C ln n

n .

Jain–Sah–Sawhney (22): For c ≤ p < 1/2.
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Remark. If (pn− ln n)→∞ then

P {∃ a zero row or a zero column} = (2 + on(1))n(1− p)n.

Conjecture 3 has been recently verified (bounds on sn were also provided):

Basak–Rudelson (21): For p = p(n) ≤ ln n+on(ln ln n)
n .

L.–K.Tikhomirov (21): For C ln n
n ≤ p = p(n) ≤ c.

Han Huang (22): For ln n
n ≤ p = p(n) ≤ C ln n

n .

Jain–Sah–Sawhney (22): For c ≤ p < 1/2.
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Jain–Sah–Sawhney result.

Let ξ be a non-constant real-valued random variable with finite support.
Let M(ξ) be an n× n random matrix whose entries are independent copies of ξ.

Consider events

Esing := {M(ξ) is singular}, Ezero := {∃ a zero row or a zero column}, and
Eequal := {∃ two equal (up to a sign) rows or columns}.

If ξ is not uniform on its support, P (Esing) = P (Ezero) + (1 + on(1))P (Eequal) .

In particular, if ξ is Bernoulli random variable with Eξ = p ∈ (0, 1/2),

P {Bp is singular} = 2n(1− p)n + (1 + on(1))n(n− 1)(p2 + (1− p)2)n

If ξ is uniform on its support, P (Esing) = (1 + on(1))n P (Eequal) .

This covers the case p = 1/2 as well as the case of Rademacher random variables
(ξ = ±1 with probability 1/2).
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Some ideas of the proof.

It is well-understood by now that to deal with the smallest singular value one needs to
split Sn−1 into several parts and to work separately on each part.

This idea goes back to Kashin (77), where, in order obtain an orthogonal
decomposition of `n

1, he split the sphere into two classes according to the ratio of `n
1

and `n
2 norms. In a similar context it was used by Schehtman (04).

Since we want to provide a lower bound on the smallest singular value of a random
matrix M, we need to show that ‖Mx‖2 is not very small for all x ∈ Sn−1. Usually it is
done using the union bound — to prove a good probability bound for an individual
vector x and then to find a good net in order to apply approximation. The main point
is to have a good balance between the probability and the cardinality of a net.
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Some ideas of the proof.

But vectors behave differently. Consider the following example, let X = {εi}n
i=1 be a

Rademacher random vector with ±1 independent entries. Then

〈X, e1 + e2〉 = ε1 + ε2 = 0 with probability 1/2.

On the other hand,

〈X,
n∑

i=1

ei〉 =
n∑

i=1

εi = 0 with probability at most 1/
√

n

by the Erdős–Littlewood–Offord anti-concentration lemma.

Usually, it is hard to get good individual bounds for vectors of small support,
so-called sparse vectors. However, the set of such vectors is essentially of lower
dimension, hence admit a very good net. This leads to splitting the sphere into
compressible vectors – those closed to sparse, and incompressible vectors – the rest.
For compressible vectors we have a net of small cardinality, therefore relatively poor
individual probability bounds work, while incompressible vectors are well spread and
therefore have very good anti-concentration properties. This approach was first used
in L–Pajor–Rudelson–Tomczak-Jaegermann (05) for rectangular matrices and was
later developed in series of works by Rudelson–Vershynin.
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Some ideas of the proof.

For Bernoulli 0/1 matrices the splitting of the sphere is much more involved.

An additional problem is caused by constant vectors. Indeed, while properly
normalized centered random matrices (say, with entries ±1) have norm of order

√
n,

the norm ‖Bp‖ ≈ pn. Fortunately, this large norm is only in the direction of
1 = (1, 1, ..., 1). On the subspace orthogonal to 1 the norm is of the order

√
pn.

So-called structured vectors, corresponding to incompressible vectors in other
models, are vectors of 3 types.

First, almost constant vectors — vectors having many almost equal coordinates. In
other words, they are compressible vectors shifted by constants vectors.

Second, vectors such that after removing k largest coordinates with 1
p ≤ k ≤ n

ln2(pn) ,
have a good comparison of `2- and `∞-norms. Then Rogosin anti-concentration
bounds provide a good result (such bounds say that an inner product of a random
vector with a flat vector can’t concentrate around a number).
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√
pn.

So-called structured vectors, corresponding to incompressible vectors in other
models, are vectors of 3 types.

First, almost constant vectors — vectors having many almost equal coordinates. In
other words, they are compressible vectors shifted by constants vectors.

Second, vectors such that after removing k largest coordinates with 1
p ≤ k ≤ n

ln2(pn) ,
have a good comparison of `2- and `∞-norms. Then Rogosin anti-concentration
bounds provide a good result (such bounds say that an inner product of a random
vector with a flat vector can’t concentrate around a number).
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Some ideas of the proof.

Third, vectors having a big "jump" between certain coordinates. For such vectors
technique developed in L.–Lytova–K.Tikhomirov–Tomczak-Jaegermann–Youssef
papers on random regular matrices can be applied.
(A 0/1 matrix is regular if the sums of 1 in all columns and in all rows are the same
— it is the adjacency matrix of a regular directed graph).
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Some ideas of the proof.

Then the remaining vectors are contained in the class of gradual non-constant vectors,
that is, vectors after certain normalization satisfying for some parameters r, δ, h and
some increasing function G,
1. x∗rn = 1
2. x∗i ≤ G(n/i)
3. If {yi}i is a non-increasing rearrangement of {xi}i then yδn − yn−δn ≥ h.

To work with this class we partially follow Rudelson–Vershynin scheme.
First, one reduces estimating the smallest singular value to estimating distances
between a column Xi to the span of remaining columns, say Hi, i ≤ n.
This distance is a projection on a (random) normal vector to Hi.
Thus, we have an inner product of Xi and the normal (note that they are independent).
Then we apply an anti-concentration property (such a property says that an inner
product of a random vector with a flat vector can’t concentrate around a number).
To make this scheme work, Rudelson–Vershynin introduced LCD (least common
denominator), which, in a sense, measures how close a proportional coordinate
projection of a vector to the properly rescaled integer lattice. They also had to
develope Littlewood–Offord theory.
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Some ideas of the proof.

In our case both, the LCD, and the known anti-concentration results are not strong
enough, so we need to develop new tools.

First idea is to pass from a Bernoulli random vector, which may have many zeros,
to a random 0/1 vector with prescribed number of ones, say, with m ones, where
m is of the order pn. Note that pn is an average number of ones in a Bernoulli vector.

Second idea is to substitute LCD with another, more appropriate estimator.

Next we have to prove a Littlewood–Offord type anti-concentration property for this
new estimator.

In particular, we also extend the Littlewood–Offord theory to the case of dependent
random variables (in our case – the coordinates of a vector with fixed number of ones).
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Degree of unstructuredness

Recall, Lévy concentration function is L (ξ, t) := max
λ∈R

P (|ξ − λ| < t) .

Esseen Lemma (66):

L
( m∑

i=1

ξi, τ
)
≤ C′

1∫
−1

m∏
i=1

|E exp(2πiξis/τ)| ds.

For a finite integer subset S, let η[S] denotes a r.v. uniformly distributed on S. Then

UDn(v,m,K) := sup
{

t > 0 :
1
N

∑
(S1,...,Sm)

t∫
−t

m∏
i=1

∣∣E exp
(
2πi vη[Si] m−1/2s

)∣∣ ds ≤ K
}
,

where the sum is taken over all sequences (Si)
m
i=1 of disjoint subsets S1, . . . , Sm ⊂ [n],

each of cardinality bn/mc, N is the number of such sequences, K ≥ 1 is a parameter.
We prove that

L
( n∑

i=1

viXi,
√

m t
)
≤ C

(
t + 1/UDn(v,m,K)

)
for all t > 0.
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